Parser: Syntactic Analysis Readings: EAC2 Chapter 3

EECS4302 A: Compilers and Interpreters Summer 2025

CHEN-WEI WANG

Parser in Context

• Recall:

- Treats the input programas as a *a sequence of <u>classified</u>* tokens/words
- Applies rules *parsing* token sequences as

abstract syntax trees (ASTs)

syntactic analysis]

- Upon termination:
 - Reports token sequences <u>not</u> derivable as ASTs
 - Produces an AST
- No longer considers every character in input program.
- Derivable token sequences constitute a

context-free language (CFL)

Context-Free Languages: Introduction

- We have seen *regular languages*:
 - Can be described using *finite automata* or *regular expressions*.
 - Satisfy the *pumping lemma*.
- Language with *recursive* structures are provably *non-regular*.
 e.g., {0ⁿ1ⁿ | n ≥ 0}
- *Context-Free Grammars (CFG's)* are used to describe strings that can be generated in a *recursive* fashion.
- Context-Free Languages (CFL's) are:
 - Languages that can be described using CFG's.
 - A proper superset of the set of regular languages.

CFG: Example (1.1)

• The following language that is *non-regular*

 $\{0^n \# 1^n \mid n \ge 0\}$

can be described using a context-free grammar (CFG):

$$\begin{array}{rrrr} A & \rightarrow & 0A1 \\ A & \rightarrow & B \\ B & \rightarrow & \# \end{array}$$

- A grammar contains a collection of *substitution* or *production* rules, where:
 - A **terminal** is a word $w \in \Sigma^*$ (e.g., 0, 1, *etc.*).
 - A *variable* or *non-terminal* is a word $w \notin \Sigma^*$ (e.g., *A*, *B*, *etc.*).
 - A *start variable* occurs on the LHS of the topmost rule (e.g., *A*).

CFG: Example (1.2)

- Given a grammar, generate a string by:
 - 1. Write down the start variable.
 - Choose a production rule where the start variable appears on the LHS of the arrow, and substitute it by the RHS.
 - 3. There are two cases of the re-written string:
 - 3.1 It contains <u>no</u> variables, then you are done.
 - 3.2 It contains <u>some</u> variables, then *substitute* each variable using the relevant *production rules*.
 - 4. Repeat Step 3.
- e.g., We can generate an infinite number of strings from

$$\begin{array}{rcl} A & \rightarrow & 0A^{*} \\ A & \rightarrow & B \\ B & \rightarrow & \# \end{array}$$

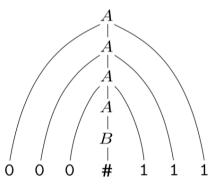
$$\circ A \Rightarrow B \Rightarrow \#$$

$$\circ A \Rightarrow 0A1 \Rightarrow 0B1 \Rightarrow 0\#1$$

$$\circ A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$$

Given a CFG, a string's *derivation* can be shown as a *parse tree*.

e.g., The derivation of 000#111 has the parse tree



CFG: Example (2)

Design a CFG for the following language:

 $\{w \mid w \in \{0,1\}^* \land w \text{ is a palidrome}\}$

e.g., 00, 11, 0110, 1001, etc.

$$P \rightarrow \epsilon$$

$$P \rightarrow 0$$

$$P \rightarrow 1$$

$$P \rightarrow 0P0$$

$$P \rightarrow 1P1$$

CFG: Example (3)

Design a CFG for the following language:

 $\{ww^R \mid w \in \{0,1\}^*\}$

e.g., 00, 11, 0110, etc.

$$\begin{array}{rcc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$$

Design a CFG for the set of binary strings, where each block of 0's followed by at least as many 1's. e.g., 000111, 0001111, *etc.*

• We use *S* to represent one such string, and *A* to represent each such block in *S*.

$$S \rightarrow \epsilon \quad \{BC \text{ of } S\}$$

$$S \rightarrow AS \quad \{RC \text{ of } S\}$$

$$A \rightarrow \epsilon \quad \{BC \text{ of } A\}$$

$$A \rightarrow 01 \quad \{BC \text{ of } A\}$$

$$A \rightarrow 0A1 \quad \{RC \text{ of } A: \text{ equal } 0's \text{ and } 1's\}$$

$$A \rightarrow A1 \quad \{RC \text{ of } A: \text{ more } 1's\}$$

Design the grammar for the following small expression language, which supports:

- Arithmetic operations: +, -, \star , /
- Relational operations: >, <, >=, <=, ==, /=
- Logical operations: true, false, !, &&, ||, => Start with the variable *Expression*.
- There are two possible versions:
 - 1. All operations are mixed together.
 - 2. Relevant operations are <u>grouped</u> together. Try both!

CFG: Example (5.2) Version 1

9

Expression	→ 	IntegerConstant – IntegerConstant BooleanConstant BinaryOp UnaryOp (Expression)	
IntegerConstant	→ 	Digit Digit IntegerConstant	
Digit	\rightarrow	0 1 2 3 4 5 6 7 8	
BooleanConstant	→ 	TRUE FALSE	

CFG: Example (5.3) Version 1

BinaryOp \rightarrow Expression + Expression Expression – Expression Expression * Expression Expression / Expression Expression & & Expression Expression || Expression Expression => Expression Expression == Expression Expression /= Expression Expression > Expression Expression < Expression

 $UnaryOp \rightarrow ! Expression$

However, Version 1 of CFG:

- *Parses* string that requires further *semantic analysis* (e.g., type checking):
 - **e.g.**, 3 => 6
- Is *ambiguous*, meaning?
 - · Some string may have more than one ways to interpreting it.
 - An interpretation is either visualized as a *parse tree*, or written as a sequence of *derivations*.

e.g., Draw the parse tree(s) for $3 \times 5 + 4$

CFG: Example (5.5) Version 2

Expression		ArithmeticOp RelationalOp LogicalOp (Expression)
IntegerConstant	\rightarrow	Diait

- IntegerConstant → Digit | Digit IntegerConstant
- $Digit \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

BooleanConstant → TRUE | FALSE

CFG: Example (5.6) Version 2

ArithmeticOp	→ 	ArithmeticOp + ArithmeticOp ArithmeticOp - ArithmeticOp ArithmeticOp * ArithmeticOp ArithmeticOp / ArithmeticOp (ArithmeticOp) IntegerConstant - IntegerConstant
RelationalOp	→ 	ArithmeticOp == ArithmeticOp ArithmeticOp /= ArithmeticOp ArithmeticOp > ArithmeticOp ArithmeticOp < ArithmeticOp
LogicalOp	→ 	LogicalOp & LogicalOp LogicalOp LogicalOp LogicalOp => LogicalOp ! LogicalOp (LogicalOp) RelationalOp BooleanConstant

However, Version 2 of CFG:

- Eliminates some cases for further semantic analysis:
 - e.g., (1 + 2) => (5 / 4) [no parse tree]
- Still *parses* strings that might require further *semantic analysis*:
 e.g., (1 + 2) / (5 (2 + 3))
- Still is ambiguous.

e.g., Draw the parse tree(s) for $3 \times 5 + 4$

CFG: Formal Definition (1)

 $[V \cap \Sigma = \emptyset]$

- A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S):
 - V is a finite set of **variables**.
 - Σ is a finite set of *terminals*.
 - R is a finite set of *rules* s.t.

$$R \subseteq \{ \boldsymbol{v} \to \boldsymbol{s} \mid \boldsymbol{v} \in \boldsymbol{V} \land \boldsymbol{s} \in (\boldsymbol{V} \cup \Sigma)^* \}$$

- $S \in V$ is is the start variable.
- Given strings $u, v, w \in (V \cup \Sigma)^*$, variable $A \in V$, a rule $A \rightarrow w$:
 - $uAv \Rightarrow uwv$ menas that uAv yields uwv.
 - $u \stackrel{*}{\Rightarrow} v$ means that u derives v, if:

- $U \Rightarrow U_1 \Rightarrow U_2 \Rightarrow \cdots \Rightarrow U_k \Rightarrow V$ [a yield sequence]
- Given a CFG $G = (V, \Sigma, R, S)$, the language of G

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

• Design the *CFG* for strings of properly-nested parentheses. e.g., (), () (), ((())) (), *etc.*

Present your answer in a *formal* manner.

• $G = (\{S\}, \{(,)\}, R, S)$, where R is

 $S \rightarrow (S) \mid SS \mid \epsilon$

• Draw *parse trees* for the above three strings that G generates.

CFG: Formal Definition (3): Example

Consider the grammar G = (V, Σ, R, S):
 R is

- \circ V = {*Expr*, *Term*, *Factor*}
- $\Sigma = \{a, +, *, (,)\}$
- $\circ S = Expr$
- *Precedence* of operators +, * is embedded in the grammar.
 - "Plus" is specified at a higher level (*Expr*) than is "times" (*Term*).
 - Both operands of a multiplication (Factor) may be parenthesized.

Regular Expressions to CFG's

 Recall the semantics of regular expressions (assuming that we do not consider Ø):

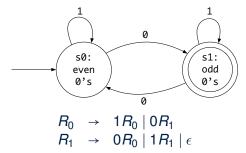
$$L(\epsilon) = \{\epsilon\} \\ L(a) = \{a\} \\ L(E+F) = L(E) \cup L(F) \\ L(EF) = L(E)L(F) \\ L(E^*) = (L(E))^* \\ L(E) = L(E)$$

• e.g., Grammar for $(00 + 1)^* + (11 + 0)^*$

$$\begin{array}{rrrr} S & \rightarrow & A \mid B \\ A & \rightarrow & \epsilon \mid AC \\ C & \rightarrow & 00 \mid 1 \\ B & \rightarrow & \epsilon \mid BD \\ D & \rightarrow & 11 \mid 0 \end{array}$$

DFA to CFG's

- Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$:
 - Make a *variable* R_i for each *state* $q_i \in Q$.
 - Make R_0 the **start variable**, where q_0 is the **start state** of *M*.
 - Add a rule $R_i \rightarrow aR_j$ to the grammar if $\delta(q_i, a) = q_j$.
 - Add a rule $R_i \rightarrow \epsilon$ if $q_i \in F$.
- e.g., Grammar for



CFG: Leftmost Derivations (1)

Expr	\rightarrow	Expr + Term Term
Term	\rightarrow	Term * Factor Factor
Factor	\rightarrow	(Expr) a

- Given a string (∈ (V ∪ Σ)*), a *left-most derivation (LMD)* keeps substituting the <u>leftmost</u> non-terminal (∈ V).
- Unique LMD for the string a + a * a:

Expr	\Rightarrow	Expr + Term
	\Rightarrow	Term + Term
	\Rightarrow	Factor + Term
	\Rightarrow	a + Term
	\Rightarrow	a + Term * Factor
	\Rightarrow	a + Factor * Factor
	\Rightarrow	a + a * Factor
	\Rightarrow	a + a * a

 \circ This *LMD* suggests that a * a is the right operand of +.

CFG: Rightmost Derivations (1)

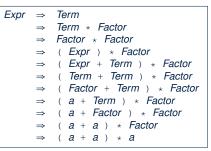
- $\begin{array}{rcl} Expr & \rightarrow & Expr + & Term \mid Term \\ Term & \rightarrow & Term & \star & Factor \mid Factor \\ Factor & \rightarrow & (Expr) \mid a \end{array}$
- Given a string ($\in (V \cup \Sigma)^*$), a *right-most derivation (RMD)* keeps substituting the <u>rightmost</u> non-terminal ($\in V$).
- Unique RMD for the string a + a * a:

Expr	⇒	Expr + Term
		Expr + Term * Factor
		Expr + Term * a
		Expr + Factor * a
		Expr + a * a
		Term $+ a * a$
		Factor + a * a
		a + a * a
	\rightarrow	a a a

 $\circ\,$ This RMD suggests that a $\,\,\star\,\,$ a is the right operand of +.

CFG: Leftmost Derivations (2)

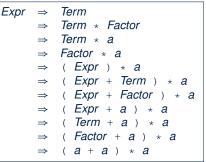
- $\begin{array}{rcl} Expr & \rightarrow & Expr \ + & Term \mid Term \\ Term & \rightarrow & Term \ \star & Factor \mid Factor \\ Factor & \rightarrow & (Expr) \mid a \end{array}$
- Unique LMD for the string (a + a) * a:



• This LMD suggests that (a + a) is the left operand of *.

CFG: Rightmost Derivations (2)

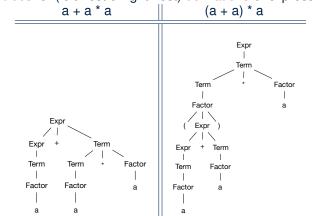
- $\begin{array}{rcl} Expr & \rightarrow & Expr \ + & Term \mid Term \\ Term & \rightarrow & Term \ \star & Factor \mid Factor \\ Factor & \rightarrow & (Expr) \ \mid a \end{array}$
- Unique RMD for the string (a + a) * a:



• This **RMD** suggests that (a + a) is the left operand of *.

CFG: Parse Trees vs. Derivations (1)

• Parse trees for (leftmost & rightmost) derivations of expressions:



 Orders in which *derivations* are performed are *not* reflected on parse trees.

CFG: Parse Trees vs. Derivations (2)

- A string $w \in \Sigma^*$ may have more than one *derivations*.
 - **Q**: distinct *derivations* for $w \in \Sigma^* \Rightarrow$ distinct *parse trees* for *w*?
 - A: Not in general : Derivations with *distinct orders* of variable substitutions may still result in the *same parse tree*.
- For example:

Expr	\rightarrow	Expr + Term Term
Term	\rightarrow	Term * Factor Factor
Factor	\rightarrow	(Expr) a

For string a + a * a, the *LMD* and *RMD* have *distinct orders* of variable substitutions, but their corresponding *parse trees are the <u>same</u>.*

Given a grammar $G = (V, \Sigma, R, S)$:

• A string $w \in \Sigma^*$ is derived *ambiguously* in *G* if there exist two or more *distinct parse trees* or, equally, two or more *distinct LMDs* or, equally, two or more *distinct RMDs*.

We require that all such derivations are completed by following a <u>consisten</u> order (**leftmost** or **rightmost**) to avoid *false positive*.

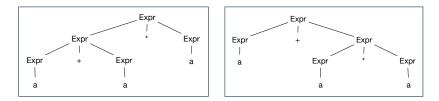
• *G* is *ambiguous* if it generates some string ambiguously.

CFG: Ambiguity: Exercise (1)

• Is the following grammar *ambiguous*?

 $Expr \rightarrow Expr + Expr | Expr \star Expr | (Expr) | a$

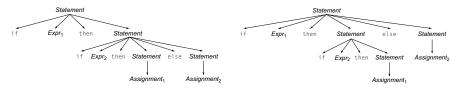
• Yes :: it generates the string a + a * a ambiguously :



- Distinct ASTs (for the same input) imply distinct semantic interpretations: e.g., a pre-order traversal for evaluation
- Exercise: Show LMDs for the two parse trees.

CFG: Ambiguity: Exercise (2.1)

- Is the following grammar *ambiguous*?
 - Statement → if Expr then Statement | if Expr then Statement else Statement | Assignment
- Yes ∵ it derives the following string *ambiguously* :
 - if $Expr_1$ then if $Expr_2$ then $Assignment_1$ else $Assignment_2$

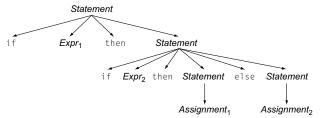


- This is called the *dangling else* problem.
- Exercise: Show *LMDs* for the two parse trees.

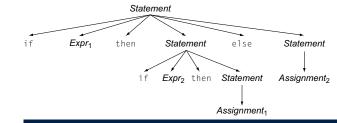
CFG: Ambiguity: Exercise (2.2)

31 of 96

(*Meaning 1*) Assignment₂ may be associated with the inner if:



(*Meaning 2*) Assignment₂ may be associated with the <u>outer if</u>:



CFG: Ambiguity: Exercise (2.3)

• We may remove the *ambiguity* by specifying that the *dangling else* is associated with the **nearest if**:

Statement	\rightarrow	if <i>Expr</i> then <i>Statement</i>
		if Expr then WithElse else Statement
	- i	Assignment
WithElse	\rightarrow	if <i>Expr</i> then <i>WithElse</i> else <i>WithElse</i>
Assi		Assignment

- When applying if ... then WithElse else Statement :
 - The *true* branch will be produced via *WithElse*.
 - The *false* branch will be produced via *Statement*.

There is **no circularity** between the two non-terminals.

Discovering Derivations

- Given a CFG $G = (V, \Sigma, R, S)$ and an input program $p \in \Sigma^*$:
 - So far we **manually** come up a valid **derivation** s.t. $S \stackrel{*}{\Rightarrow} p$.
 - A *parser* is supposed to *automate* this *derivation* process.
 - Input : <u>A sequence of (t, c) pairs</u>, where each *token t* (e.g., r241) belongs to a *syntactic category c* (e.g., register); and a *CFG G*.
 - Output : A *valid derivation* (as an *AST*); or A *parse error*.
- In the process of constructing an AST for the input program:
 - Root of AST: The start symbol S of G
 - Internal nodes: A subset of variables V of G
 - Leaves of AST: A token/terminal sequence

 \Rightarrow Discovering the *grammatical connections* (w.r.t. *R* of *G*) between the *root*, *internal nodes*, and *leaves* is the hard part!

• Approaches to Parsing:

$$[W \in (V \cup \Sigma)^*, A \in V, A \to W \in R]$$

• Top-down parsing

For a node representing A, extend it with a subtree representing w.

Bottom-up parsing

For a substring matching w, <u>build a node</u> representing A accordingly.

TDP: Discovering Leftmost Derivation

```
ALGORITHM: TDParse
 INPUT: CFG G = (V, \Sigma, R, S)
 OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE ·
 root := a new node for the start symbol S
 focus ·= root
 initialize an empty stack trace
 trace.push(null)
 word := NextWord()
 while (true) .
    if focus \in V then
       if \exists unvisited rule focus \rightarrow \beta_1 \beta_2 \dots \beta_n \in R then
          create \beta_1, \beta_2 \dots \beta_n as children of focus
          trace. push (\beta_n \beta_{n-1} \dots \beta_2)
          focus := \beta_1
       else
          if focus = S then report syntax error
          else backtrack
    elseif word matches focus then
       word := NextWord()
       focus := trace.pop()
    elseif word = EOF \land focus = null then return root
    else backtrack
```

TDP: Exercise (1)

• Given the following CFG G:

Expr	\rightarrow	Expr +	Term
		Term	
Term	\rightarrow	Term *	Factor
		Factor	
Factor	\rightarrow	(Expr)	
		a	

Trace TDParse on how to build an AST for input a + a * a.

- Running TDParse with G results an infinite loop !!!
 - TDParse focuses on the leftmost non-terminal.
 - The grammar **G** contains *left-recursions*.
- We must first convert left-recursions in **G** to *right-recursions*.

TDP: Exercise (2)

• Given the following CFG G:

- **Exercise**. Trace *TDParse* on building AST for a + a * a. **Exercise**. Trace *TDParse* on building AST for (a + a) * a. **Q**: How to handle ϵ -productions (e.g., $Expr \rightarrow \epsilon$)? **A**: Execute focus := trace.pop() to advance to next node.
- Running *TDParse* will **terminate** :: **G** is **right-recursive**.
- We will learn about a systematic approach to converting left-recursions in a given grammar to *right-recursions*.

Left-Recursions (LR): Direct vs. Indirect

Given CFG $G = (V, \Sigma, R, S), \alpha, \beta, \gamma \in (V \cup \Sigma)^*$, G contains:

- A cycle if $\exists A \in V \bullet A \stackrel{*}{\Rightarrow} A$
- A *direct* LR if $A \rightarrow A\alpha \in R$ for non-terminal $A \in V$ e.g., e.g.,

- 3 /		- 37	
Expr →	Expr + Term	Expr → Expr + Term	
	Term	Expr – Term	
Term →	Term * Factor	Term	
	Factor	Term → Term * Facto	r
Factor →	(Expr)	Term / Facto	r
	a	Factor	

• An *indirect* LR if $\mathbf{A} \to \mathbf{B}\beta \in \mathbf{R}$ for non-terminals $\mathbf{A}, \mathbf{B} \in \mathbf{V}, \mathbf{B} \stackrel{*}{\Rightarrow} \mathbf{A}\gamma$

$$\begin{array}{rrr} A & \rightarrow & Br \\ B & \rightarrow & Cd \\ C & \rightarrow & At \end{array}$$

$$A \rightarrow Br, B \stackrel{*}{\Rightarrow} Atd$$

TDP: (Preventively) Eliminating LRs

ALGORITHM: RemoveLR 2 **INPUT:** CFG $G = (V, \Sigma, R, S)$ 3 **ASSUME:** G has no ϵ -productions **OUTPUT:** G' s.t. $G' \equiv G$, G' has no 4 5 indirect & direct left-recursions 6 **PROCEDURE**: 7 impose an order on V: $\langle \langle A_1, A_2, \dots, A_n \rangle \rangle$ 8 for *i*: 1 .. *n*: 9 for *j*: 1 .. *i*-1: 10 if $\exists A_i \to A_j \gamma \in R \land A_i \to \delta_1 \mid \delta_2 \mid \ldots \mid \delta_m \in R$ then replace $\dot{A}_i \rightarrow A_i \gamma$ with $A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_m \gamma$ 11 12 end 13 for $A_i \rightarrow A_i \alpha \mid \beta \in R$: replace it with: $A_i \rightarrow \beta A'_i, A'_i \rightarrow \alpha A'_i \mid \epsilon$ 14

- L9 to L12: Remove *indirect* left-recursions from A_1 to A_{i-1} .
- **L13** to **L14**: Remove *direct* left-recursions from A_1 to A_{i-1} .
- Loop Invariant (outer for-loop)? At the start of ith iteration:
 - <u>No</u> *direct* or *indirect* left-recursions for $A_1, A_2, \ldots, A_{i-1}$.
 - More precisely: $\forall j : j < i \bullet \neg (\exists k \bullet k \leq j \land A_j \rightarrow A_k \dots \in R)$

CFG: Eliminating *e*-Productions (1)

- Motivations:
 - **TDParse** handles each ϵ -production as a special case.
 - *RemoveLR* produces CFG which may contain ϵ -productions.
- $\epsilon \notin L \Rightarrow \exists CFG G = (V, \Sigma, R, S) \text{ s.t. } G \text{ has no } \epsilon\text{-productions.}$

An ϵ -production has the form $A \rightarrow \epsilon$.

- A variable A is **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$.
 - Each terminal symbol is *not nullable*.
 - Variable A is *nullable* if either:
 - $A \rightarrow \epsilon \in R$; or
 - $A \rightarrow B_1 B_2 \dots B_k \in R$, where each variable B_i $(1 \le i \le k)$ is a *nullable*.
- Given a production B → CAD, if only variable A is nullable, then there are 2 versions of B: B → CAD | CD
- In general, given a production A → X₁X₂...X_k with k symbols, if m of the k symbols are *nullable*:
 - m < k: There are 2^m versions of A.
 - m = k: There are $2^m 1$ versions of A.

[excluding $A \rightarrow \epsilon$]

CFG: Eliminating *c*-Productions (2)

• Eliminate *e*-productions from the following grammar:

$$\begin{array}{rcl}
S & \rightarrow & AB \\
A & \rightarrow & aAA \mid \epsilon \\
B & \rightarrow & bBB \mid \epsilon
\end{array}$$

Which are the *nullable* variables?

 $S \rightarrow A | B | AB \qquad \{S \rightarrow \epsilon \text{ not included}\} \\ A \rightarrow aAA | aA | a \qquad \{A \rightarrow aA \text{ duplicated}\} \\ B \rightarrow bBB | bB | b \qquad \{B \rightarrow bB \text{ duplicated}\}$

Backtrack-Free Parsing (1)

- TDParse automates the *top-down*, *leftmost* derivation process by consistently choosing production rules (e.g., in order of their appearance in CFG).
 - This *inflexibility* may lead to *inefficient* runtime performance due to the need to *backtrack*.
 - e.g., It may take the *construction of a giant subtree* to find out a *mismatch* with the input tokens, which end up requiring it to *backtrack* all the way back to the *root* (start symbol).
- We may avoid backtracking with a modification to the parser:
 - When deciding which production rule to choose, consider:
 - (1) the *current* input symbol
 - (2) the consequential first symbol if a rule was applied for focus

[lookahead symbol]

- Using a one symbol lookhead, w.r.t. a right-recursive CFG, each alternative for the leftmost nonterminal leads to a unique terminal, allowing the parser to decide on a choice that prevents backtracking.
- Such CFG is backtrack free with the lookhead of one symbol.
- We also call such backtrack-free CFG a predictive grammar.

- Say we write *T* ⊂ ℙ(Σ^{*}) to denote the set of valid tokens recognizable by the scanner.
- FIRST (α) ≜ set of symbols that can appear as the *first word* in some string derived from α.
- More precisely:

 $\mathbf{FIRST}(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in \mathcal{T} \\ \{w \mid w \in \Sigma^* \land \alpha \stackrel{*}{\Rightarrow} w\beta \land \beta \in (\mathcal{V} \cup \Sigma)^*\} & \text{if } \alpha \in \mathcal{V} \end{cases}$

The FIRST Set: Examples

• Consider this *right*-recursive CFG:

• Compute **FIRST** for each terminal (e.g., num, +, ():

	num	name	+	-	×	÷	()	eof	ϵ
FIRST	num	name	+	-	Х	÷	()	eof	ϵ

• Compute **FIRST** for each non-terminal (e.g., *Expr*, *Term'*):

	Expr	Expr'	Term	Term'	Factor
FIRST	<u>(</u> ,name,num	+, -, ϵ	<u>(</u> ,name,num	X,÷, ϵ	<u>(</u> ,name,num

Computing the FIRST Set

 $\mathsf{FIRST}(\alpha) = \begin{cases} \{\alpha\} \\ \{w \mid w \in \Sigma^* \land \alpha \stackrel{*}{\Rightarrow} w\beta \land \beta \in (V \cup \Sigma)^* \} & \text{if } \alpha \in V \end{cases}$ **ALGORITHM:** GetFirst **INPUT:** CFG $G = (V, \Sigma, R, S)$ $T \subset \Sigma^*$ denotes valid terminals **OUTPUT:** FIRST: $V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$ PROCEDURE : for $\alpha \in (T \cup \{eof, \epsilon\})$: FIRST $(\alpha) := \{\alpha\}$ for $A \in V$: First(A) := \emptyset lastFirst := Ø while (lastFirst = FIRST): lastFirst := FIRST for $A \to \beta_1 \beta_2 \dots \beta_k \in R$ s.t. $\forall \beta_i : \beta_i \in (T \cup V)$: *rhs* := **FIRST** $(\beta_1) - \{\epsilon\}$ for $(i := 1; \epsilon \in \mathbf{FIRST}(\beta_i) \land i < k; i++)$: *rhs* := *rhs* \cup (**First**(β_{i+1}) - { ϵ }) if $i = k \land \epsilon \in \mathbf{FIRST}(\beta_k)$ then **rhs** := **rhs** \cup { ϵ } end $First(A) := First(A) \cup rhs$

Computing the FIRST Set: Extension

• Recall: **FIRST** takes as input a token or a variable.

FIRST:
$$V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$$

• The computation of variable *rhs* in algoritm GetFirst actually suggests an extended, overloaded version:

$$\mathbf{FIRST}: (\mathbf{V} \cup \mathbf{T} \cup \{\epsilon, \mathbf{eof}\})^* \longrightarrow \mathbb{P}(\mathbf{T} \cup \{\epsilon, \mathbf{eof}\})$$

FIRST may also take as input a string $\beta_1 \beta_2 \dots \beta_n$ (RHS of rules).

• More precisely:

```
\begin{aligned} \mathsf{FIRST}(\beta_1 \beta_2 \dots \beta_n) &= \\ \left\{ \begin{array}{c} \mathsf{FIRST}(\beta_1) \cup \mathsf{FIRST}(\beta_2) \cup \dots \cup \mathsf{FIRST}(\beta_{k-1}) \cup \mathsf{FIRST}(\beta_k) \\ \wedge \\ \epsilon \notin \mathsf{FIRST}(\beta_k) \end{array} \right| \begin{array}{c} \forall i : 1 \le i < k \bullet \epsilon \in \mathsf{FIRST}(\beta_i) \\ \wedge \\ \epsilon \notin \mathsf{FIRST}(\beta_k) \end{array} \end{aligned}
```

Note. β_k is the first symbol whose **FIRST** set does not contain ϵ .

Extended FIRST Set: Examples

Consider this *right*-recursive CFG:

0	Goal	\rightarrow	Expr	6	Term'	\rightarrow	× Factor Term'
1	Expr	\rightarrow	Term Expr'	7			÷ Factor Term'
2	Expr'	\rightarrow	+ Term Expr'	8			ϵ
3			- Term Expr'	9	Factor	\rightarrow	<u>(</u> Expr <u>)</u>
4			ϵ	10			num
5	Term	\rightarrow	Factor Term'	11			name

e.g., FIRST(*Term Expr'*) = FIRST(*Term*) ={(, name, num} e.g., FIRST(+ *Term Expr'*) = FIRST(+) = {+} e.g., FIRST(- *Term Expr'*) = FIRST(-) = {-} e.g., FIRST(ϵ) = { ϵ }

Is the FIRST Set Sufficient

• Consider the following three productions:

Expr'	\rightarrow	+	Term	Term'	(1)
		-	Term	Term'	(2)
		ϵ			(3)

In TDP, when the parser attempts to expand an Expr' node, it *looks ahead with one symbol* to decide on the choice of rule: FIRST(+) = {+}, FIRST(-) = {-}, and FIRST(ϵ) = { ϵ }.

- Q. When to choose rule (3) (causing *focus := trace.pop()*)? A?. Choose rule (3) when *focus ≠* **FIRST**(+) ∧ *focus ≠* **FIRST**(-)?
 - Correct but inefficient in case of illegal input string: syntax error is only reported after possibly a long series of backtrack.
 - Useful if parser knows which words can appear, after an application of the ϵ -production (rule (3)), as leadling symbols.
- **FOLLOW** (*v* : *V*) ≜ set of symbols that can appear to the <u>immediate right</u> of a string derived from *v*.

 $\mathsf{Follow}(v) = \{ w \mid w, x, y \in \Sigma^* \land v \stackrel{*}{\Rightarrow} x \land S \stackrel{*}{\Rightarrow} xwy \}$

The FOLLOW Set: Examples

• Consider this *right*-recursive CFG:

0	Goal	\rightarrow	Expr	6	$Term' \rightarrow$	× Factor Term'
1	Expr	\rightarrow	Term Expr'	7		÷ Factor Term'
2	Expr'	\rightarrow	+ Term Expr'	8		ϵ
3			- Term Expr'	9	Factor \rightarrow	<u>(</u> Expr <u>)</u>
4			ϵ	10		num
5	Term	\rightarrow	Factor Term'	11		name

• Compute **FOLLOW** for each non-terminal (e.g., *Expr*, *Term'*):

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

Computing the FOLLOW Set

 $\mathsf{FOLLOW}(v) = \{ w \mid w, x, y \in \Sigma^* \land v \stackrel{*}{\Rightarrow} x \land S \stackrel{*}{\Rightarrow} xwy \}$

```
ALGORITHM: GetFollow
   INPUT: CFG G = (V, \Sigma, R, S)
   OUTPUT: Follow: V \longrightarrow \mathbb{P}(T \cup \{eof\})
PROCEDURE :
   for A \in V: Follow(A) := \emptyset
   Follow(S) := \{eof\}
   lastFollow := Ø
   while (lastFollow ≠ Follow) :
      lastFollow := FOLLOW
      for A \rightarrow \beta_1 \beta_2 \dots \beta_k \in R:
          trailer := Follow(A)
          for i: k \dots 1:
             if \beta_i \in V then
                FOLLOW(\beta_i) := FOLLOW(\beta_i) \cuptrailer
                 if \epsilon \in \mathbf{FIRST}(\beta_i)
                    then trailer := trailer \cup (FIRST(\beta_i) - \epsilon)
                    else trailer := FIRST(\beta_i)
             else
                 trailer := FIRST(\beta_i)
```

Backtrack-Free Grammar

- A *backtrack-free grammar* (for a <u>top-down parser</u>), when expanding the *focus internal node*, is always able to choose a <u>unique</u> rule with the *one-symbol lookahead* (or report a *syntax error* when no rule applies).
- To formulate this, we first define:

 $\mathbf{START}(A \to \beta) = \begin{cases} \mathbf{FIRST}(\beta) & \text{if } \epsilon \notin \mathbf{FIRST}(\beta) \\ \mathbf{FIRST}(\beta) \cup \mathbf{FOLLOW}(A) & \text{otherwise} \end{cases}$

FIRST(β) is the extended version where β may be $\beta_1\beta_2...\beta_n$ • A **backtrack-free grammar** has each of its productions $A \rightarrow \gamma_1 \mid \gamma_2 \mid ... \mid \gamma_n$ satisfying:

 $\forall i, j : 1 \leq i, j \leq n \land i \neq j \bullet \mathsf{START}(\gamma_i) \cap \mathsf{START}(\gamma_j) = \emptyset$

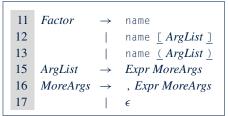
TDP: Lookahead with One Symbol

```
ALGORITHM: TDParse
  INPUT: CFG G = (V, \Sigma, R, S)
 OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE:
  root := a new node for the start symbol S
  focus := root
 initialize an empty stack trace
 trace.push(null)
  word := NextWord()
 while (true):
    if focus \in V then
       if \exists unvisited rule focus \rightarrow \beta_1 \beta_2 \dots \beta_n \in \mathbb{R} \land word \in START(\beta) then
          create \beta_1, \beta_2, \ldots, \beta_n as children of focus
          trace, push(\beta_n\beta_{n-1},\ldots,\beta_2)
          focus := \beta_1
       else
          if focus = S then report syntax error
          else backtrack
    elseif word matches focus then
       word := NextWord()
       focus := trace.pop()
    elseif word = EOF \land focus = null then return root
    else backtrack
```

backtrack = pop *focus*.siblings; *focus* := *focus*.parent; *focus*.resetChildren

Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?



• $\epsilon \notin \mathbf{FIRST}(Factor) \Rightarrow \mathbf{START}(Factor) = \mathbf{FIRST}(Factor)$

- FIRST(Factor → name)
- **FIRST**(*Factor* → name [*ArgList*])
- FIRST(*Factor* → name (*ArgList*))

= {name} = {name} = {name}

.: The above grammar is *not* backtrack free.

 \Rightarrow To expand an AST node of *Factor*, with a *lookahead* of name, the parser has no basis to choose among rules 11, 12, and 13.

Backtrack-Free Grammar: Left-Factoring

- A CFG is <u>not</u> backtrack free if there exists a *common prefix* (name) among the RHS of *multiple* production rules.
- To make such a CFG *backtrack-free*, we may transform it using *left factoring*: a process of extracting and isolating *common prefixes* in a set of production rules.

• Identify a common prefix
$$\alpha$$
:

$$\boldsymbol{A} \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_j$$

[each of $\gamma_1, \gamma_2, \ldots, \gamma_j$ does not begin with α]

• Rewrite that production rule as:

$$\begin{array}{rcl} \mathbf{A} & \rightarrow & \alpha \mathbf{B} \mid \gamma_1 \mid \gamma_2 \mid \dots \mid \gamma_j \\ \mathbf{B} & \rightarrow & \beta_1 \mid \beta_2 \mid \dots \mid \beta_n \end{array}$$

• New rule $B \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$ may <u>also</u> contain *common prefixes*.

• Rewriting continues until no common prefixes are identified.

Left-Factoring: Exercise

[No]

Use *left-factoring* to remove all *common prefixes* from the following grammar.

• Identify common prefix name and rewrite rules 11, 12, and 13:

 $\begin{array}{rccc} \textit{Factor} & \rightarrow & \texttt{name} & \textit{Arguments} \\ \textit{Arguments} & \rightarrow & [& \textit{ArgList} &] \\ & | & (& \textit{ArgList} &) \\ & | & \epsilon \end{array}$

Any more *common prefixes*?

TDP: Terminating and Backtrack-Free

- Given an <u>arbitrary</u> CFG as input to a top-down parser:
 - Q. How do we avoid a *non-terminating* parsing process?
 A. Convert left-recursions to right-recursion.
 - Q. How do we <u>minimize</u> the need of *backtracking*?
 A. left-factoring & one-symbol lookahead using START
- <u>Not</u> every context-free <u>language</u> has a corresponding backtrack-free context-free grammar.

Given a CFL *I*, the following is *undecidable*:

 $\exists cfg \mid L(cfg) = I \land isBacktrackFree(cfg)$

Given a CFG g = (V, Σ, R, S), whether or not g is backtrack-free is decidable:

For each
$$A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n \in R$$
:

 $\forall i, j : 1 \leq i, j \leq n \land i \neq j \bullet \mathsf{START}(\gamma_i) \cap \mathsf{START}(\gamma_j) = \emptyset$

Backtrack-Free Parsing (2.1)

- A *recursive-descent* parser is:
 - A top-down parser
 - Structured as a set of *mutually recursive* procedures Each procedure corresponds to a *non-terminal* in the grammar. See an example.
- Given a *backtrack-free* grammar, a tool (a.k.a.

parser generator) can automatically generate:

- FIRST, FOLLOW, and START sets
- An efficient recursive-descent parser

This generated parser is called an *LL(1) parser*, which:

- Processes input from Left to right
- Constructs a <u>L</u>eftmost derivation
- Uses a lookahead of <u>1</u> symbol
- *LL(1) grammars* are those working in an *LL(1)* scheme. *LL(1) grammars* are *backtrack-free* by definition.

Backtrack-Free Parsing (2.2)

Consider this CFG with START sets of the RHSs:

The corresponding recursive-descent parser is structured as:

```
ExprPrim()
if word = + v word = - then /* Rules 2, 3 */
word := NextWord()
if(Term())
then return ExprPrim()
else return false
elseif word = ) v word = eof then /* Rule 4 */
return true
else
report a syntax error
return false
end
Term()
...
See: parser generator
```

LL(1) Parser: Exercise

Consider the following grammar:

$L \rightarrow R$ a	$R \rightarrow$ aba	$Q \rightarrow \text{bbc}$
Q ba	caba	bc
	R bc	

Q. Is it suitable for a top-down predictive parser?

- If so, show that it satisfies the LL(1) condition.
- If not, identify the problem(s) and correct it (them). Also show that the revised grammar satisfies the *LL(1)* condition.

BUP: Discovering Rightmost Derivation

- In TDP, we build the <u>start variable</u> as the *root node*, and then work towards the *leaves*.
 [leftmost derivation]
- In Bottom-Up Parsing (BUP):
 - Words (terminals) are still returned from **left** to **right** by the scanner.
 - As terminals, or a mix of terminals and variables, are identified as *reducible* to some variable *A* (i.e., matching the RHS of some production rule for *A*), then a layer is added.
 - Eventually:
 - accept:

The start variable is reduced and all words have been consumed.

• reject:

The next word is not eof, but no further reduction can be identified.

Q. Why can BUP find the *rightmost* derivation (RMD), if any?

A. BUP discovers steps in a *RMD* in its *reverse* order.

BUP: Discovering Rightmost Derivation (1)

- Processes input from <u>L</u>eft to right
- Constructs a <u>R</u>ightmost derivation
- Uses a lookahead of <u>1</u> symbol
- A language has the *LR(1)* property if it:
 - Can be parsed in a single <u>L</u>eft to right scan,
 - To build a *reversed* **R**ightmost derivation,
 - Using a lookahead of <u>1</u> symbol to determine parsing actions.
- Critical step in a *bottom-up parser* is to find the *next handle*.

BUP: Discovering Rightmost Derivation (2)

```
ALGORITHM: BUParse
 INPUT: CFG G = (V, \Sigma, R, S), Action & Goto Tables
 OUTPUT: Report Parse Success or Syntax Error
PROCEDURE ·
 initialize an empty stack trace
 trace.push(0) /* start state */
 word := NextWord()
 while (true)
   state := trace.top()
   act := Action[state, word]
   if act = ``accept'' then
    succeed()
   elseif act = ``reduce based on A \rightarrow \beta'' then
    trace.pop() 2 \times |\beta| times /* word + state */
    state := trace.top()
    trace.push(A)
    next := Goto[state, A]
    trace.push(next)
   elseif act = ``shift to Si'' then
    trace.push(word)
    trace.push(i)
     word := NextWord()
   else
     fail()
```

BUP: Example Tracing (1)

• Consider the following grammar for parentheses:

Assume: tables Action and Goto constructed accordingly:

		Action Table			Goto	Table
	State	eof	<u>(</u>	<u>)</u>	List	Pair
	0		s 3		1	2
	1	acc	s 3			4
	2	r 3	r 3			
	3		s 6	s 7		5
	4	r 2	r 2			
	5			s 8		
	6		s 6	s 10		9
	7	r 5	r 5			
	8	r 4	r 4			
	9			s 11		
	10			r 5		
	11			r 4		
62 of 96		_				

In Action table:

- s_i: shift to state i
- r_j: reduce to the LHS of production #j

BUP: Example Tracing (2.1)

Consider the steps of performing BUP on input ():

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ 0	— none —	_
1	0	(\$ O	— none —	shift 3
2	3)	\$ 0 <u>(</u> 3	— none —	shift 7
3	7	eof	\$ 0 <u>(</u> 3 <u>)</u> 7	<u>(</u>)	reduce 5
4	2	eof	\$ 0 Pair 2	Pair	reduce 3
5	1	eof	\$ 0 <i>List</i> 1	List	accept

BUP: Example Tracing (2.2)

Consider the steps of performing BUP on input (())():

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ 0	— none —	_
1	0	(\$ O	— none —	shift 3
2	3	(\$ 0 <u>(</u> 3	— none —	shift 6
3	6)	\$ 0 <u>(</u> 3 <u>(</u> 6	— none —	shift 10
4	10)	\$ 0 <u>(</u> 3 <u>(</u> 6 <u>)</u> 10	<u>(</u>)	reduce 5
5	5)	\$ 0 <u>(</u> 3 Pair 5	— none —	shift 8
6	8	(\$ 0 (3 Pair 5) 8	<u>(</u> Pair <u>)</u>	reduce 4
7	2	(\$ 0 Pair 2	Pair	reduce 3
8	1	(\$ 0 <i>List</i> 1	— none —	shift 3
9	3)	\$ 0 <i>List</i> 1 (3	— none —	shift 7
10	7	eof	\$ 0 <i>List</i> 1 (3) 7	<u>(</u>)	reduce 5
11	4	eof	\$ 0 <i>List</i> 1 <i>Pair</i> 4	List Pair	reduce 2
12	1	eof	\$ 0 <i>List</i> 1	List	accept

Consider the steps of performing BUP on input ()):

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ O	— none —	—
1	0	(\$ O	— none —	shift 3
2	3)	\$ 0 <u>(</u> 3	— none —	shift 7
3	7)	\$ 0 <u>(</u> 3 <u>)</u> 7	— none —	error

LR(1) Items: Definition

- In LR(1) parsing, Action and Goto tabeles encode legitimate ways (w.r.t. a CFG) for finding handles (for reductions).
- In a *table*-driven LR(1) parser, the table-construction algorithm represents each potential *handle* (for a *reduction*) with an LR(1) item e.g.,

$$[\mathbf{A} \rightarrow \beta \bullet \gamma, a]$$

where:

- A *production rule* $A \rightarrow \beta \gamma$ is currently being applied.
- A terminal symbol a servers as a lookahead symbol.
- A *placeholder* indicates the parser's *stack top*.
 - \checkmark The parser's *stack* contains β ("left context").
 - $\checkmark \gamma$ is yet to be matched.
 - Upon matching $\beta\gamma$, if a matches the current word, then we "replace" $\beta\gamma$ (and their associated states) with *A* (and its associated state).

LR(1) Items: Scenarios

An LR(1) item can denote:

1. POSSIBILITY

- In the current parsing context, an A would be valid.
- represents the position of the parser's stack top
- Recognizing a β next would be one step towards discovering an A.
- 2. PARTIAL COMPLETION
 - The parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing β .
 - Recognizing a γ next would be one step towards discovering an A.

3. COMPLETION

- Parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing $\beta \gamma$.
- $\beta\gamma$ found in a context where an A followed by a would be valid.
- If the current input word matches a, then: 0
 - Current *complet item* is a *handle*.
 - Parser can *reduce* βγ to A
 - Accordingly, in the **stack**, $\beta\gamma$ (and their associated states) are replaced with A (and its associated state).

67 of 96

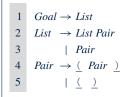
$$[A \rightarrow \bullet \beta \gamma, a]$$

 $[\mathbf{A} \rightarrow \beta \bullet \gamma, a]$

 $[A \rightarrow \beta \gamma \bullet, a]$

LR(1) Items: Example (1.1)

Consider the following grammar for parentheses:



Initial State: [Goal → •List, eof] Desired Final State: [Goal → List•, eof] Intermediate States: Subset Construction

Q. Derive all *LR(1) items* for the above grammar.

• **FOLLOW**(*List*) = {eof, (} **FOLLOW**(*Pair*) = {eof, (,) }

• For each production $A \rightarrow \beta$, given **FOLLOW**(A), *LR*(1) *items* are:

$$\{ [A \to \bullet \beta \gamma, a] \mid a \in \mathsf{FOLLOW}(A) \}$$

$$\bigcup$$

$$\{ [A \to \beta \bullet \gamma, a] \mid a \in \mathsf{FOLLOW}(A) \}$$

$$\bigcup$$

$$\{ [A \to \beta \gamma \bullet, a] \mid a \in \mathsf{FOLLOW}(A) \}$$

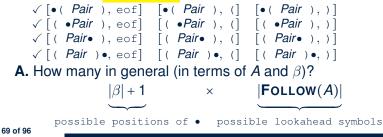
LR(1) Items: Example (1.2)

Q. Given production $A \rightarrow \beta$ (e.g., *Pair* \rightarrow (*Pair*)), how many *LR(1) items* can be generated?

- The current parsing progress (on matching the RHS) can be:
 - **1.** (*Pair*)
 - **2.** (Pair)
 - **3.** (*Pair*)
 - **4.** (*Pair*) •

• Lookahead symbol following Pair? FOLLOW(Pair) = {eof, (,)}

• <u>All</u> possible <u>LR(1) items</u> related to Pair \rightarrow (Pair)?



LR(1) Items: Example (1.3)

A. There are 33 *LR(1) items* in the parentheses grammar.

$[Goal \rightarrow \bullet List, eof]$		
$[Goal \rightarrow List \bullet, eof]$		
$\begin{bmatrix} List \rightarrow \bullet List \ Pair, eof \end{bmatrix}$ $\begin{bmatrix} List \rightarrow List \ \bullet Pair, eof \end{bmatrix}$ $\begin{bmatrix} List \rightarrow List \ \bullet Pair, eof \end{bmatrix}$	$\begin{bmatrix} List \rightarrow \bullet List \ Pair, _ \end{bmatrix}$ $\begin{bmatrix} List \rightarrow List \ \bullet Pair, _ \end{bmatrix}$ $\begin{bmatrix} List \rightarrow List \ \bullet Pair, _ \end{bmatrix}$	
$[List \rightarrow \bullet Pair, eof]$ $[List \rightarrow Pair \bullet, eof]$	$[List \to \bullet Pair, _]$ $[List \to Pair \bullet, _]$	
$\begin{bmatrix} Pair \rightarrow \bullet (_Pair _), eof \end{bmatrix}$ $\begin{bmatrix} Pair \rightarrow (_), eof \end{bmatrix}$ $\begin{bmatrix} Pair \rightarrow (_), eof \end{bmatrix}$ $\begin{bmatrix} Pair \rightarrow (_), eof \end{bmatrix}$	$\begin{bmatrix} Pair \rightarrow \bullet (_Pair _),] \\ [Pair \rightarrow (_Pair _),] \\ [Pair \rightarrow (_Pair \bullet),] \\ [Pair \rightarrow (_Pair \bullet),] \\ [Pair \rightarrow (_Pair _),] \\ [Pair \rightarrow \bullet (_), (] \\ [Pair \rightarrow (_), (] \\] \\ [Pair \rightarrow (_), (] \\] \\ \end{bmatrix}$	$\begin{bmatrix} Pair \rightarrow \bullet (_Pair _), (_] \\ [Pair \rightarrow (_Pair _), (_] \\ [Pair \rightarrow (_Pair \bullet _), (_] \\ [Pair \rightarrow (_Pair _), (_] \\ [Pair \rightarrow (_Pair _), (_] \\ [Pair \rightarrow (__),] \\ [Pair \rightarrow (__),] \\ [Pair \rightarrow (__),] \end{bmatrix}$

LR(1) Items: Example (2)

Consider the following grammar for expressions:

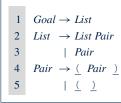
0	$Goal \rightarrow$	Expr	6	$Term' \rightarrow$	× Factor Term'
1	$Expr \rightarrow$	Term Expr'	7		÷ Factor Term'
2	$Expr' \rightarrow$	+ Term Expr'	8	L 1	ϵ
3	1	- Term Expr'	9	Factor \rightarrow	<u>(</u> Expr <u>)</u>
4	1	ϵ	10	I	num
5	$Term \rightarrow$	Factor Term'	11		name

Q. Derive all *LR(1) items* for the above grammar. **Hints.** First compute **FOLLOW** for each non-terminal:

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

Tips. Ignore ϵ **production** such as $Expr' \rightarrow \epsilon$ since the **FOLLOW** sets already take them into consideration.

Canonical Collection (CC) vs. LR(1) items



Recall:

LR(1) Items: 33 items

Initial State: [*Goal* → •*List*, eof]

Desired Final State: [Goal → List•, eof]

• The canonical collection

[Example of \mathcal{CC}]

 $\mathcal{CC} = \{ \textit{CC}_0, \textit{CC}_1, \textit{CC}_2, \dots, \textit{CC}_n \}$

denotes the set of valid subset states of a LR(1) parser.

- Each *cc_i* ∈ *CC* (0 ≤ *i* ≤ *n*) is a set of *LR(1) items*.
- $CC \subseteq \mathbb{P}(LR(1) \text{ items})$ |CC|? $[|CC| \le 2^{|LR(1) \text{ items}|}]$
- To model a LR(1) parser, we use techniques analogous to how an *ϵ*-NFA is converted into a DFA (subset construction and *ϵ*-closure).

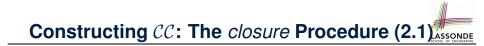
• Analogies.

- ✓ LR(1) items ≈ states of source NFA
- $\checkmark CC \approx \underline{subset}$ states of target DFA

Constructing CC: The closure Procedure (1)

ALCORTTHM · closure 1 **INPUT:** CFG $G = (V, \Sigma, R, S)$, a set s of LR(1) items 2 3 OUTPUT: a set of LR(1) items 4 PROCEDURE · 5 lastS := \emptyset 6 while $(lastS \neq s)$: 7 lastS ·= s for $[A \rightarrow \cdots \bullet C \delta, a] \in S$: 8 for $C \rightarrow \gamma \in R$: 9 for $b \in FIRST(\delta a)$: 10 $s := s \cup \{ [C \rightarrow \bullet \gamma, b] \}$ 11 12 return S

- **Line 8**: $[A \rightarrow \cdots \bullet C_{\delta}, a] \in s$ indicates that the parser's next task is to match C_{δ} with a lookahead symbol *a*.
- Line 9: <u>Given</u>: matching γ can reduce to C
- Line 10: <u>Given</u>: $b \in FIRST(\delta a)$ is a valid lookahead symbol after reducing γ to C
- Line 11: Add a new item [$C \rightarrow \bullet \gamma$, b] into s.
- Line 6: Termination is guaranteed.
 - : Each iteration adds \geq 1 item to *s* (otherwise *lastS* \neq *s* is *false*).



$$\begin{array}{cccc}
1 & Goal \rightarrow List \\
2 & List \rightarrow List Pair \\
3 & | Pair \\
4 & Pair \rightarrow (Pair) \\
5 & | () \\
\end{array}$$

Initial State: [*Goal* → •*List*, eof]

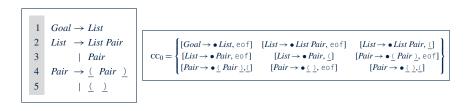
Calculate $cc_0 = closure(\{ [Goal \rightarrow \bullet List, eof] \}).$

Constructing CC: The goto Procedure (1)

ALGORITHM: goto 1 2 **INPUT:** a set S of LR(1) items, a symbol X 3 OUTPUT: a set of LR(1) items 4 **PROCEDURE:** 5 moved := \emptyset 6 for item es. 7 if *item* = $[\alpha \rightarrow \beta \bullet x\delta, a]$ then moved := moved $\cup \{ [\alpha \rightarrow \beta x \bullet \delta, a] \}$ 8 9 end 10 return closure(moved)

Line 7: <u>Given</u>: item $[\alpha \rightarrow \beta \bullet x\delta, a]$ (where *x* is the next to match) **Line 8**: Add $[\alpha \rightarrow \beta x \bullet \delta, a]$ (indicating x is matched) to *moved* **Line 10**: Calculate and return *closure*(*moved*) as the "*next subset state*" from *s* with a "transition" x.

Constructing CC: The goto Procedure (2)



Calculate $goto(cc_0, ())$. ["next

["next state" from cc0 taking (]

Constructing CC: **The Algorithm (1)**

```
1
      ALGORTTHM · BuildCC
 2
         INPUT: a grammar G = (V, \Sigma, R, S), goal production S \to S'
 3
         OUTPUT :
 4
           (1) a set CC = \{cc_0, cc_1, \dots, cc_n\} where cc_i \subseteq G' \leq LR(1) items
 5
           (2) a transition function
 6
      PROCEDURE :
 7
         cc_0 := closure(\{[S \rightarrow \bullet S', eof]\})
 8
        \mathcal{CC} := \{ cc_0 \}
        processed := \{cc_0\}
 9
10
        lastCC := \emptyset
11
        while (lastCC \neq CC):
12
           lastCC := CC
13
           for cc_i \ s.t. \ cc_i \in CC \land cc_i \notin processed:
14
             processed := processed \cup \{cc_i\}
15
             for x s.t. [\cdots \rightarrow \cdots \bullet x \dots] \in CC_i
16
               temp := aoto(cc_i, x)
17
               if temp ∉ CC then
18
                 \mathcal{CC} := \mathcal{CC} \cup \{\text{temp}\}
19
               end
20
               \delta := \delta \cup (cc_i, x, temp)
```


$$1 \quad Goal \rightarrow List$$

$$2 \quad List \quad \rightarrow List Pair$$

$$3 \quad | Pair$$

$$4 \quad Pair \quad \rightarrow (Pair \)$$

$$5 \quad | ()$$

- Calculate $CC = \{cc_0, cc_1, \dots, cc_{11}\}$
- Calculate the transition function $\delta : \mathcal{CC} \times (\Sigma \cup V) \rightarrow \mathcal{CC}$

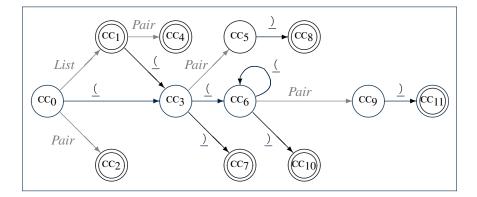
Constructing CC**: The Algorithm (2.2)**

Resulting transition table:

Iteration	ltem	Goal	List	Pair	<u>(</u>	<u>)</u>	eof
0	CC ₀	Ø	cc_1	CC ₂	CC ₃	Ø	Ø
1	CC_1	Ø Ø	Ø Ø	\mathcal{CC}_4	\mathcal{CC}_3	Ø Ø	Ø Ø
	CC_2 CC_3	Ø	Ø	CC5	CC ₆	CC7	Ø
2	CC_4 CC_5	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø CC8	Ø Ø
	CC ₆	Ø	Ø	CC9	CC ₆	CC ₁₀	Ø
3	CC_7 CC_8	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø
	CC_9 CC_{10}	Ø Ø	Ø Ø	Ø Ø	Ø Ø	\mathcal{CC}_{11}	Ø Ø
4	cc_{10}	Ø	Ø	Ø	Ø	Ø	ø

Constructing *CC***: The Algorithm (2.3)**

Resulting DFA for the parser:



Constructing CC: The Algorithm (2.4.1)

Resulting canonical collection CC:

$[\mbox{ Def. of } \mathcal{CC} \mbox{]}$

$$cc_{0} = \begin{cases} [Goal \rightarrow \bullet List, eof] & [List \rightarrow \bullet List Pair, eof] & [List \rightarrow \bullet List Pair, c] \\ [List \rightarrow Pair, eof] & [List \rightarrow \bullet List Pair, c] & [Pair \rightarrow \bullet c \ Pair c \ c_{1} = cc_{1} = \begin{cases} [Goal \rightarrow List \bullet, eof] & [List \rightarrow List \bullet, eof] & [List \rightarrow List \bullet, eof] \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = cc_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = cc_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow \bullet c \ Pair c \ c_{1} = \\ [Pair \rightarrow c \ c_{1} = \\ [Pair \ c_{1$$

Constructing Action and Goto Tables (1)

```
1
      ALGORITHM: BuildActionGotoTables
 2
        INPUT:
 3
          (1) a grammar G = (V, \Sigma, R, S)
          (2) goal production S \to S'
 4
          (3) a canonical collection CC = \{cc_0, cc_1, \dots, cc_n\}
 6
           (4) a transition function \delta : CC \times \Sigma \to CC
 7
        OUTPUT · Action Table & Goto Table
 8
      PROCEDURE ·
 9
        for CC_i \in CC:
10
          for item \in CC_i:
11
            if item = [A \rightarrow \beta \bullet x\gamma, a] \land \delta(CC_i, x) = CC_i then
12
              Action[i, x] := shift j
            elseif item = [A \rightarrow \beta \bullet, a] then
13
14
              Action[i, a] := reduce A \rightarrow \beta
            elseif item = [S \rightarrow S' \bullet, eof] then
15
              Action[i, eof] := accept
16
17
            end
18
          for v \in V:
19
            if \delta(CC_i, V) = CC_i then
20
              Goto[i, V] = i
21
            end
```

- L12, 13: Next valid step in discovering A is to match terminal symbol x.
- L14, 15: Having recognized β , if current word matches lookahead a, reduce β to A.
- L16, 17: Accept if input exhausted and what's recognized reducible to start var. S.
- L20, 21: Record consequence of a reduction to non-terminal v from state i

Constructing Action and Goto Tables (2)

Resulting Action and Goto tables:

	Action Table			Goto Table		
State	eof	<u>(</u>)	List	Pair	
0		s 3		1	2	
1	acc	s 3			4	
2	r 3	r 3				
3		s 6	s 7		5	
4	r 2	r 2				
5			s 8			
6		sб	s 10		9	
7	r 5	r 5				
8	r 4	r 4				
9			s 11			
10			r 5			
11			r 4			

BUP: Discovering Ambiguity (1)

1	Goal	\rightarrow	Stmt
2	Stmt	\rightarrow	if expr then <i>Stmt</i>
3			if expr then <i>Stmt</i> else <i>Stmt</i>
4			assign
4			assign

- Calculate $\mathcal{CC} = \{\textit{cc}_0, \textit{cc}_1, \dots, \}$
- Calculate the transition function $\delta:\mathcal{CC}\times\Sigma\to\mathcal{CC}$

BUP: Discovering Ambiguity (2.1)

Resulting transition table:

	Item	Goal	Stmt	if	expr	then	else	assign	eof
0	CC ₀	ø	CC_1	cc_2	ø	ø	ø	CC3	ø
1	cc_1	ø	ø	ø	ø	ø	ø	ø	ø
	cc_2	ø	ø	ø	CC_4	ø	ø	Ø	ø
	CC ₃	ø	ø	ø	ø	ø	Ø	Ø	Ø
2	CC_4	ø	ø	ø	ø	CC_5	ø	ø	ø
3	CC_5	ø	CC ₆	CC_7	ø	ø	Ø	CC8	Ø
4	CC ₆	Ø	ø	ø	ø	ø	CC9	ø	ø
	CC7	ø	ø	ø	CC_{10}	ø	ø	Ø	Ø
	CC8	ø	ø	ø	Ø	ø	Ø	Ø	Ø
5	CC ₉	ø	cc_{11}	CC_2	ø	ø	ø	CC3	Ø
	CC10	Ø	ø	ø	ø	cc_{12}	ø	ø	ø
6	CC_{11}	ø	ø	ø	ø	ø	ø	ø	Ø
	cc_{12}	Ø	CC_{13}	CC_7	ø	ø	ø	CC8	ø
7	cc_{13}	Ø	ø	ø	ø	ø	CC14	Ø	Ø
8	cc_{14}	Ø	cc_{15}	cc_7	ø	ø	Ø	CC8	Ø
9	CC_{15}	Ø	ø	ø	ø	ø	ø	ø	ø

BUP: Discovering Ambiguity (2.2.1)

Resulting canonical collection CC:

$$cc_0 = \begin{cases} [Goal \rightarrow \bullet Stmt, eof] & [Stmt \rightarrow \bullet if expr then Stmt, eof] \\ [Stmt \rightarrow \bullet assign, eof] & [Stmt \rightarrow \bullet if expr then Stmt else Stmt, eof] \end{cases}$$

$$cc_2 = \begin{cases} [Stmt \to if \bullet expr then Stmt, eof], \\ [Stmt \to if \bullet expr then Stmt else Stmt, eof] \end{cases}$$

$$CC_1 = \left\{ [Goal \to Stmt \bullet, eof] \right\}$$
$$CC_3 = \left\{ [Stmt \to assign \bullet, eof] \right\}$$

$$\mathbf{CC4} = \begin{cases} [Stmt \rightarrow \text{if expr } \bullet \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{if expr } \bullet \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{if expr } \bullet \text{then } Stmt \text{ espr } \bullet \text{then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \bullet \text{ then } Stmt \text{ espr } \bullet \text{then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \bullet \text{ then } Stmt \text{ espr } \bullet \text{then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \bullet \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \bullet \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ if expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eof}], \\ [Stmt \rightarrow \text{ expr } \text{ then } Stmt, \text{ eo$$

$$cc_6 = \begin{cases} [Stmt \rightarrow \text{ if expr then } Stmt \bullet, \text{eof}], \\ [Stmt \rightarrow \text{ if expr then } Stmt \bullet \text{else } Stmt, \text{eof}] \end{cases} \qquad cc_7 = \begin{cases} [Stmt \rightarrow \text{ if } \bullet \text{ expr then } Stmt, \text{eof, else}], \\ [Stmt \rightarrow \text{ if } \bullet \text{ expr then } Stmt, \text{eof, else}] \end{cases}$$

BUP: Discovering Ambiguity (2.2.2)

Resulting canonical collection CC:

$$CC_8 = \{[Stmt \rightarrow assign \bullet, \{eof, else\}]\}$$

 $cc_{10} = \left\{ \begin{bmatrix} Stmt \rightarrow \text{ if } expr \bullet \text{ then } Stmt, \{eof, else\} \end{bmatrix}, \\ \begin{bmatrix} Stmt \rightarrow \text{ if } expr \bullet \text{ then } Stmt & else \\ \end{bmatrix} \right\}$

$$\begin{split} & [Stmt \rightarrow \text{ if expr then } \bullet Stmt, \{\text{eof}, \text{else}\}\}, \\ & [Stmt \rightarrow \text{ if expr then } \bullet Stmt \text{ else Stmt}, \{\text{eof}, \text{else}\}\}, \\ & [Stmt \rightarrow \text{ oif expr then Stmt}, \{\text{eof}, \text{else}\}\}, \\ & [Stmt \rightarrow \text{ oif expr then Stmt}, \{\text{eof}, \text{else}\}], \\ & [Stmt \rightarrow \text{ oassign}, \{\text{eof}, \text{else}\}] \end{split}$$

$$cc_{14} = \begin{cases} [Smt \rightarrow if expr then Smt else \bullet Smt, \{eof, else\}], \\ [Smt \rightarrow if expr then Smt, \{eof, else\}], \\ [Smt \rightarrow if expr then Smt else Smt, \{eof, else\}], \\ [Smt \rightarrow \bullet assign, \{eof, else\}] \end{cases}$$

$$cc_9 = \begin{cases} [Stmt \rightarrow \text{ if expr then Stmt else } \bullet Stmt, \text{ eof}], \\ [Stmt \rightarrow \bullet \text{ if expr then Stmt, eof}], \\ [Stmt \rightarrow \bullet \text{ if expr then Stmt else Stmt, eof}], \\ [Stmt \rightarrow \bullet \text{ assign, eof}] \end{cases}$$

$$cc_{11} = \{[Stmt \rightarrow if expr then Stmt else Stmt \bullet, eof]\}$$

$$CC_{13} = \begin{cases} [Stmt \rightarrow \text{ if expr then } Stmt \bullet, \{\text{eof,else}\}], \\ [Stmt \rightarrow \text{ if expr then } Stmt \bullet \text{ else } Stmt, \{\text{eof,else}\}] \end{cases}$$

BUP: Discovering Ambiguity (3)

• Consider cc₁₃

 $CC_{13} = \begin{cases} [Stmt \rightarrow \text{if expr then } Stmt \bullet, \{\text{eof, else}\}], \\ [Stmt \rightarrow \text{if expr then } Stmt \bullet \text{else } Stmt, \{\text{eof, else}\}] \end{cases}$

Q. What does it mean if the current word to consume is else? A. We can either *shift* (then expecting to match another *Stmt*) or *reduce* to a *Stmt*.

Action [13, else] cannot hold *shift* and *reduce* simultaneously.

 \Rightarrow This is known as the shift-reduce conflict.

• Consider another scenario:

$$CC_{i} = \left\{ \begin{array}{c} [A \to \gamma \delta \bullet, a], \\ [B \to \gamma \delta \bullet, a] \end{array} \right\}$$

Q. What does it mean if the current word to consume is a?
A. We can either *reduce* to *A* or *reduce* to *B*. *Action*[*i*, *a*] cannot hold *A* and *B* simultaneously.

 \Rightarrow This is known as the **reduce-reduce conflict**.

Index (1)

- Parser in Context
- **Context-Free Languages: Introduction**
- CFG: Example (1.1)
- CFG: Example (1.2)
- CFG: Example (1.2)
- CFG: Example (2)
- CFG: Example (3)
- CFG: Example (4)
- CFG: Example (5.1) Version 1
- CFG: Example (5.2) Version 1
- CFG: Example (5.3) Version 1

Index (2)

- CFG: Example (5.4) Version 1
- CFG: Example (5.5) Version 2
- CFG: Example (5.6) Version 2
- CFG: Example (5.7) Version 2
- **CFG: Formal Definition (1)**
- CFG: Formal Definition (2): Example
- CFG: Formal Definition (3): Example
- **Regular Expressions to CFG's**
- DFA to CFG's
- **CFG: Leftmost Derivations (1)**
- **CFG: Rightmost Derivations (1)**

Index (3)

- **CFG: Leftmost Derivations (2)**
- **CFG: Rightmost Derivations (2)**
- CFG: Parse Trees vs. Derivations (1)
- CFG: Parse Trees vs. Derivations (2)
- **CFG: Ambiguity: Definition**
- CFG: Ambiguity: Exercise (1)
- CFG: Ambiguity: Exercise (2.1)
- CFG: Ambiguity: Exercise (2.2)
- CFG: Ambiguity: Exercise (2.3)
- **Discovering Derivations**
- **TDP: Discovering Leftmost Derivation**

Index (4)

- **TDP: Exercise (1)**
- **TDP: Exercise (2)**
- Left-Recursions (LF): Direct vs. Indirect
- **TDP: (Preventively) Eliminating LRs**
- CFG: Eliminating *e*-Productions (1)
- CFG: Eliminating *e*-Productions (2)
- **Backtrack-Free Parsing (1)**
- The first Set: Definition
- The first Set: Examples
- **Computing the first Set**
- Computing the first Set: Extension

Index (5)

Extended first Set: Examples

Is the first Set Sufficient?

The follow Set: Examples

Computing the follow Set

Backtrack-Free Grammar

TDP: Lookahead with One Symbol

Backtrack-Free Grammar: Exercise

Backtrack-Free Grammar: Left-Factoring

Left-Factoring: Exercise

TDP: Terminating and Backtrack-Free

Backtrack-Free Parsing (2.1)

Index (6)

- **Backtrack-Free Parsing (2.2)**
- LL(1) Parser: Exercise
- **BUP: Discovering Rightmost Derivation**
- **BUP: Discovering Rightmost Derivation (1)**
- **BUP: Discovering Rightmost Derivation (2)**
- **BUP: Example Tracing (1)**
- **BUP: Example Tracing (2.1)**
- **BUP: Example Tracing (2.2)**
- **BUP: Example Tracing (2.3)**
- LR(1) Items: Definition
- LR(1) Items: Scenarios

Index (7)

- LR(1) Items: Example (1.1)
- LR(1) Items: Example (1.2)
- LR(1) Items: Example (1.3)
- LR(1) Items: Example (2)
- Canonical Collection (CC) vs. LR(1) items
- Constructing CC: The closure Procedure (1)
- Constructing CC: The closure Procedure (2.1)
- Constructing CC: The goto Procedure (1)
- Constructing CC: The goto Procedure (2)
- Constructing CC: The Algorithm (1)
- Constructing CC: The Algorithm (2.1)

Index (8)

- Constructing CC: The Algorithm (2.2)
- Constructing CC: The Algorithm (2.3)
- Constructing CC: The Algorithm (2.4)
- Constructing Action and Goto Tables (1)
- Constructing Action and Goto Tables (2)
- **BUP: Discovering Ambiguity (1)**
- **BUP: Discovering Ambiguity (2.1)**
- **BUP: Discovering Ambiguity (2.2.1)**
- **BUP: Discovering Ambiguity (2.2.2)**
- **BUP: Discovering Ambiguity (3)**