Parser: Syntactic Analysis

Readings: EAC2 Chapter 3

EECS4302 A: Compilers and Interpreters Summer 2025

CHEN-WEI WANG

Context-Free Languages: Introduction

LASSONDE

- We have seen *regular languages*:
 - Can be described using *finite automata* or *regular expressions*.
 Satisfy the *pumping lemma*.
- Language with *recursive* structures are provably *non-regular*.
 e.g., {0ⁿ1ⁿ | n ≥ 0}
- *Context-Free Grammars (CFG's)* are used to describe strings that can be generated in a *recursive* fashion.
- Context-Free Languages (CFL's) are:
 - Languages that can be described using CFG's.
 - A proper superset of the set of regular languages.

3 of 96

LASSONDE

[**syntactic** analysis]

• Recall:

- Treats the input programas as a *a sequence of <u>classified</u> tokens/words*
- Applies rules *parsing* token sequences as

abstract syntax trees (ASTs)

- Upon termination:
 - Reports token sequences not derivable as ASTs
 - Produces an AST
- No longer considers *every character* in input program.
- *Derivable* token sequences constitute a

context-free language (CFL).

CFG: Example (1.1)

• The following language that is *non-regular*

 $\{0^n \# 1^n \mid n \ge 0\}$

can be described using a *context-free grammar (CFG)*:

$$\begin{array}{rrrr} A & \rightarrow & 0A^{\dagger} \\ A & \rightarrow & B \\ B & \rightarrow & \# \end{array}$$

- A grammar contains a collection of *substitution* or *production* rules, where:
 - A **terminal** is a word $w \in \Sigma^*$ (e.g., 0, 1, *etc.*).
 - A *variable* or *non-terminal* is a word $w \notin \Sigma^*$ (e.g., *A*, *B*, *etc.*).
 - A *start variable* occurs on the LHS of the topmost rule (e.g., *A*).

CFG: Example (1.2)

LASSONDE

- Given a grammar, generate a string by:
 - 1. Write down the *start variable*.
 - Choose a production rule where the start variable appears on the LHS of the arrow, and substitute it by the RHS.
 - 3. There are two cases of the re-written string:
 - **3.1** It contains **no** variables, then you are done.
 - **3.2** It contains **some** variables, then **substitute** each variable using the relevant **production rules**.
 - 4. Repeat Step 3.
- e.g., We can generate an infinite number of strings from

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$A \Rightarrow 0A1 \Rightarrow 0B1 \Rightarrow 0\#1$$

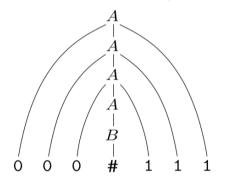
$$A \Rightarrow 0A1 \Rightarrow 00B11 \Rightarrow 00B11 \Rightarrow 00\#11$$

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$$

CFG: Example (1.2)

Given a CFG, a string's *derivation* can be shown as a *parse tree*.

e.g., The derivation of 000#111 has the parse tree



CFG: Example (2)

Design a CFG for the following language:

 $\{w \mid w \in \{0,1\}^* \land w \text{ is a palidrome}\}$

e.g., 00, 11, 0110, 1001, etc.

 $\begin{array}{rccc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0 \\ P & \rightarrow & 1 \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$

7 of 96

Design a CFG for the following language:

 $\{ww^R \mid w \in \{0,1\}^*\}$

e.g., 00, 11, 0110, etc.

 $\begin{array}{rcl} P & \rightarrow & \epsilon \\ P & \rightarrow & 0P0 \\ P & \rightarrow & 1P1 \end{array}$

CFG: Example (4)

Design a CFG for the set of binary strings, where each block of 0's followed by at least as many 1's. e.g., 000111, 0001111, *etc.*

• We use *S* to represent one such string, and *A* to represent each such block in *S*.

9 of 96

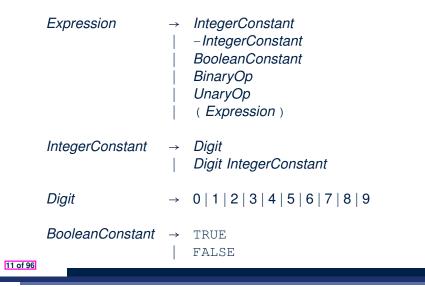
CFG: Example (5.1) Version 1

Design the grammar for the following small expression language, which supports:

- Arithmetic operations: +, -, *, /
- Relational operations: >, <, >=, <=, ==, /=
- Logical operations: true, false, !, &&, ||, =>

Start with the variable *Expression*.

- There are two possible versions:
 - 1. All operations are <u>mixed</u> together.
 - 2. Relevant operations are <u>grouped</u> together. Try both!



LASSONDE

LASSONDE

CFG: Example (5.3) Version 1

- BinaryOp → Expression + Expression | Expression - Expression | Expression * Expression | Expression / Expression | Expression & Expression | Expression | | Expression | Expression => Expression | Expression == Expression
 - Expression /= Expression
 - Expression > Expression
 - Expression < Expression

 $UnaryOp \rightarrow ! Expression$

CFG: Example (5.4) Version 1

• Parses string that requires further semantic analysis (e.g., type

• An interpretation is either visualized as a parse tree, or written as a

• Some string may have more than one ways to interpreting it.

However, Version 1 of CFG:

• Is *ambiguous*, meaning?

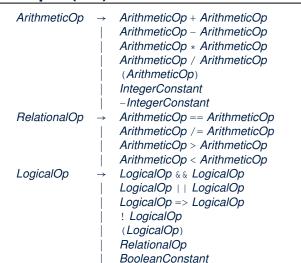
sequence of *derivations*.

e.g., Draw the parse tree(s) for $3 \times 5 + 4$

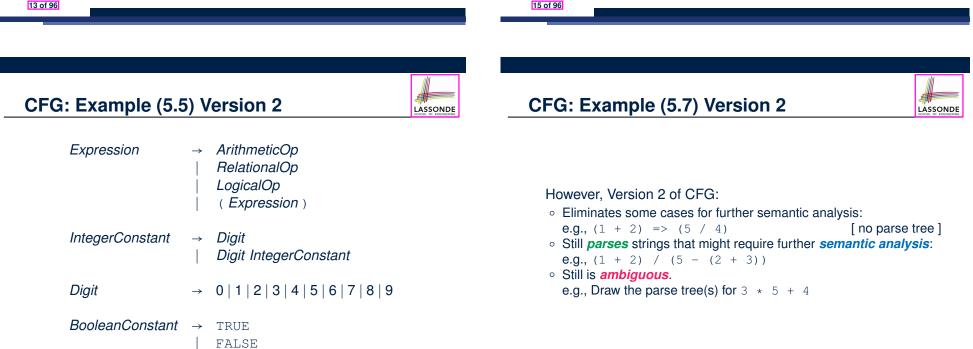
checking):

e.q., 3 => 6

CFG: Example (5.6) Version 2



LASSONDE



CFG: Formal Definition (1)

LASSONDE

 $[V \cap \Sigma = \emptyset]$

[a yield sequence]

- A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S):
 - V is a finite set of **variables**.
 - Σ is a finite set of *terminals*.
 - *R* is a finite set of *rules* s.t.

$$R \subseteq \{ v \to s \mid v \in V \land s \in (V \cup \Sigma)^* \}$$

- $S \in V$ is is the **start variable**.
- Given strings $u, v, w \in (V \cup \Sigma)^*$, variable $A \in V$, a rule $A \rightarrow w$:
 - $uAv \Rightarrow uwv$ menas that uAv yields uwv.
 - $u \stackrel{*}{\Rightarrow} v$ means that u derives v, if:
 - *U* = *V*; or
 - $U \Rightarrow U_1 \Rightarrow U_2 \Rightarrow \cdots \Rightarrow U_k \Rightarrow V$
- Given a CFG $G = (V, \Sigma, R, S)$, the language of G

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

17 of 96

CFG: Formal Definition (2): Example

- **CFG: Formal Definition (3): Example**
- Consider the grammar $G = (V, \Sigma, R, S)$:

Expr → Expr + Term | Term Term → Term * Factor | Factor Factor → (Expr) | a

- $\circ V = \{ Expr, Term, Factor \}$
- $\Sigma = \{a, +, \star, (,)\}$
- $\circ S = Expr$

• R is

- **Precedence** of operators +, * is embedded in the grammar.
 - "Plus" is specified at a **higher** level (*Expr*) than is "times" (*Term*).
 - Both operands of a multiplication (Factor) may be parenthesized.

19 of 96

20 of 96

LASSONDE

Regular Expressions to CFG's

- Recall the semantics of regular expressions (assuming that we do not consider Ø):
- $L(\epsilon)$ $= \{\epsilon\}$ L(a)= {*a*} $L(E+F) = L(E) \cup L(F)$ L(EF)= L(E)L(F) $L(E^*)$ $= (L(E))^*$ L((E))= L(E)• e.g., Grammar for $(00 + 1)^* + (11 + 0)^*$ S $\rightarrow A \mid B$ $A \rightarrow \epsilon \mid AC$ С $\rightarrow 00 | 1$ $B \rightarrow \epsilon \mid BD$ $D \rightarrow 11 \mid 0$

• Design the *CFG* for strings of properly-nested parentheses.

e.g., (), () (), ((()))) (), etc.

Present your answer in a *formal* manner.

• $G = (\{S\}, \{(,)\}, R, S)$, where R is

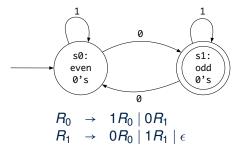
$$S \rightarrow$$
 (S) | SS | ϵ

• Draw *parse trees* for the above three strings that G generates.

DFA to CFG's

LASSONDE

- Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$:
 - Make a *variable* R_i for each *state* $q_i \in Q$.
 - Make R_0 the **start variable**, where q_0 is the **start state** of *M*.
 - Add a rule $R_i \rightarrow aR_j$ to the grammar if $\delta(q_i, a) = q_j$.
 - Add a rule $R_i \rightarrow \epsilon$ if $q_i \in F$.
- e.g., Grammar for



CFG: Rightmost Derivations (1)

- $\begin{array}{rcl} Expr & \rightarrow & Expr + & Term \mid Term \\ Term & \rightarrow & Term & \star & Factor \mid Factor \\ Factor & \rightarrow & (Expr) \mid a \end{array}$
- Given a string ($\epsilon (V \cup \Sigma)^*$), a *right-most derivation (RMD)* keeps substituting the <u>rightmost</u> non-terminal (ϵV).
- Unique RMD for the string a + a * a:

Expr	\Rightarrow	Expr + Term
	\Rightarrow	Expr + Term * Factor
	\Rightarrow	Expr + Term * a
	\Rightarrow	Expr + Factor * a
	\Rightarrow	Expr + a * a
	\Rightarrow	Term + a ∗ a
	\Rightarrow	Factor + a ∗ a
	\Rightarrow	a + a * a

• This **RMD** suggests that a * a is the right operand of +.

21 of 96

- Term \rightarrow Term \star Factor | Factor Factor \rightarrow (Expr) | a
- Given a string (∈ (V ∪ Σ)*), a *left-most derivation (LMD)* keeps substituting the <u>leftmost</u> non-terminal (∈ V).
- Unique LMD for the string a + a * a:

Expr	\Rightarrow	Expr + Term
	\Rightarrow	Term + Term
	\Rightarrow	Factor + Term
	\Rightarrow	a + Term
	\Rightarrow	a + Term * Factor
	\Rightarrow	a + Factor * Factor
	\Rightarrow	a + a * Factor
	\Rightarrow	a + a * a

• This *LMD* suggests that a * a is the right operand of +.

22 of 96

CFG: Leftmost Derivations (2)

- $\begin{array}{rcl} Expr & \rightarrow & Expr + & Term \mid Term \\ Term & \rightarrow & Term & \star & Factor \mid Factor \\ Factor & \rightarrow & (Expr) \mid a \end{array}$
- Unique LMD for the string (a + a) * a:

Expr	\Rightarrow	Term
	\Rightarrow	Term * Factor
	\Rightarrow	Factor * Factor
	\Rightarrow	(Expr) * Factor
	\Rightarrow	(Expr + Term) * Factor
	\Rightarrow	(Term + Term) * Factor
	\Rightarrow	(Factor + Term) * Factor
	\Rightarrow	(a + Term) * Factor
	\Rightarrow	(a + Factor) * Factor
	\Rightarrow	(a + a) * Factor
	\Rightarrow	(a + a) * a

• This LMD suggests that (a + a) is the left operand of *.

CFG: Rightmost Derivations (2)

LASSONDE

- $Expr \rightarrow Expr + Term | Term$ $Term \rightarrow Term * Factor | Factor$ $Factor \rightarrow (Expr) | a$
- Unique RMD for the string (a + a) * a:

	Expr \Rightarrow	Term
	\Rightarrow	Term * Factor
	\Rightarrow	Term ∗ a
	\Rightarrow	Factor * a
	\Rightarrow	(<i>Expr</i>) * a
	\Rightarrow	(<i>Expr</i> + <i>Term</i>) * a
	\Rightarrow	(Expr + Factor) * a
	\Rightarrow	(<i>Expr</i> + <i>a</i>) * <i>a</i>
	\Rightarrow	(<i>Term</i> + a) * a
	\Rightarrow	(<i>Factor</i> + <i>a</i>) * <i>a</i>
	\Rightarrow	(a + a) * a
	gests that	(a + a) is the left operand of *.
25 of 96		

CFG: Parse Trees vs. Derivations (2)

LASSONDE

- A string $w \in \Sigma^*$ may have more than one *derivations*.
 - **Q**: distinct *derivations* for $w \in \Sigma^* \Rightarrow$ distinct *parse trees* for *w*?

A: Not in general ··· Derivations with *distinct orders* of variable substitutions may still result in the *same parse tree*.

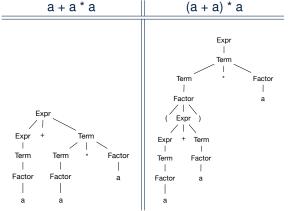
• For example:

 $\begin{array}{rcl} Expr & \rightarrow & Expr + & Term \mid Term \\ Term & \rightarrow & Term & \star & Factor \mid Factor \\ Factor & \rightarrow & (Expr) \mid a \end{array}$

For string a + a * a, the *LMD* and *RMD* have *distinct* orders of variable substitutions, but their corresponding parse trees are the <u>same</u>.

27 of 96

• *Parse trees* for (leftmost & rightmost) *derivations* of expressions: $a + a * a \qquad || \qquad (a + a) * a$



 Orders in which *derivations* are performed are *not* reflected on parse trees.

CFG: Ambiguity: Definition

- A string w ∈ Σ* is derived *ambiguously* in G if there exist two or more *distinct parse trees* or, equally, two or more *distinct LMDs* or, equally, two or more *distinct RMDs*.
 - We require that all such derivations are completed by following a <u>consisten</u> order (**leftmost** or **rightmost**) to avoid *false positive*.
- *G* is *ambiguous* if it generates some string ambiguously.

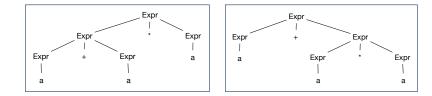
CFG: Ambiguity: Exercise (1)

LASSONDE

• Is the following grammar ambiguous ?

$$Expr \rightarrow Expr + Expr | Expr * Expr | (Expr) | a$$

• Yes : it generates the string a + a * a *ambiguously* :



- Distinct ASTs (for the same input) imply distinct semantic interpretations: e.g., a pre-order traversal for evaluation
- Exercise: Show LMDs for the two parse trees. 29 of 96

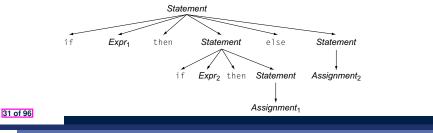
CFG: Ambiguity: Exercise (2.2)

if

LASSONDE (*Meaning 1*) Assignment₂ may be associated with the inner if: Statement Expr₁ then Statement if Expr2 then Statement else Statement

LASSONDE

(*Meaning 2*) Assignment₂ may be associated with the outer if:

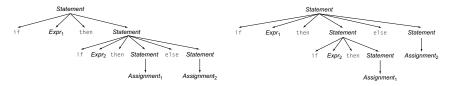


CFG: Ambiguity: Exercise (2.1)

• Is the following grammar *ambiguous*?

Statement \rightarrow if Expr then Statement if Expr then Statement else Statement Assignment

- Yes :: it derives the following string *ambiguously* :
 - if Expr₁ then if Expr₂ then Assignment₁ else Assignment₂



- This is called the *dangling else* problem.
- Exercise: Show LMDs for the two parse trees. 30 of 96

• We may remove the *ambiguity* by specifying that the *dangling else* is associated with the **nearest if**:

Statement	\rightarrow	if <i>Expr</i> then <i>Statement</i>
		if Expr then WithElse else Statement
	İ	Assignment
WithElse	\rightarrow	if <i>Expr</i> then <i>WithElse</i> else <i>WithElse</i>
		Assignment

- When applying if ... then WithElse else Statement :
 - The *true* branch will be produced via *WithElse*.
 - The *false* branch will be produced via *Statement*.

There is **no circularity** between the two non-terminals.

Discovering Derivations

LASSONDE

- Given a CFG $G = (V, \Sigma, R, S)$ and an input program $p \in \Sigma^*$:
 - So far we **manually** come up a valid **derivation** s.t. $S \stackrel{*}{\Rightarrow} p$.
 - A parser is supposed to automate this derivation process.
 - Input : <u>A sequence of (t, c) pairs</u>, where each token t (e.g., r241) belongs to a syntactic category c (e.g., register); and a CFG G.
 - Output : A *valid derivation* (as an *AST*); or A *parse error*.
- In the process of constructing an **AST** for the input program:
 - *Root* of AST: The *start symbol S* of *G*
 - Internal nodes: A subset of variables V of G
 - Leaves of AST: A token/terminal sequence
 - \Rightarrow Discovering the *grammatical connections* (w.r.t. *R* of *G*) between the *root*, *internal nodes*, and *leaves* is the hard part!
- Approaches to Parsing:

• <u>Top-down</u> parsing

 $[W \in (V \cup \Sigma)^*, A \in V, A \to W \in R]$

For a node representing **A**, <u>extend it with a subtree</u> representing **w**.

- Bottom-up parsing
- For a substring matching *w*, <u>build a node</u> representing *A* accordingly.
- 33 of 96

TDP: Exercise (1)

• Given the following CFG G:

LASSONDE

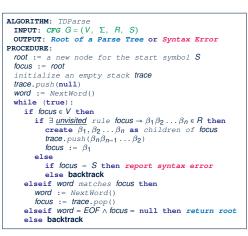
LASSONDE

Trace TDParse on how to build an AST for input a + a * a.

- Running *TDParse* with **G** results an *infinite loop* !!!
 - TDParse focuses on the leftmost non-terminal.
 - The grammar **G** contains *left-recursions*.
- We must first convert left-recursions in G to right-recursions.

35 of 96

TDP: Discovering Leftmost Derivation



backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren

TDP: Exercise (2)

• Given the following CFG G:

Expr Expr'	\rightarrow \rightarrow -	Term Expr' + Term Expr'
Term Term'	$ \begin{array}{c} \\ \rightarrow \\ \rightarrow \end{array} $	_€ Factor Term' ∗ Factor Term'
Factor	 \rightarrow 	е (Expr) а

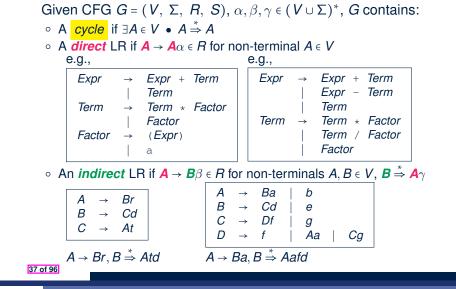
Exercise. Trace *TDParse* on building AST for a + a * a.

Exercise. Trace *TDParse* on building AST for (a + a) * a.

- **Q**: How to handle ϵ -productions (e.g., $Expr \rightarrow \epsilon$)?
- A: Execute focus := trace.pop() to advance to next node.
- Running TDParse will terminate :: G is right-recursive.
- We will learn about a systematic approach to converting left-recursions in a given grammar to *right-recursions*.

Left-Recursions (LR): Direct vs. Indirect

LASSONDE

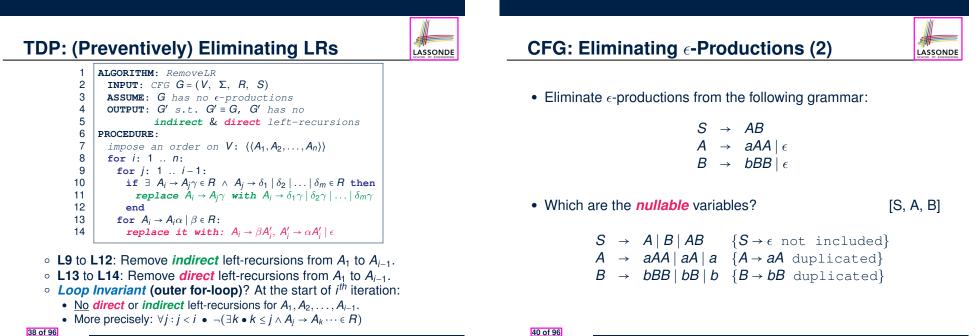


CFG: Eliminating ϵ -Productions (1)

- Motivations:
 - **TDParse** handles each ϵ -production as a special case.
 - RemoveLR produces CFG which may contain ε-productions.
- $\epsilon \notin L \Rightarrow \exists CFG G = (V, \Sigma, R, S)$ s.t. G has no ϵ -productions. An ϵ -production has the form $A \rightarrow \epsilon$.
- A variable A is **nullable** if $A \Rightarrow \epsilon$.
 - Each terminal symbol is *not nullable*.
 - Variable A is *nullable* if either:
 - $A \rightarrow \epsilon \in R$: or
 - $A \rightarrow B_1 B_2 \dots B_k \in R$, where each variable B_i $(1 \le i \le k)$ is a *nullable*.
- Given a production $B \rightarrow CAD$, if only variable A is **nullable**, then there are 2 versions of $B: B \rightarrow CAD \mid CD$
- In general, given a production $A \rightarrow X_1 X_2 \dots X_k$ with k symbols, if *m* of the *k* symbols are *nullable*:
 - m < k: There are 2^m versions of A.

• m = k: There are $2^m - 1$ versions of A.

39 of 96



Backtrack-Free Parsing (1)

- TDParse automates the *top-down*, *leftmost* derivation process by consistently choosing production rules (e.g., in order of their appearance in CFG).
 - This *inflexibility* may lead to *inefficient* runtime performance due to the need to *backtrack*.
 - e.g., It may take the construction of a giant subtree to find out a mismatch with the input tokens, which end up requiring it to backtrack all the way back to the root (start symbol).
- We may avoid backtracking with a modification to the parser:
 - When deciding which production rule to choose, consider:
 (1) the *current* input symbol
 (2) the current input symbol
 - (2) the <u>consequential</u> *first* symbol if a rule was applied for focus
 [*lookahead* symbol]
 - Using a one symbol lookhead, w.r.t. a right-recursive CFG, each alternative for the leftmost nonterminal leads to a unique terminal, allowing the parser to decide on a choice that prevents backtracking.
 - Such CFG is *backtrack free* with the *lookhead* of one symbol.
 - We also call such backtrack-free CFG a *predictive grammar*.

41 of 96

The FIRST Set: Examples

LASSONDE

• Consider this *right*-recursive CFG:

	0 0	$Goal \rightarrow$	Expr				6	Term'	\rightarrow	× Factor T	'erm'
	1 E	$Expr \rightarrow$	Term Exp	pr'			7			÷ Factor T	'erm'
	2 E	$Expr' \rightarrow$	+ Term	Expr'			8			ϵ	
	3	1	- Term	Expr'			9	Factor	\rightarrow	<u>(</u> Expr <u>)</u>	
	4	1	ϵ				10			num	
	5 7	Term \rightarrow	Factor T	'erm'			11			name	
• Com	• Compute FIRST for each terminal (e.g., num, +, ():										
		num	name	+	-	×	÷	<u>(</u>)	eof	ϵ
	FIRST	r num	name	+	-	Х	÷	()	eof	ϵ
• Com	pute	FIRST fo	or eac	h nor	ı-te	rmi	inal	(e.g.	, <i>Ex</i>	pr, Tern	n'):
		Ехрі	•	Expr'		Ter	m	Те	rm'	Factor	
	FIRST	<u>(</u> ,name,	,num +	·, -,ε	<u>(</u> ,	nam	e,nı	um x,	${}^{\div},\epsilon$	<u>(</u> , name,	num
43 of 96											

The FIRST Set: Definition

- Say we write *T* ⊂ P(Σ^{*}) to denote the set of valid tokens recognizable by the scanner.
- **FIRST** $(\alpha) \triangleq$ set of symbols that can appear as the *first word* in some string derived from α .
- More precisely:

$$\mathbf{FIRST}(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in \mathcal{T} \\ \{w \mid w \in \Sigma^* \land \alpha \stackrel{*}{\Rightarrow} w\beta \land \beta \in (\mathcal{V} \cup \Sigma)^*\} & \text{if } \alpha \in \mathcal{V} \end{cases}$$

$FIRST(\alpha) = \begin{cases} \{\alpha\} & \text{if } \alpha \in T \\ \\ \{w \mid w \in \Sigma^* \land \alpha \xrightarrow{*} w\beta \land \beta \in (V \cup \Sigma)^*\} & \text{if } \alpha \in V \end{cases}$	
$\left\{ w \mid w \in \Sigma^* \land \alpha \xrightarrow{*} w\beta \land \beta \in (V \cup \Sigma)^* \right\} \text{if } \alpha \in V$	
ALGORITHM: GetFirst	
INPUT: CFG $G = (V, \Sigma, R, S)$	
$T \subset \Sigma^*$ denotes valid terminals	
OUTPUT: FIRST: $V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$	
PROCEDURE :	
for $\alpha \in (T \cup \{eof, \epsilon\})$: FIRST $(\alpha) := \{\alpha\}$	
for $A \in V$: First $(A) := \emptyset$	
lastFirst := \emptyset	
<pre>while(lastFirst ≠ FIRST):</pre>	
lastFirst := FIRST	
for $A \to \beta_1 \beta_2 \dots \beta_k \in R$ s.t. $\forall \beta_j : \beta_j \in (T \cup V)$:	
<i>rhs</i> := First $(\beta_1) - \{\epsilon\}$	
for $(i := 1; \epsilon \in \texttt{FIRST}(\beta_i) \land i < k; i++)$:	
$ extsf{rhs}$:= $ extsf{rhs} \cup (extsf{First}(eta_{i+1}) - \{\epsilon\})$	
if $i = k \land \epsilon \in \texttt{FIRST}(eta_k)$ then	
$rhs := rhs \cup \{\epsilon\}$	
end	

 $First(A) := First(A) \cup rhs$

Computing the FIRST Set: Extension

Recall: FIRST takes as input a token or a variable.

FIRST : $V \cup T \cup \{\epsilon, eof\} \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$

• The computation of variable *rhs* in algoritm GetFirst actually suggests an extended, overloaded version:

FIRST : $(V \cup T \cup \{\epsilon, eof\})^* \longrightarrow \mathbb{P}(T \cup \{\epsilon, eof\})$

FIRST may also take as input a string $\beta_1 \beta_2 \dots \beta_n$ (RHS of rules).

More precisely:

 $FIRST(\beta_1\beta_2\dots\beta_n) =$ $\forall i : 1 \le i < k \bullet \epsilon \in \mathsf{FIRST}(\beta_i)$ $\mathsf{FIRST}(\beta_1) \cup \mathsf{FIRST}(\beta_2) \cup \cdots \cup \mathsf{FIRST}(\beta_{k-1}) \cup \mathsf{FIRST}(\beta_k) \middle| \land$

Note. β_k is the first symbol whose **FIRST** set does not contain ϵ .

45 of 96

Extended FIRST Set: Examples

Consider this *right*-recursive CFG:

0	Goal	\rightarrow	Expr	6	$Term' \rightarrow$	× Factor Term
1	Expr	\rightarrow	Term Expr'	7	1	÷ Factor Term
2	Expr'	\rightarrow	+ Term Expr'	8	1	ϵ
3			- Term Expr'	9	Factor \rightarrow	<u>(</u> Expr <u>)</u>
4			ϵ	10	1	num
5	Term	\rightarrow	Factor Term'	11		name

e.g., FIRST(*Term Expr'*) = FIRST(*Term*) = { (, name, num} e.g., $FIRST(+ Term Expr') = FIRST(+) = \{+\}$ e.g., $\mathbf{FIRST}(- Term Expr') = \mathbf{FIRST}(-) = \{-\}$ e.g., **FIRST**(ϵ) = { ϵ }

Is the FIRST Set Sufficient

Consider the following three productions:

Expr'	\rightarrow	+	Term	Term'	(1)
		-	Term	Term'	(2)
		ϵ			(3)

LASSONDE

LASSONDE

In TDP, when the parser attempts to expand an Expr' node, it looks ahead with one symbol to decide on the choice of rule: **FIRST**(+) = {+}, **FIRST**(-) = {-}, and **FIRST**(ϵ) = { ϵ }.

Q. When to choose rule (3) (causing focus := trace.pop())?

- **A?**. Choose rule (3) when $focus \neq FIRST(+) \land focus \neq FIRST(-)$?
- Correct but inefficient in case of illegal input string: syntax error is only reported after possibly a long series of backtrack.
- Useful if parser knows which words can appear, after an application of the ϵ -production (rule (3)), as leading symbols.
- **FOLLOW** $(v: V) \triangleq$ set of symbols that can appear to the immediate right of a string derived from v.

 $\mathsf{Follow}(v) = \{ w \mid w, x, y \in \Sigma^* \land v \stackrel{*}{\Rightarrow} x \land S \stackrel{*}{\Rightarrow} xwy \}$

47 of 96

Consider this *right*-recursive CFG:

0	Goal	\rightarrow	Expr	6	Term'	\rightarrow	× Factor Term'
1	Expr	\rightarrow	Term Expr'	7			÷ Factor Term'
2	Expr'	\rightarrow	+ Term Expr'	8			ϵ
3			- Term Expr'	9	Factor	\rightarrow	<u>(</u> Expr <u>)</u>
4			ϵ	10			num
5	Term	\rightarrow	Factor Term'	11			name

• Compute **FOLLOW** for each non-terminal (e.g., *Expr*, *Term'*):

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>

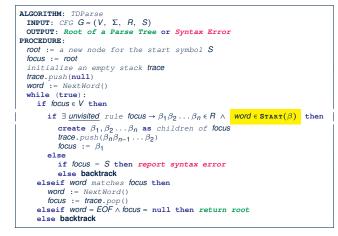
Computing the FOLLOW Set

LASSONDE

$\mathsf{Follow}(v) = \{ w \mid w, x, y \in \Sigma^* \land v \stackrel{*}{\Rightarrow} x \land S \stackrel{*}{\Rightarrow} xwy \}$

	PUT: CFG $G = (V, \Sigma, R, S)$
OUT	$\texttt{IPUT: Follow}: V \longrightarrow \mathbb{P}(T \cup \{\texttt{eof}\})$
PROCE	DURE :
foi	$r A \in V$: Follow (A) := \varnothing
Foi	$Llow(S) := \{eof\}$
lasi	tFollow := Ø
whi	ile(<i>lastFollow</i> ≠ Follow):
	lastFollow := Follow
	for $A \rightarrow \beta_1 \beta_2 \dots \beta_k \in R$:
	<pre>trailer := Follow(A)</pre>
	for i: k 1:
	if $\beta_i \in V$ then
	$\mathtt{Follow}(eta_i)$:= $\mathtt{Follow}(eta_i) \cup trailer$
	if $\epsilon \in \texttt{First}(eta_i)$
	then trailer := trailer \cup (FIRST (β_i) -
	else trailer := FIRST (β_i)
	else
	trailer := FIRST (β_i)

TDP: Lookahead with One Symbol



backtrack = pop *focus*.siblings; *focus* := *focus*.parent; *focus*.resetChildren

51 of 96

52 of 96

Backtrack-Free Grammar

- A *backtrack-free grammar* (for a <u>top-down parser</u>), when expanding the *focus internal node*, is always able to choose a <u>unique</u> rule with the *one-symbol lookahead* (or report a *syntax error* when no rule applies).
- To formulate this, we first define:

$$\mathbf{START}(A \to \beta) = \begin{cases} \mathbf{FIRST}(\beta) & \text{if } \epsilon \notin \mathbf{FIRST}(\beta) \\ \mathbf{FIRST}(\beta) \cup \mathbf{FOLLOW}(A) & \text{otherwise} \end{cases}$$

FIRST(β) is the extended version where β may be $\beta_1 \beta_2 \dots \beta_n$

• A **backtrack-free grammar** has each of its productions $A \rightarrow \gamma_1 | \gamma_2 | \dots | \gamma_n$ satisfying:

 $\forall i, j : 1 \le i, j \le n \land i \ne j \bullet \mathbf{START}(\gamma_i) \cap \mathbf{START}(\gamma_i) = \emptyset$

Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?

11	Factor \rightarrow	name
12	1	name <u>[</u> ArgList]
13	1	name <u>(</u> ArgList)
15	$ArgList \rightarrow$	Expr MoreArgs
16	MoreArgs \rightarrow	, Expr MoreArgs
17	1	ϵ

• $\epsilon \notin \text{FIRST}(Factor) \Rightarrow \text{START}(Factor) = \text{FIRST}(Factor)$

- **FIRST**(*Factor* \rightarrow name)
- **FIRST**(*Factor* \rightarrow name [*ArgList*]) • **FIRST**(*Factor* \rightarrow name (*ArgList*))
- = {name} = {name}

= {name}

... The above grammar is *not* backtrack free.

 \Rightarrow To expand an AST node of *Factor*, with a *lookahead* of name, the parser has no basis to choose among rules 11, 12, and 13.

Backtrack-Free Grammar: Left-Factoring

- A CFG is <u>not</u> backtrack free if there exists a *common prefix* (name) among the RHS of *multiple* production rules.
- To make such a CFG *backtrack-free*, we may transform it using *left factoring*: a process of extracting and isolating *common prefixes* in a set of production rules.
 - Identify a common prefix α :

 $\boldsymbol{A} \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_n \mid \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_j$

[each of $\gamma_1, \gamma_2, \ldots, \gamma_j$ does not begin with α]

LASSONDE

• Rewrite that production rule as:

$$\begin{array}{rcl} \boldsymbol{A} & \rightarrow & \boldsymbol{\alpha}\boldsymbol{B} \mid \boldsymbol{\gamma}_1 \mid \boldsymbol{\gamma}_2 \mid \dots \mid \boldsymbol{\gamma}_j \\ \boldsymbol{B} & \rightarrow & \boldsymbol{\beta}_1 \mid \boldsymbol{\beta}_2 \mid \dots \mid \boldsymbol{\beta}_n \end{array}$$

- New rule $B \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$ may <u>also</u> contain *common prefixes*.
- Rewriting continues until no common prefixes are identified.
- 53 of 96

TDP: Terminating and Backtrack-Free

LASSONDE

- Given an <u>arbitrary</u> CFG as input to a top-down parser:
 - Q. How do we avoid a *non-terminating* parsing process?
 A. Convert left-recursions to right-recursion.
 - Q. How do we <u>minimize</u> the need of *backtracking*?
 A. left-factoring & one-symbol lookahead using START
- <u>Not</u> every context-free <u>language</u> has a corresponding backtrack-free context-free grammar.

Given a CFL *I*, the following is *undecidable*:

 $\exists cfg \mid L(cfg) = I \land isBacktrackFree(cfg)$

Given a CFG g = (V, Σ, R, S), whether or not g is backtrack-free is decidable:

For each $A \rightarrow \gamma_1 \mid \gamma_2 \mid \ldots \mid \gamma_n \in R$:

```
\forall i, j: 1 \leq i, j \leq n \land i \neq j \bullet \mathbf{START}(\gamma_i) \cap \mathbf{START}(\gamma_j) = \emptyset
```

55 of 96

56 of 96

Left-Factoring: Exercise

Use *left-factoring* to remove all *common prefixes* from the following grammar.

Factor \rightarrow name Arguments Arguments \rightarrow [ArgList] | (ArgList) | ϵ

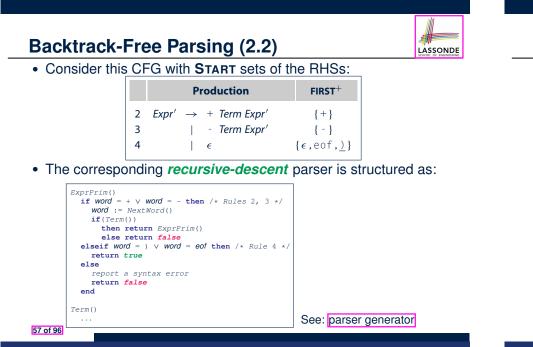
Any more *common prefixes*?

[No]

LASSONDE

Backtrack-Free Parsing (2.1)

- A recursive-descent parser is:
 - A top-down parser
 - Structured as a set of *mutually recursive* procedures Each procedure corresponds to a *non-terminal* in the grammar. See an example.
- Given a *backtrack-free* grammar, a tool (a.k.a. *parser generator*) can automatically generate:
 - FIRST, FOLLOW, and START sets
 - An efficient *recursive-descent* parser
 - This generated parser is called an *LL(1) parser*, which:
 - Processes input from Left to right
 - Constructs a Leftmost derivation
 - Uses a lookahead of <u>1</u> symbol
- *LL(1) grammars* are those working in an *LL(1)* scheme.
 - LL(1) grammars are backtrack-free by definition.



BUP: Discovering Rightmost Derivation

- In TDP, we build the <u>start variable</u> as the *root node*, and then work towards the *leaves*.
 [leftmost derivation]
- In Bottom-Up Parsing (BUP):
 - Words (terminals) are still returned from **left** to **right** by the scanner.
 - As terminals, or a mix of terminals and variables, are identified as *reducible* to some variable *A* (i.e., matching the RHS of some production rule for *A*), then a layer is added.
 - Eventually:
 - accept:
 - The *start variable* is reduced and <u>all</u> words have been consumed.
 - reject: The next word is not eof, but no further reduction can be identified.
 - Q. Why can BUP find the *rightmost* derivation (RMD), if any?
 - **A.** BUP discovers steps in a *RMD* in its *reverse* order.

59 of 96

LL(1) Parser: Exercise

Consider the following grammar:

- Q. Is it suitable for a top-down predictive parser?
- If so, show that it satisfies the LL(1) condition.
- If not, identify the problem(s) and correct it (them). Also show that the revised grammar satisfies the *LL(1)* condition.

- *table*-driven *LR(1)* parser: an implementation for BUP, which
 - Processes input from Left to right
 - Constructs a **R**ightmost derivation
 - Uses a lookahead of <u>1</u> symbol
- A language has the *LR(1)* property if it:
 - Can be parsed in a single <u>L</u>eft to right scan,
 - To build a *reversed* **R**ightmost derivation,
 - $\circ~$ Using a lookahead of $\underline{1}$ symbol to determine parsing actions.
- Critical step in a *bottom-up parser* is to find the *next handle*.

BUP: Discovering Rightmost Derivation (2)

INPUT: CFG $G = (V, \Sigma, R, S)$, Action & Goto T	ables
OUTPUT: Report Parse Success or Syntax Erro	r
ROCEDURE :	
initialize an empty stack trace	
<pre>trace.push(0) /* start state */</pre>	
word := NextWord()	
while(true)	
state := trace.top()	
act := Action[state, word]	
<pre>if act = ``accept'' then</pre>	
succeed()	
elseif act = ``reduce based on $A \rightarrow \beta''$ then	
trace.pop() $2 \times \beta $ times /* word + state */	
state := trace.top()	
trace.push(A)	
next := Goto[state, A]	
trace.push(next)	
<pre>elseif act = ``shift to s_i'' then</pre>	
trace.push(word)	
trace.push(i)	
word := NextWord()	
else	

LASSONDE

Consider the steps of performing BUP on input ():

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ 0	— none —	—
1	0	(\$ O	— none —	shift 3
2	3)	\$ 0 <u>(</u> 3	— none —	shift 7
3	7	eof	\$ 0 <u>(</u> 3 <u>)</u> 7	<u>(</u>)	reduce 5
4	2	eof	\$ 0 Pair 2	Pair	reduce 3
5	1	eof	\$ 0 <i>List</i> 1	List	accept

63 of 96

BUP: Example Tracing (1)

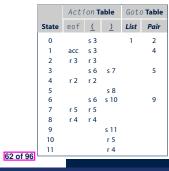
• Consider the following grammar for parentheses:

In *Action* table:

• *s_i*: shift to state *i*

• r_j: reduce to the LHS of production #j

• Assume: tables *Action* and *Goto* constructed accordingly:



BUP: Example Tracing (2.2)

Consider the steps of performing BUP on input (())():

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ 0	— none —	_
1	0	(\$ O	— none —	shift 3
2	3	(\$ 0 <u>(</u> 3	— none —	shift 6
3	6)	\$ 0 <u>(</u> 3 <u>(</u> 6	— none —	shift 10
4	10)	\$ 0 <u>(</u> 3 <u>(</u> 6 <u>)</u> 10	<u>()</u>	reduce 5
5	5)	\$ 0 <u>(</u> 3 <i>Pair</i> 5	— none —	shift 8
6	8	(\$ 0 <u>(</u> 3 <i>Pair</i> 5 <u>)</u> 8	<u>(</u> Pair <u>)</u>	reduce 4
7	2	(\$ 0 Pair 2	Pair	reduce 3
8	1	(\$ 0 <i>List</i> 1	— none —	shift 3
9	3)	\$ 0 <i>List</i> 1 (3	— none —	shift 7
10	7	eof	\$ 0 <i>List</i> 1 (3) 7	<u>(</u>)	reduce 5
11	4	eof	\$ 0 List 1 Pair 4	List Pair	reduce 2
12	1	eof	\$ 0 <i>List</i> 1	List	accept

BUP: Example Tracing (2.3)

LASSONDE

LASSONDE

Consider the steps of performing BUP on input ()):

Iteration	State	word	Stack	Handle	Action
initial	_	(\$ O	— none —	—
1	0	(\$ O	— none —	shift 3
2	3)	\$ 0 <u>(</u> 3	— none —	shift 7
3	7)	\$ 0 <u>(</u> 3 <u>)</u> 7	— none —	error

65 of 96

LR(1) Items: Definition

- In LR(1) parsing, Action and Goto tabeles encode legitimate ways (w.r.t. a CFG) for finding *handles* (for *reductions*).
- In a table-driven LR(1) parser, the table-construction algorithm represents each potential *handle* (for a *reduction*) with an LR(1) item e.g.,

$$[\mathbf{A} \rightarrow \beta \bullet \gamma, a]$$

where:

- A *production rule* $| A \rightarrow \beta \gamma |$ is currently being applied.
- A terminal symbol a servers as a lookahead symbol.
- A *placeholder* indicates the parser's *stack top*.
 - \checkmark The parser's *stack* contains β ("left context").
 - $\checkmark \gamma$ is yet to be matched.
 - Upon matching $\beta\gamma$, if a matches the current word, then we "replace" $\beta\gamma$ (and their associated states) with A (and its associated state).

LR(1) Items: Scenarios

An *LR(1) item* can denote:

1. POSSIBILITY

 $[A \rightarrow \beta \gamma \bullet, a]$

LASSONDE

- In the current parsing context, an A would be valid.
- • represents the position of the parser's stack top • Recognizing a β next would be one step towards discovering an A.
- 2. PARTIAL COMPLETION
 - $[\mathbf{A} \rightarrow \boldsymbol{\beta} \bullet \boldsymbol{\gamma}, a]$ • The parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing β .
 - Recognizing a γ next would be one step towards discovering an A.

3. COMPLETION

- Parser has progressed from $[A \rightarrow \bullet \beta \gamma, a]$ by recognizing $\beta \gamma$.
- $\beta\gamma$ found in a context where an A followed by a would be valid.
- If the current input word matches a, then:
 - Current *complet item* is a *handle*.
 - Parser can *reduce* $\beta\gamma$ to A
 - Accordingly, in the **stack**, $\beta\gamma$ (and their associated states) are replaced with A (and its associated state).

67 of 96

LR(1) Items: Example (1.1)

Consider the following grammar for parentheses:

- $Goal \rightarrow List$ 1 2 *List* \rightarrow *List Pair* 3 | Pair 4 $Pair \rightarrow (Pair)$ 5 | ()
- *Initial State*: [*Goal* → •*List*, eof] **Desired Final State:** [Goal → List•, eof]

Intermediate States: Subset Construction

Q. Derive all LR(1) items for the above grammar.

U

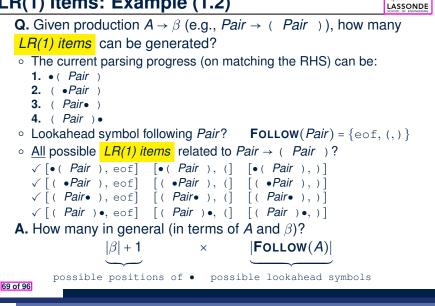
- FOLLOW(List) = {eof, (} FOLLOW(Pair) = {eof, (,)}
- For each production $A \rightarrow \beta$, given **FOLLOW**(*A*), *LR(1) items* are:

{ $[A \rightarrow \bullet \beta \gamma, a] \mid a \in FOLLOW(A)$ } U

$$\{ [A \rightarrow \beta \bullet \gamma, a] \mid a \in \mathsf{FOLLOW}(A) \}$$

{
$$[A \rightarrow \beta \gamma \bullet, a] | a \in FOLLOW(A) }$$

LR(1) Items: Example (1.2)



LR(1) Items: Example (2)

Consider the following grammar for expressions:

0	Goal	\rightarrow	Expr	6	Term'	\rightarrow	× Factor Term'
1	Expr	\rightarrow	Term Expr'	7		1	÷ Factor Term'
2	Expr'	\rightarrow	+ Term Expr'	8		1	ϵ
3			- Term Expr'	9	Factor	\rightarrow	<u>(</u> Expr <u>)</u>
4			ϵ	10		1	num
5	Term	\rightarrow	Factor Term'	11		T	name

Q. Derive all *LR(1) items* for the above grammar. **Hints.** First compute **FOLLOW** for each non-terminal:

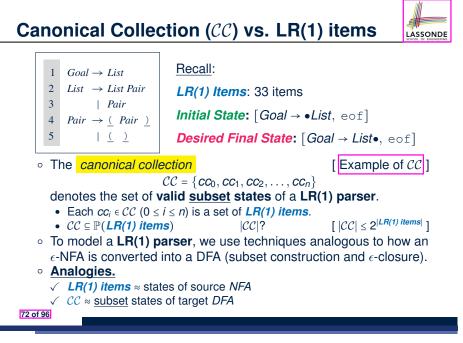
	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-, <u>)</u>	eof,+,-,x,÷, <u>)</u>
Tips. Ignore ϵ <i>production</i> such as $Expr' \rightarrow \epsilon$ since the FOLLOW sets already take them into consideration.					

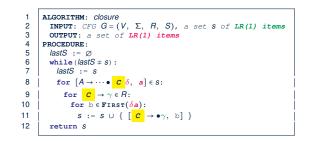
71 of 96

LASSONDE

A. There are 33 *LR(1) items* in the parentheses grammar.

$[Goal \rightarrow \bullet List, eof]$		
$[Goal \rightarrow List \bullet, eof]$		
[List $\rightarrow \bullet$ List Pair,eof]	[List $\rightarrow \bullet$ List Pair, []	
$[List \rightarrow List \bullet Pair, eof]$	[List \rightarrow List \bullet Pair, []	
[List \rightarrow List Pair •, eof]	[List \rightarrow List Pair $\bullet, \underline{(}$]	
[List $\rightarrow \bullet$ Pair,eof]	$[List \rightarrow \bullet Pair, (]]$	
$[List \rightarrow Pair \bullet, eof]$	[List \rightarrow Pair $\bullet, \underline{(}$]	
[<i>Pair</i> $\rightarrow \bullet (\underline{Pair})$,eof]	$[Pair \rightarrow \bullet (Pair),)]$	$[Pair \rightarrow \bullet (\underline{Pair}), (\underline{]})$
[<i>Pair</i> \rightarrow <u>(</u> \bullet <i>Pair</i> <u>)</u> ,eof]	$[Pair \rightarrow (\bullet Pair),)]$	$[Pair \rightarrow \underline{(\bullet Pair \underline{)}, \underline{(}]}$
$[Pair \rightarrow (Pair \bullet), eof]$	$[Pair \rightarrow \underline{(Pair \bullet \underline{)},\underline{)}}]$	$[Pair \rightarrow \underline{(Pair \bullet \underline{)}, \underline{(}]}$
[<i>Pair</i> \rightarrow <u>(</u> <i>Pair</i> <u>)</u> •,eof]	$[Pair \rightarrow \underline{(Pair \underline{)} \bullet, \underline{)}}]$	$[Pair \rightarrow \underline{(Pair \underline{)}} \bullet, \underline{(]}]$
$[Pair \rightarrow \bullet (), eof]$	$[Pair \rightarrow \bullet \underline{()}, \underline{()}]$	$[Pair \rightarrow \bullet (\underline{)}, \underline{)}]$
$[Pair \rightarrow (\bullet), eof]$	$[Pair \rightarrow \underline{(} \bullet \underline{)}, \underline{(}]$	$[Pair \rightarrow (\bullet),)]$
$[Pair \rightarrow \underline{(\)} \bullet, \texttt{eof}]$	$[Pair \rightarrow \underline{(\)} \bullet, \underline{(\)}]$	$[Pair \rightarrow \underline{(\)} \bullet, \underline{)}]$





- Line 8: $[A \rightarrow \cdots \bullet C_{\delta}, a] \in s$ indicates that the parser's next task is to match C_{δ} with a lookahead symbol a.
- **Line 9**: Given: matching γ can reduce to C
- Line 10: Given: $b \in FIRST(\delta a)$ is a valid lookahead symbol after reducing γ to C
- Line 11: Add a new item [$C \rightarrow \bullet \gamma$, b] into s.
- Line 6: Termination is guaranteed.
- \therefore Each iteration adds ≥ 1 item to *s* (otherwise *lastS* \neq *s* is *false*).

73 of 96

Constructing *CC***: The** *goto* **Procedure** (1)

1	ALGORITHM: goto
2 3	INPUT: a set S of LR(1) items, a symbol X
	OUTPUT: a set of LR(1) items
4 5	PROCEDURE :
5	moved := Ø
6	for item ∈ s:
7	if <i>item</i> = $[\alpha \rightarrow \beta \bullet x\delta, a]$ then
8	moved := moved $\cup \{ [\alpha \rightarrow \beta x \bullet \delta, a] \}$
9	end
10	return closure(moved)

Line 7: Given: item $[\alpha \rightarrow \beta \bullet x\delta, a]$ (where x is the next to match) **Line 8**: Add $[\alpha \rightarrow \beta x \bullet \delta, a]$ (indicating x is matched) to *moved* Line 10: Calculate and return *closure*(moved) as the "next subset state" from s with a "transition" x.

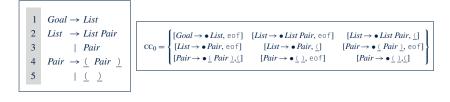
75 of 96

Constructing CC: The closure Procedure (2.1)

Constructing CC: The goto Procedure (2)

Initial State: [*Goal* → •*List*, eof]

Calculate $cc_0 = closure(\{ [Goal \rightarrow \bullet List, eof] \}).$



Calculate $goto(cc_0, ())$.

["next state" from cc_0 taking (]

Constructing *CC***: The Algorithm (1)**

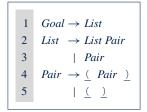
LASSONDE

1	ALGORITHM: BuildCC
2	INPUT: a grammar $G = (V, \Sigma, R, S)$, goal production $S \rightarrow S'$
3	OUTPUT:
4	(1) a set $CC = \{cc_0, cc_1, \dots, cc_n\}$ where $cc_i \subseteq G' \leq LR(1)$ items
5	(2) a transition function
6	PROCEDURE :
7	$cc_0 := closure(\{[S \rightarrow \bullet S', eof]\})$
8	$\mathcal{CC} := \{ cc_0 \}$
9	processed := $\{cc_0\}$
10	$lastCC := \emptyset$
11	while $(lastCC \neq CC)$:
12	lastCC := CC
13	for $cc_i \ s.t. \ cc_i \in CC \land cc_i \notin processed$:
14	processed := processed $\cup \{cc_i\}$
15	for x s.t. $[\cdots \rightarrow \cdots \bullet x] \in CC_j$
16	$temp := goto(cc_i, x)$
17	if $temp \notin CC$ then
18	$CC := CC \cup \{temp\}$
19	end
20	$\delta := \delta \cup (cc_i, x, temp)$

77 of 96

79 of 96

Constructing CC: The Algorithm (2.1)



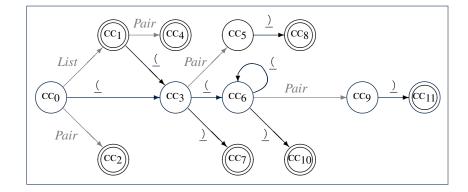
- Calculate $CC = \{ cc_0, cc_1, ..., cc_{11} \}$
- Calculate the transition function $\delta : \mathcal{CC} \times (\Sigma \cup V) \to \mathcal{CC}$

Constructing CC: The Algorithm (2.2)

Resulting transition table:

Iteration	Item	Goal	List	Pair	<u>(</u>	<u>)</u>	eof
0	CC ₀	Ø	cc_1	CC ₂	CC ₃	Ø	Ø
1	CC_1	Ø	Ø	CC ₄	CC ₃	Ø	Ø
	CC_2	Ø	Ø	Ø	Ø	Ø	Ø
	CC ₃	Ø	Ø	CC5	CC ₆	CC7	Ø
2	CC ₄	Ø	Ø	Ø	Ø	Ø	Ø
	CC5	Ø	Ø	Ø	Ø	CC8	Ø
	CC ₆	Ø	Ø	CC ₉	CC ₆	CC_{10}	Ø
	CC7	Ø	Ø	Ø	Ø	Ø	Ø
3	CC ₈	Ø	Ø	Ø	Ø	Ø	Ø
	CC9	Ø	Ø	Ø	Ø	CC_{11}	Ø
	cc_{10}	Ø	Ø	Ø	Ø	Ø	Ø
4	CC_{11}	Ø	Ø	Ø	Ø	Ø	Ø

Resulting DFA for the parser:

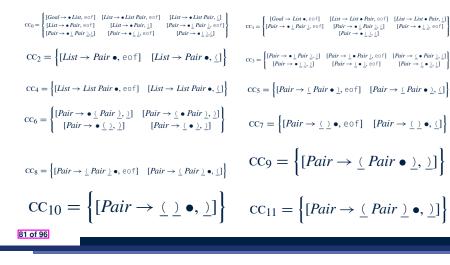


LASSONDE

Constructing Action and Goto Tables (2)

Constructing CC: The Algorithm (2.4.1)

Resulting canonical collection CC:



Resulting Action and Goto tables:

	Acti	ion T	able	Goto	Table
State	eof	<u>(</u>	<u>)</u>	List	Pair
0		s 3		1	2
1	acc	s 3			4
2	r 3	r 3			
3		s 6	s 7		5
4	r 2	r 2			
5			s 8		
6		s 6	s 10		9
7	r 5	r 5			
8	r 4	r 4			
9			s 11		
10			r 5		
11			r 4		

.

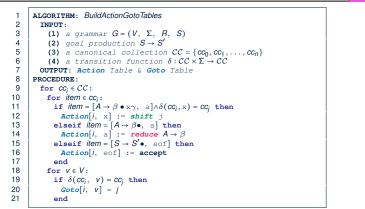
83 of 96

LASSONDE

LASSONDE

[Def. of CC]

Constructing Action and Goto Tables (1)

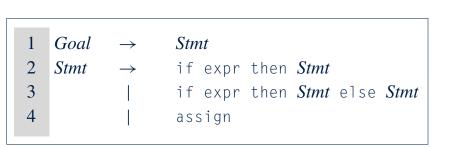


• L12, 13: Next valid step in discovering A is to match terminal symbol x.

- L14, 15: Having recognized β , if current word matches lookahead a, reduce β to A.
- L16, 17: Accept if input exhausted and what's recognized reducible to start var. S.
- L20, 21: Record consequence of a reduction to non-terminal v from state i

82 of 96

BUP: Discovering Ambiguity (1)



- Calculate $CC = \{cc_0, cc_1, \ldots, \}$
- Calculate the transition function $\delta:\mathcal{CC}\times\Sigma\to\mathcal{CC}$

BUP: Discovering Ambiguity (2.1)

LASSONDE

Resulting transition table:

	Item	Goal	Stmt	if	expr	then	else	assign	eof
0	cc_0	ø	cc_1	cc_2	ø	ø	ø	CC3	ø
1	cc_1	ø	ø	ø	ø	ø	ø	ø	ø
	CC_2	ø	ø	ø	CC_4	Ø	ø	ø	ø
	CC3	ø	ø	ø	ø	Ø	ø	ø	ø
2	CC_4	ø	ø	ø	ø	CC_5	ø	ø	Ø
3	CC_5	ø	cc ₆	cc_7	ø	Ø	ø	CC8	Ø
4	CC ₆	ø	ø	ø	ø	ø	CC9	ø	ø
	CC7	ø	ø	ø	CC_{10}	Ø	ø	ø	ø
	CC8	ø	ø	ø	ø	ø	ø	ø	Ø
5	CC9	ø	cc_{11}	CC_2	ø	Ø	ø	CC3	ø
	CC_{10}	ø	ø	ø	ø	cc_{12}	ø	ø	ø
6	cc_{11}	ø	ø	ø	ø	ø	ø	ø	ø
	cc_{12}	ø	CC_{13}	CC7	ø	Ø	ø	CC8	ø
7	cc_{13}	ø	ø	ø	ø	Ø	CC_{14}	ø	ø
8	cc_{14}	ø	cc_{15}	cc_7	ø	Ø	ø	CC8	ø
9	CC_{15}	ø	ø	ø	ø	ø	ø	ø	ø

85 of 96

BUP: Discovering Ambiguity (2.2.1)

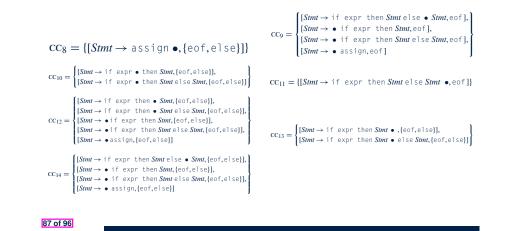
Resulting canonical collection \mathcal{CC} :

$$cc_{0} = \begin{cases} [Goal \rightarrow Stmt, eof] & [Smt \rightarrow if expr then Stmt, eof] \\ [Smt \rightarrow issign, eof] & [Smt \rightarrow if expr then Stmt, eof] \end{cases}$$

$$cc_{0} = \begin{cases} [Stmt \rightarrow if \bullet expr then Stmt, eof], \\ [Stmt \rightarrow if \bullet expr then Stmt, eof], \\ [Stmt \rightarrow if expr \bullet then Stmt, eof], \\ [Stmt \rightarrow if expr \bullet then Stmt, eof], \\ [Stmt \rightarrow if expr \bullet then Stmt, eof], \\ [Stmt \rightarrow if expr \bullet then Stmt, eof], \\ [Stmt \rightarrow if expr \bullet then Stmt, eof], \\ [Stmt \rightarrow if expr \bullet then Stmt, eof], \\ [Stmt \rightarrow if expr then Stmt, eof], \\ [Stmt$$

BUP: Discovering Ambiguity (2.2.2)

Resulting canonical collection CC:



LASSONDE

LASSONDE

BUP: Discovering Ambiguity (3)

Consider cc₁₃

 $cc_{13} = \begin{cases} [Stmt \rightarrow if expr then Stmt \bullet, \{eof, else\}], \\ [Stmt \rightarrow if expr then Stmt \bullet else Stmt, \{eof, else\}] \end{cases}$

Q. What does it mean if the current word to consume is else?A. We can either *shift* (then expecting to match another *Stmt*) or *reduce* to a *Stmt*.

Action [13, else] cannot hold shift and reduce simultaneously. \Rightarrow This is known as the shift-reduce conflict.

• Consider another scenario:

$$CC_{i} = \left\{ \begin{array}{c} [\mathbf{A} \to \gamma \delta \bullet, \ \mathbf{a}], \\ [\mathbf{B} \to \gamma \delta \bullet, \ \mathbf{a}] \end{array} \right\}$$

Q. What does it mean if the current word to consume is a? **A**. We can either *reduce* to *A* or *reduce* to *B*. *Action*[*i*, *a*] cannot hold *A* and *B* simultaneously. \Rightarrow This is known as the *reduce-reduce conflict*.

Index (1)

LASSONDE

Parser in Context

Context-Free Languages: Introduction

- CFG: Example (1.1)
- CFG: Example (1.2)
- CFG: Example (1.2)
- CFG: Example (2)
- CFG: Example (3)
- CFG: Example (4)
- CFG: Example (5.1) Version 1
- CFG: Example (5.2) Version 1
- CFG: Example (5.3) Version 1

Index (3)

- CFG: Leftmost Derivations (2)
- CFG: Rightmost Derivations (2)
- CFG: Parse Trees vs. Derivations (1)
- CFG: Parse Trees vs. Derivations (2)
- CFG: Ambiguity: Definition
- CFG: Ambiguity: Exercise (1)
- CFG: Ambiguity: Exercise (2.1)
- CFG: Ambiguity: Exercise (2.2)
- CFG: Ambiguity: Exercise (2.3)
- **Discovering Derivations**
- TDP: Discovering Leftmost Derivation

91 of 96

Index (2)

- CFG: Example (5.4) Version 1
- CFG: Example (5.5) Version 2
- CFG: Example (5.6) Version 2
- CFG: Example (5.7) Version 2
- CFG: Formal Definition (1)
- CFG: Formal Definition (2): Example
- CFG: Formal Definition (3): Example
- Regular Expressions to CFG's
- DFA to CFG's

- CFG: Leftmost Derivations (1)
- CFG: Rightmost Derivations (1)

- Index (4)
- TDP: Exercise (1)
- TDP: Exercise (2)
- Left-Recursions (LF): Direct vs. Indirect
- TDP: (Preventively) Eliminating LRs
- CFG: Eliminating *e*-Productions (1)
- CFG: Eliminating *e*-Productions (2)
- Backtrack-Free Parsing (1)
- The first Set: Definition
- The first Set: Examples
- Computing the first Set
- Computing the first Set: Extension
- 92 of 96

Index (5)

Extended	first	Set:	Examp	les
----------	-------	------	-------	-----

Is the first Set Sufficient?

The follow Set: Examples

Computing the follow Set

Backtrack-Free Grammar

TDP: Lookahead with One Symbol

Backtrack-Free Grammar: Exercise

Backtrack-Free Grammar: Left-Factoring

Left-Factoring: Exercise

TDP: Terminating and Backtrack-Free

Backtrack-Free Parsing (2.1)

93 of 96

Index (7)

LR(1) Items: Example (1.1)

LR(1) Items: Example (1.2)

LR(1) Items: Example (1.3)

LR(1) Items: Example (2)

Canonical Collection (CC) vs. LR(1) items

Constructing CC: The closure Procedure (1)

Constructing CC: The closure Procedure (2.1)

Constructing CC: The goto Procedure (1)

Constructing CC: The goto Procedure (2)

Constructing CC: The Algorithm (1)

Constructing CC: The Algorithm (2.1)

95 of 96

Index (6)

Backtrack-Free Parsing (2.2)

LL(1) Parser: Exercise

BUP: Discovering Rightmost Derivation

BUP: Discovering Rightmost Derivation (1)

BUP: Discovering Rightmost Derivation (2)

BUP: Example Tracing (1)

BUP: Example Tracing (2.1)

BUP: Example Tracing (2.2)

BUP: Example Tracing (2.3)

LR(1) Items: Definition

LR(1) Items: Scenarios

Index (8)

- **Constructing** CC: The Algorithm (2.2)
- **Constructing** *CC***: The Algorithm (2.3)**
- **Constructing** *CC***: The Algorithm (2.4)**
- Constructing Action and Goto Tables (1)
- Constructing Action and Goto Tables (2)
- BUP: Discovering Ambiguity (1)
- **BUP: Discovering Ambiguity (2.1)**
- BUP: Discovering Ambiguity (2.2.1)
- **BUP: Discovering Ambiguity (2.2.2)**
- **BUP: Discovering Ambiguity (3)**

94 of 96

iscovering Rightmos