
Math Review: Logic, Sets, Relations

EECS4302 A:
Compilers and Interpreters

Summer 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Background for Self-Study

● Topics of sets and relations were covered in EECS1019/1090.
● Slide 3 to Slide 23 contain what you should recall.

2 of 26

Propositional Logic (1)

● A proposition is a statement of claim that must be of either
true or false, but not both.

● Basic logical operands are of type Boolean: true and false.
● We use logical operators to construct compound statements.

○ Unary logical operator: negation (¬)
p ¬p

true false
false true

○ Binary logical operators: conjunction (∧), disjunction (∨),
implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

p q p ∧ q p ∨ q p⇒ q p ⇐⇒ q p ≡ q
true true true true true true true
true false false true false false false
false true false true true false false
false false false false true true true

3 of 26

Propositional Logic: Implication (1)
● Written as p⇒ q [pronounced as “p implies q”]

○ We call p the antecedent, assumption, or premise.
○ We call q the consequence or conclusion.

● Compare the truth of p⇒ q to whether a contract is honoured :
○ antecedent/assumption/premise p ≈ promised terms [e.g., salary]
○ consequence/conclusion q ≈ obligations [e.g., duties]

● When the promised terms are met, then the contract is:
○ honoured if the obligations fulfilled. [(true⇒ true) ⇐⇒ true]
○ breached if the obligations violated. [(true⇒ false) ⇐⇒ false]

● When the promised terms are not met, then:
○ Fulfilling the obligation (q) or not (¬q) does not breach the

contract.
p q p⇒ q

false true true
false false true

4 of 26

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing p⇒ q:
○ q if p

q is true if p is true
○ p only if q

If p is true, then for p⇒ q to be true, it can only be that q is also true.
Otherwise, if p is true but q is false, then (true⇒ false) ≡ false.

Note. To prove p ≡ q, prove p ⇐⇒ q (pronounced: “p if and only if q”):
● p if q [p⇐ q ≡ q ⇒ p]
● p only if q [p⇒ q]

○ p is sufficient for q [similar to q if p]
For q to be true, it is sufficient to have p being true.

○ q is necessary for p [similar to p only if q]
If p is true, then it is necessarily the case that q is also true.
Otherwise, if p is true but q is false, then (true⇒ false) ≡ false.

○ q unless ¬p [When is p⇒ q true?]
If q is true, then p⇒ q true regardless of p.
If q is false, then p⇒ q cannot be true unless p is false.

5 of 26

Propositional Logic: Implication (3)

Given an implication p⇒ q, we may construct its:
● Inverse: ¬p⇒ ¬q [negate antecedent and consequence]
● Converse: q ⇒ p [swap antecedent and consequence]
● Contrapositive: ¬q ⇒ ¬p [inverse of converse]

6 of 26

Propositional Logic (2)
● Axiom: Definition of⇒

p⇒ q ≡ ¬p ∨ q
● Theorem: Identity of⇒

true⇒ p ≡ p
● Theorem: Zero of⇒

false⇒ p ≡ true
● Axiom: De Morgan

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

● Axiom: Double Negation

p ≡ ¬ (¬ p)

● Theorem: Contrapositive

p⇒ q ≡ ¬q ⇒ ¬p
7 of 26

Predicate Logic (1)

● A predicate is a universal or existential statement about
objects in some universe of disclosure.

● Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.

● We use the following symbols for common numerical ranges:
○ Z: the set of integers [−∞, . . . ,−1,0,1, . . . ,+∞]
○ N: the set of natural numbers [0,1, . . . ,+∞]

● Variable(s) in a predicate may be quantified :
○ Universal quantification :

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.

○ Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.

8 of 26

Predicate Logic (2.1): Universal Q. (∀)
● A universal quantification has the form (∀X ● R ⇒ P)

○ X is a comma-separated list of variable names
○ R is a constraint on types/ranges of the listed variables
○ P is a property to be satisfied

● For all (combinations of) values of variables listed in X that
satisfies R, it is the case that P is satisfied.
○ ∀i ● i ∈ N⇒ i ≥ 0 [true]
○ ∀i ● i ∈ Z⇒ i ≥ 0 [false]
○ ∀i , j ● i ∈ Z ∧ j ∈ Z⇒ i < j ∨ i > j [false]

● Proof Strategies
1. How to prove (∀X ● R ⇒ P) true?

● Hint. When is R ⇒ P true? [true⇒ true, false⇒]
● Show that for all instances of x ∈ X s.t. R(x), P(x) holds.
● Show that for all instances of x ∈ X it is the case ¬R(x).

2. How to prove (∀X ● R ⇒ P) false?
● Hint. When is R ⇒ P false? [true⇒ false]
● Give a witness/counterexample of x ∈ X s.t. R(x), ¬P(x) holds.

9 of 26

Predicate Logic (2.2): Existential Q. (∃)
● An existential quantification has the form (∃X ● R ∧P)

○ X is a comma-separated list of variable names
○ R is a constraint on types/ranges of the listed variables
○ P is a property to be satisfied

● There exist (a combination of) values of variables listed in X
that satisfy both R and P.
○ ∃i ● i ∈ N ∧ i ≥ 0 [true]
○ ∃i ● i ∈ Z ∧ i ≥ 0 [true]
○ ∃i , j ● i ∈ Z ∧ j ∈ Z ∧ (i < j ∨ i > j) [true]

● Proof Strategies
1. How to prove (∃X ● R ∧P) true?

● Hint. When is R ∧ P true? [true ∧ true]
● Give a witness of x ∈ X s.t. R(x), P(x) holds.

2. How to prove (∃X ● R ∧P) false?
● Hint. When is R ∧ P false? [true ∧ false, false ∧]
● Show that for all instances of x ∈ X s.t. R(x), ¬P(x) holds.
● Show that for all instances of x ∈ X it is the case ¬R(x).

10 of 26

Predicate Logic (3): Exercises

● Prove or disprove: ∀x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 0.
All 10 integers between 1 and 10 are greater than 0.

● Prove or disprove: ∀x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1.
Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

● Prove or disprove: ∃x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1.
Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

● Prove or disprove that ∃x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
All integers in the range between 1 and 10 are not greater than 10.

11 of 26

Predicate Logic (4): Switching Quantifications

Conversions between ∀ and ∃:

(∀X ● R ⇒ P) ⇐⇒ ¬(∃X ● R ∧ ¬P)

(∃X ● R ∧P) ⇐⇒ ¬(∀X ● R ⇒ ¬P)

12 of 26

Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross/Cartesian product of
theses sets is a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) ∣ ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}

= { (e1,e2,e3) ∣ e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }

= {
(a,2,$), (a,2,&), (a,4,$), (a,4,&),
(b,2,$), (b,2,&), (b,4,$), (b,4,&)

}

13 of 26

Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}
○ ∅ is the minimum relation (i.e., an empty relation).
○ S × T is the maximum relation (say r1) between S and T ,

mapping from each member of S to each member in T :

{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}

○ {(x ,y) ∣ (x ,y) ∈ S × T ∧ x ≠ 1} is a relation (say r2) that maps only
some members in S to every member in T :

{(2,a), (2,b), (3,a), (3,b)}

14 of 26

Relations (2.1): Set of Possible Relations

● We use the power set operator to express the set of all
possible relations on S and T :

P(S × T)

Each member in P(S × T) is a relation.

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T)

● Or alternatively, we write:
r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T)

15 of 26

Relations (2.2): Exercise
Enumerate {a,b}↔ {1,2,3}.
● Hints:

○ You may enumerate all relations in P({a,b} × {1,2,3}) via their
cardinalities: 0, 1, . . . , ∣{a,b} × {1,2,3}∣.

○ What’s the maximum relation in P({a,b} × {1,2,3})?
{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) }

● The answer is a set containing all of the following relations:
○ Relation with cardinality 0: ∅
○ How many relations with cardinality 1? [(∣{a,b}×{1,2,3}∣1) = 6]
○ How many relations with cardinality 2? [(∣{a,b}×{1,2,3}∣2) = 6×5

2! = 15]

. . .

○ Relation with cardinality ∣{a,b} × {1,2,3}∣:
{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) }

16 of 26

Relations (3.1): Domain, Range, Inverse

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain of r : set of first-elements from r
○ Definition: dom(r) = { d ∣ (d , r ′) ∈ r }
○ e.g., dom(r) = {a,b,c,d ,e, f}

● range of r : set of second-elements from r

○ Definition: ran(r) = { r ′ ∣ (d , r ′) ∈ r }
○ e.g., ran(r) = {1,2,3,4,5,6}

● inverse of r : a relation like r with elements swapped
○ Definition: r−1 = { (r ′,d) ∣ (d , r ′) ∈ r }
○ e.g., r−1 = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}

17 of 26

Relations (3.2): Image

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

relational image of r over set s : sub-range of r mapped by s.

○ Definition: r[s] = { r ′ ∣ (d , r ′) ∈ r ∧ d ∈ s }

○ e.g., r[{a,b}] = {1,2,4,5}

18 of 26

Relations (3.3): Restrictions

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain restriction of r over set ds : sub-relation of r with domain ds.
○ Definition: ds � r = { (d , r ′) ∣ (d , r ′) ∈ r ∧ d ∈ ds }

○ e.g., {a,b} � r = {(a,1), (b,2), (a,4), (b,5)}

● range restriction of r over set rs : sub-relation of r with range rs.

○ Definition: r � rs = { (d , r ′) ∣ (d , r ′) ∈ r ∧ r ′ ∈ rs }

○ e.g., r � {1,2} = {(a,1), (b,2), (d ,1), (e,2)}

19 of 26

Relations (3.4): Subtractions

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain subtraction of r over set ds : sub-relation of r with domain not ds.
○ Definition: ds �− r = { (d , r ′) ∣ (d , r ′) ∈ r ∧ d /∈ ds }

○ e.g., {a,b} �− r = {(c,3), (c,6), (d,1), (e,2), (f,3)}

● range subtraction of r over set rs : sub-relation of r with range not rs.

○ Definition: r �− rs = { (d , r ′) ∣ (d , r ′) ∈ r ∧ r ′ /∈ rs }

○ e.g., r �− {1,2} = {(c,3), (a,4), (b,5), (c,6), (f ,3)}

20 of 26

Functions (1): Functional Property
● A relation r on sets S and T (i.e., r ∈ S↔ T) is also a function

if it satisfies the functional property :
isFunctional(r)
⇐⇒
∀s, t1, t2 ● (s ∈ S ∧ t1 ∈ T ∧ t2 ∈ T) ⇒ ((s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)

○ That is, in a function, it is forbidden for a member of S to map to
more than one members of T .

○ Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.

● e.g., Say S = {1,2,3} and T = {a,b}, which of the following
relations satisfy the above functional property?
○ S × T [No]

Witness 1: (1,a), (1,b); Witness 2: (2,a), (2,b); Witness 3: (3,a), (3,b).
○ (S × T) ∖ {(x , y) ∣ (x , y) ∈ S × T ∧ x = 1} [No]

Witness 1: (2,a), (2,b); Witness 2: (3,a), (3,b)
○ {(1,a), (2,b), (3,a)} [Yes]
○ {(1,a), (2,b)} [Yes]

21 of 26

Functions (2.1): Total vs. Partial

Given a relation r ∈ S↔ T
● r is a partial function if it satisfies the functional property :

r ∈ S ↛ T ⇐⇒ (isFunctional(r) ∧ dom(r) ⊆ S)

Remark. r ∈ S ↛ T means there may (or may not) be s ∈ S s.t.
r(s) is undefined (i.e., r[{s}] = ∅).
○ e.g., { {(2,a), (1,b)},{(2,a), (3,a), (1,b)} } ⊆ {1,2,3} ↛ {a,b}

● r is a total function if there is a mapping for each s ∈ S:

r ∈ S→ T ⇐⇒ (isFunctional(r) ∧ dom(r) = S)

Remark. r ∈ S→ T implies r ∈ S ↛ T , but not vice versa. Why?
○ e.g., {(2,a), (3,a), (1,b)} ∈ {1,2,3}→ {a,b}
○ e.g., {(2,a), (1,b)} /∈ {1,2,3}→ {a,b}

22 of 26

Functions (2.2):
Relation Image vs. Function Application
● Recall: A function is a relation, but a relation is not necessarily a function.
● Say we have a partial function f ∈ {1,2,3} ↛ {a,b}:

f = {(3,a), (1,b)}

○ With f wearing the relation hat, we can invoke relational images :

f [{3}] = {a}
f [{1}] = {b}
f [{2}] = ∅

Remark. ⇒ ∣f [{v}]∣ ≤ 1 ∵
● each member in dom(f) is mapped to at most one member in ran(f)
● each input set {v} is a singleton set

○ With f wearing the function hat, we can invoke functional applications :

f (3) = a
f (1) = b
f (2) is undefined

23 of 26

Index (1)

Background for Self-Study

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications
24 of 26

Index (2)

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

25 of 26

Index (3)
Functions (2.2):
Relation Image vs. Function Application

26 of 26

	Background for Self-Study
	Propositional Logic (1)
	Propositional Logic: Implication (1)
	Propositional Logic: Implication (2)
	Propositional Logic: Implication (3)
	Propositional Logic (2)
	Predicate Logic (1)
	Predicate Logic (2.1): Universal Q. ()
	Predicate Logic (2.2): Existential Q. ()
	Predicate Logic (3): Exercises
	Predicate Logic (4): Switching Quantifications
	Set of Tuples
	Relations (1): Constructing a Relation
	Relations (2.1): Set of Possible Relations
	Relations (2.2): Exercise
	Relations (3.1): Domain, Range, Inverse
	Relations (3.2): Image
	Relations (3.3): Restrictions
	Relations (3.4): Subtractions
	Functions (1): Functional Property
	Functions (2.1): Total vs. Partial
	Functions (2.2): Relation Image vs. Function Application

