Composite & Visitor Design Patterns

EECS4302 A:
Compilers and Interpreters

YORK ' Summer 2025
UNIVERSITE
UNIVERSITY

CHEN-WEI WANG

Learning Objectives LASSONDE

ooooooooooooooooo

Motivating Problem: Recursive Systems

Three Design Attempts

Inheritance: Abstract Class vs. Interface

Fourth Design Attempt: Composite Design Pattern
Implementing and Testing the Composite Design Pattern

aproobd

Backgroundn Readings LASSONDE

ooooooooooooooooo

You may want to review the advanced OOP concepts from
EECS2030 (https://www.eecs.yorku.ca/~wangcw/
teaching/lectures/index.html#EECS2030_F21):

¢ Inheritance [Weeks 7, 8,9]
o Static Type vs. Dynamic Types
o Polymorphic Variable Assignment
o Polymorphic Arrays
o Dynamic Binding

e Genericity [Weeks 10, 11]

Motivating Problem (1) LASSONDE

ooooooooooooooooo

¢ Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.
e.g., A computer system is composed of:
e Base equipment (hard drives, cd-rom drives)

e.g., Each drive has properties: e.g., power consumption and cost.
o Composite equipment such as cabinets, busses, and chassis

e.g., Each cabinet contains various types of chassis, each of which containing
components (hard-drive, power-supply) and busses that contain cards.
¢ Design a system that will allow us to easily build systems and
compute their aggregate cost and power consumption.

Motivating Problem (2)

LASSONDE

ooooooooooooooooo

Design of hierarchies represented in free structures

Challenge : There are base and recursive modelling artifacts.

CABINET

CHASSIS CH

M

WE

N

CARD HARD_DRIVE DVD-CDROM

R_SUPPLY

Design Attempt 1: Architecture

LASSONDE

ooooooooooooooooo

@ Equipment e

equipment

<abstract> Equipment

abstract double price()

| add(Equipment ¢)
ensure children[children.size()] == ¢

J

h
|

:

:

:

T

.

;

:

' i\

: Y
:

|

:

:

:

i @ VideoCard
:

‘

:

:

:

:

|

:

'

\

Java List API

DeSign Attempt 1: Flaw? LASSONDE

ooooooooooooooooo

Q: Any flaw of this first design?

A: Two “composite” features defined at the Equipment level:
o List<Equipment> children

o add (Equipment child)

= Inherited to each base equipment (e.g., DiskDrive), for
which such features are not applicable.

Design Attempt 2: Architecture LASSONDE

ooooooooooooooooo

equipment

<abstract> Equipment

, .
, \
;| '
H '
. ' !
Equipmente . List<Equipment> children '
H abstract double price() < '
H '
7 A

J

' VideoCard (<abstract> CompositeEquipment 1 H

add(Equipment e)
' ensure children[children.size()] == e

VA

8 of 34

LASSONDE

ooooooooooooooooo

Design Attempt 2: Flaw?

Q: Any flaw of this second design?

A: Two “composite” features defined at the Composite level:
o List<Equipment> children

o add (Equipment child)

= Multiple types of the composite (e.g., equipment, furniture)
cause duplicates of the Composite class.

= Use a generic (type) parameter to abstract away the
concrete type of any potential composite.

e

LASSONDE

ooooooooooooooooo

Design Attempt 3: Architecture

<abstract> Composite<E>
List<E> children
add(E ¢)
ensure children[children.size()] = ¢

<abstract> Equipment

List<Equipment=> children

abstract double price()

<abstract>
CompositeEquipment
extends Composite<Equipment>

LASSONDE

ooooooooooooooooo

Design Attempt 3: Flaw?

Q: Any flaw of this third design?

A: It does not compile:

Java does not support multiple inheritance!
0 See: nttps://docs.oracle.com/javase/tutorial/java/Iandl/multipleinheritance.html
o A class may inherit from at most one class (abstract or not).

Rationale. M/ results in name clashes
[a.k.a. the Diamond Problem].

o However, a class may implement multiple interfaces.
[workaround for implementation]

LASSONDE

ooooooooooooooooo

The Composite Pattern: Architecture

<abstract> Composite<E>
List<E> children
add(E ¢)
ensure children[children.size()) = ¢

<interface> Equipment

List<Equipment> children

double price()

<abstract>
CompositeEquipment
extends Composite<Equipment>

<abstract>
BaseEquipment
5

. 1 ——
ym

Implementing the Composite Pattern (2.1) |Zssonee

g\

SSCnDE

HooL

The Composite Pattern: Instantiations 5

import java.util.List;

add(E ¢)
ensure children[children.size()] = ¢

public abstract class Composite<E> {
protected List<E> children;

public void add(E child) {
children.add(child); /* polymorphism */
}
}

<interface> Fumniture

<interface> Equipment

List<Furniture> children

double weight()

List<Equipment> children

double price()

<abstract>
CompositeFumiture.
extends Composite<Furniture>

<abstract> <abstract>
BaseFumiture

mpositeEquipment
extends Composite<Equipment>

<abstract
BascEquipment

]

Implementing the Composite Pattern (2.2) LSSONDE

Implementing the Composite Pattern (1) | iasono:

public interface Equipment { import java.util.ArrayList;

public String name();
public abstract class CompositeEquipment

public double price(); ~cess #/
} extends Composite<Equipment>
implements Equipment
public abstract class BaseEquipment implements Equipment { {
private String name; private String name;
private double price; public CompositeEquipment (String name) {
public BaseEquipment (String name, double price) { this.name = name;
this.name = name; this.price = price; this.children = new ArrayList<>();
} }
public String name() { return this.name; } public String name() { return this.name; }
public double price() { return this.price; } public double price() {
} double result = 0.0;
for (Equipment child : this.children) {
public class VideoCard extends BaseEquipment { result = result + child.price(); /* dynamic binding #/
}

public VideoCard(String name, double price) {
return result;

super (name, price);
} }
}

}

Implementing the Composite Pattern (2.2) |.ssono: Summay: The Composite Pattern LASSONDE

oooooooooooooooooooooooooooooooooo

o : Categorize into base artifacts or recursive artifacts.

Programming ‘:

Build the free structure representing some hierarchy.

* [Runtime |

public class Chassis extends CompositeEquipment { Allow clients to treat base objects (leafs) and recursive
public Chassis(String name) | compositions (nodes) uniformly (e.g., price ()).

super (name) ;

) } = | Polymorphism |. leafs and nodes are “substitutable”.

= | Dynamic Binding | Different versions of the same

operation is applied on base objects and composite objects.

e.g., Given | Equipment e |:
o may return the unit price, e.g., of a DiskDrive.

o may sum prices, e.g., of a Chassis’ containing equipment.

Testing the Composite Pattern LASSONDE Learning Objectives LASSONDE

oooooooooooooooooooooooooooooooooo

@Test
public void test_equipment () {
Equipment card, drive;

Bus bus; 1. Motivating Problem: Processing Recursive Systems

cabinet cabinet; 2. First Design Attempt: Cohesion & Single-Choice Principle?

Chassis chassis;
3. Design Principles:
card = new VideoCard("1l6Mbs Token Ring", 200);

drive = new DiskDrive("500 GB harddrive", 500); o Cohesion

bus = new Bus ("MCA Bus"); o Single Choice Principle

chassis = new Chassis("PC Chassis");

cabinet = new Cabinet ("PC Cabinet"); o Open—C/osed Principle

bus.add(card) ; . . .

chassis.add (bus) ; 4. Second Design Attempt: Visitor Design Pattern
chassis.add(drive);

cabinet . add(chaseis) ; 5. Implementing and Testing the Visitor Design Pattern

assertEquals (700.00, cabinet.price(), 0.1);
}

Motivating Problem (1)

Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions

(e.g., 341, 2, 341 + 2).

(<abstract> CompositeExpressio]

(<interface> Expression]
Labstract Expression lefi()

1nt value()

/;
J

abstract Expression right()

<

Constant (Addition]
Motivating Problem (2)

Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print _postfix),
and type_check.

<interface> Expression

(<abstract> CompositeExpression]

int value()

void evaluate()
void printPrefix()
void printPostfix()
void typeCheck()

abstract Expression /eft()
abstract Expression right()

ADDITION+

CONSTANT+

int value()
void evaluate()
void printPrefix()
void printPostfix()
void typeCheck()

int value()
void evaluate()
void printPrefix()
void printPostfix()
void typeCheck()

LASSONDE

ooooooooooooooooo

Design Principles:
Information Hiding & Single Choice

e Cohesion:
o A class/module groups relevant features (data & operations).
e Single Choice Principle (SCP):
o When a change is needed, there should be a single place (or a

minimal number of places) where you need to make that change.
o Violation of SCP means that your design contains redundancies.

e

LASSONDE

ooooooooooooooooo

Problems of Extended Composite Pattern

e Distributing unrelated operations across nodes of the
abstract syntax tree violates the single-choice principle:
To add/delete/modify an operation
= Change of all descendants of Expression
e Each node class lacks in cohesion:
A class should group relevant concepts in a single place.

= Confusing to mix codes for evaluation, pretty printing, type checking.
= Avoid “polluting” the classes with these unrelated operations.

Open/Closed Principle LASSONDE Visitor Pattern: Architecture LASSONDE

oooooooooooooooooooooooooooooooooo

¢ Software entities (classes, features, etc.) should be open for
extension, but closed for modification.
= As a system evolves, we:
o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.
* e.g., In designing the application of an expression language:
o ALTERNATIVE 1:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.
o ALTERNATIVE 2:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.

I
Visitor Pattern o Visitor Pattern Implementation: Structures |ssons:
Package sfructures
° Separation of concerns: o Declare ’ void accept (Visitor v) ‘ in abstract class Expression.
o Set of language (syntactic) constructs o Implement accept in each of Expression’s descendant classes.

o Set of operations
= Classes from these two sets are decoupled and organized
into two separate packages.

e Open-Closed Principle (OCP): [ALTERNATIVE 2] })
o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations
= OCP helps us determine if the Visitor Pattern is applicable.

public void accept (Visitor v) {

= If it is determined that language constructs are open and v.visitAddition (this);

operations are closed, then do not use the Visitor Pattern. } }

public class Constant implements Expression {

public void accept (Visitor v) {
v.visitConstant (this);

public class Addition extends CompositeExpression {

28 of 34

Visitor Pattern Implementation: Operations

LASSONDE

ooooooooooooooooo

Package operations

o For each descendant class C of Expression, declare a method header

[void visitc (e: C) |inthe interface Visitor.

public interface Visitor {
public void visitConstant (Constant e);
public void visitAddition(Addition e);
public void visitSubtraction(Subtraction e);

}

o Each descendant of vISITOR denotes a kind of operation.

public class Evaluator implements Visitor {
private int result;

public void visitConstant (Constant e) {
this.result = e.value();

}

public void visitAddition(Addition e) {
Evaluator evall = new Evaluator();
Evaluator evalR = new Evaluator();
e.getLeft () .accept (evall);
e.getRight () .accept (evalR);
this.result = evallL.result() + evalR.result();

}
}

Testing the Visitor Pattern

LASSONDE

ooooooooooooooooo

@Test
public void test_expression_evaluation() {
CompositeExpression add;
Expression cl, c2;
Visitor v;
cl = new Constant(l); c2 = new Constant(2);
add = new Addition(cl, c2);
v = new Evaluator();
add. accept (v) ;
assertEquals (3, ((Evaluator) v).result());

- 0OVWONOOH»WN =

—_

Double Dispatch in Line 9:

1. DT of add is Addition = Call accept in ADDITION.

|v.visitAddition (add) |

2. DT of vis Evaluator = Call visitAddition in Evaluator.

’visiting result of add.left () ‘+ ’ visiting result of add. right () ‘

To Use or Not to Use the Visitor Pattern LASSONDE

ooooooooooooooooo

e In the visitor pattern, what kind of extensions is easy?
Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | CCodeGenerator |of Visitor,
then implement how to handle each language element in that class.
= Single Choice Principle is satisfied.

e In the visitor pattern, what kind of extensions is hard?
Adding a new kind of sfructure element is hard.
After adding a descendant class Multiplcation of Expression,
every concrete visitor (i.e., descendant of Visitor) must be amended
with a new ’ visitMultiplication ‘ operation.

= Single Choice Principle is violated.

e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations (applied to structure) change often.

= Do not use visitor if the structure changes often.

Index (1)

ooooooooooooooooo

|[Learning Objectives|

|Background Readings|

[Motivating Problem (1)

[Motivating Problem (2)|

|[Design Attempt 1: Architecture|
|Design Attempt 1: Flaw?|
[Design Attempt 2: Architecture|
|Design Attempt 2: Flaw?|
[Design Attempt 3: Architecture|
[Design Attempt 3: Flaw?|

[The Composite Pattern: Architecture|

Index (2) :AssoNDE

[The Composite Pattern: Instantiations|

[Implementing the Composite Pattern (1)|

iImplementing the Composite Pattern (2.1)|

[Implementing the Composite Pattern (2.2)|

[Implementing the Composite Pattern (2.3)|

[Testing the Composite Pattern|

[Summary: The Composite Pattern|

|[Learning Objectives|

[Motivating Problem (1)

[Motivating Problem (2)|

e

Index (3) Lassonpe
[Design Principles: |
[Information Hiding & Single Choice|

[Problems of Extended Composite Pattern|

|Open/Closed Principle|
Visitor Pattern

Visitor Pattern: Architecture
|Visitor Pattern Implementation: Structures|

|Visitor Pattern Implementation: Operations|

[Testing the Visitor Pattern|

[To Use or Not to Use the Visitor Pattern|

