Math Review: Logic, Sets, Relations

EECS4302 A:
Compilers and Interpreters

YORKQI

CHEN-WFEI WANG



http://www.eecs.yorku.ca/~jackie

Background for Self-Study

» Topics of sets and relations were covered in EECS1019/1090.
* Slide B to Slide 3 contain what you should recall.




Propositional Logic (1)

e A proposition is a statement of claim that must be of either
frue or false, but not both.

¢ Basic logical operands are of type Boolean: frue and false.
* We use logical operators to construct compound statements.
o Unary logical operator: negation (-)

o Binary logical operators: conjunction (), disjunction (v),

e [ -» |
true false
false true

implication (=), equivalence (=), and if-and-only-if ( < ).

| p | g [[prqglpvglp=qg|pPp<—=q|p=q]
true true true true true true true
true | false || false | true false false false
false | true || false | true true false false
false | false || false | false true true true




I

Propositional Logic: Implication (1) LASSONDE

o Writtenas p= q

[ pronounced as “p implies q” ]
o We call p the antecedent, assumption, or premise.
o We call g the consequence or conclusion.

Compare the truth of p = g to whether a contract is honoured:

o antecedent/assumption/premise p ~ promised terms [ e.g., salary ]
o consequence/conclusion g ~ obligations [ e.g., duties ]

When the promised terms are met, then the contract is:

o honoured if the obligations fulfilled. [ (true = true) < true]
o breached if the obligations violated. [ (true = false) <— false]

When the promised terms are not met, then:

o Fulfilling the obligation (q) or not (~q) does not breach the

contract.
. p | g [[p=4]
false | true frue
false | false frue




I

Propositional Logic: Implication (2) LASSONDE

There are alternative, equivalent ways to expressing p = q:
o qifp
qis trueif pis true
ponlyif g
If pis true, then for p = g to be true, it can only be that g is also frue.
Otherwise, if p is true but g is false, then (frue = false) = false.
Note. To prove p = q, prove p < q (pronounced: “p if and only if g”):

[e]

e pifg [p=g=qg=p]

e ponlyifq [p=q]

o pis sufficient for g [ similarto qif p]
For g to be frue, it is sufficient to have p being true.

o g is necessary for p [ similar to ponly if g ]

If pis true, then it is necessarily the case that g is also true.
Otherwise, if pis true but q is false, then (frue = false) = false.

g unless —-p [ Whenis p = g true? ]
If g is true, then p = q true regardless of p.
If g is false, then p = q cannot be frue unless p is false.

o




I

Propositional Logic: Implication (3) LASSONDE

Given an implication p = g, we may construct its:
e Inverse: -p = -q [ negate antecedent and consequence |
e Converse: g =p [ swap antecedent and consequence |

e Contrapositive: -q = -p [inverse of converse]




I

Propositional Logic (2) LASSONDE

Axiom: Definition of =

_ p=qg=-pvqg
Theorem: |dentity of =

true=p=p
Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(prq) = -pv-q
-(pvaq) = -pr-q
e Axiom: Double Negation
p=-(-p)

Theorem: Contrapositive
p = q = —\q = —|p



Predicate Logic (1) v

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

¢ Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
¢ We use the following symbols for common numerical ranges:
o Z: the set of integers [-o00,...,=1,0,1,... +00]
o N: the set of natural numbers [0,1,...,+00]
e Variable(s) in a predicate may be quantified:
o Universal quantification :
All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.
o Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.



I

Predicate Logic (2.1): Universal Q. (V)

* A universal quantification has the form (VX e R = P)
o X is a comma-separated list of variable names
o R is a constraint on types/ranges of the listed variables
o Pis a property to be satisfied
e For all (combinations of) values of variables listed in X that
satisfies R, it is the case that P is satisfied.

oVieieN=i>0 [ true]
oVieijeZ=1i>0 [ false ]
oVijjeienjel=i<jvi>j [ false ]

* Proof Strategies
1. How to prove (VX e R = P) true?
e Hint. When is R = P true? [ true = true, false = _]
o Show that for all instances of x € X s.t. R(x), P(x) holds.
o Show that for all instances of x € X it is the case —R(x).
2. How to prove (VX e R = P) false?
¢ Hint. When is R = P false? [ true = false ]

_ * Give a witness/counterexample of x ¢ X s.t. R(x), -P(x) holds.



S
=

Predicate Logic (2.2): Existential Q. (3) L

e An existential quantification has the form (3X ¢ RAP)

o X is a comma-separated list of variable names
o R is a constraint on types/ranges of the listed variables

o Pis a property to be satisfied
e There exist (a combination of) values of variables listed in X

that satisfy both R and P.

o JjieieNAi>O0 [ true ]

o JdjieieZAi>0 [ true]
[ true]

o JijeieZAjeZA(i<jVi>])
e Proof Strategies
1. How to prove (3X e R A P) true?
e Hint. Whenis R A P true? [ true A true]
e Give a witness of x € X s.t. R(x), P(x) holds.
2. How to prove (31X e R A P) false?
[ true A false, false A _]

e Hint. When is R A P false?
o Show that for all instances of x € X s.t. R(x), -P(x) holds.

¢ Show that for all instances of x € X it is the case -R(x).
_



I

Predicate Logic (3): Exercises

Prove or disprove: Vx e (x€eZA1<x<10)= x>0.
All 10 integers between 1 and 10 are greater than 0.
Prove or disprove: Vx e (x€eZA1<x<10)=x>1.

Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

e Prove or disprove: 3x e (xeZA1<x<10)Aax>1.

Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

Prove or disprove that 3x e (x€ZA1<x<10)Ax>107?
All integers in the range between 1 and 10 are not greater than 10.

1 oron



Predicate Logic (4): Switching Quantificatio

Conversions between Vv and 3:

(VX ° R=>P) = —|(E|Xo R/\—|P)
(IX ¢« RAP) < (VX ¢« R=-P)




I

Set of Tu pleS LASSONDE

Given nsets Sy, S, ..., Sy, a cross/Cartesian product of
theses sets is a set of n-tuples.

Each n-tuple (eq, eo,...,€p) contains n elements, each of
which a member of the corresponding set.

SixSyx---xSy={(ey,6€2,...,6n) | €€ Sjanl1<i<n}

e.g., {a, b} x{2,4} x {$,&} is a set of triples:
{a,b} x{2,4} x {§, &}
{(e1,e2,€3) |e1e{ablnexec{2,4} neze{$ &} }

[ (a2,%),(a,2,&),(a,4,%),(a,4,&),
) (b,2,%),(b,2,&),(b,4,$),(b,4,&)

130178



I

Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T.

e.g.,Say S={1,2,3} and T = {a, b}

o @ is the minimum relation (i.e., an empty relation).

° is the maximum relation (say ry) between S and T,
mapping from each member of S to each memberin T:

{(1,2),(1,b),(2,2),(2,0),(3,a),(3,0)}

o {(x,¥) ] (x,¥) e Sx T arx+1}is arelation (say r.) that maps only
some members in S to every member in T:

{(2,a),(2,0),(3,a),(3,b)}

14 ot o8



I

Relations (2.1): Set of Possible Relations  [sono:

e We use the power set operator to express the set of all
possible relations on S and T:

P(SxT)
Each member in P(S x T) is a relation.

* To declare a relation variable r, we use the colon (:) symbol to
mean set membership:

r:P(SxT)
e Or alternatively, we write:
r:S« T
where the set S < T is synonymous to the set P(Sx T)

15 0178



I

Relations (2.2): Exercise
Enumerate {a,b} < {1,2,3}.
e Hints:
o You may enumerate all relations in P({a, b} x {1,2,3}) via their
cardinalities: 0,1, ..., |[{a, b} x {1,2,3}.

o What's the maximum relation in P({a, b} x {1,2,3})?
{(a1),(a2),(a3),(b,1),(b,2),(b,3) }
e The answer is a set containing all of the following relations:

o Relation with cardinality 0: @
o How many relations with cardinality 1? [ (Haor123)) -~ g ]

o How many relations with cardinality 2? [ (H{@2}<[1:28}) = &5 _ 15

o Relation with cardinality |{a, b} x {1,2,3}|:
{(a1),(a,2),(a3),(b,1),(b,2),(b,3) }



I

Relations (3.1): Domain, Range, Inverse  [isonc:

Given a relation
r={(@a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

* [ domain of r|: set of first-elements from r
o Definition: dom(r)={ d|(d,r')er}
o e.g.,dom(r)={a,b,c,d, e,f}

e | range of r |: set of second-elements from r

o Definition: ran(r) = { r'| (d,r")er }
o e.g.,ran(r)={1,2,3,4,56}

° : a relation like r with elements swapped
o Definition: r' = { (r',d) | (d,r')er}
o eg.,r'={(1,a),(20b),(3c)(4a),(50b),(6,c),(1,d),(2e),(3,}

10178



I

Relations (3.2): Image LASSONDE

Given a relation
r=1{(@ 1), (b 2),(c,3), (a4), (b 5),(c,6),(d 1), (e 2), (f, 3)}
’ relational image of r over set s ‘: sub-range of r mapped by s.

o Definition: r[s]={r"|(d,r')erndes}
o eg., r[{ab}]={1,2,4,5}

8 o1 o8



I

Relations (3.3): Restrictions

Given a relation
r=1{(a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

° ] domain restriction of r over set ds |: sub-relation of r with domain ds.
o Definition: ds<ir={ (d,r")| (d,r')erndeds}
© eg7 {a7 b} <] r = {(a7 1 )7 (b72)7 (a’4)7 (b75)}

° ’ range restriction of r over set rs ‘: sub-relation of r with range rs.

o Definition: ri>rs={ (d,r') | (d,r')yernr'ers}
o eg.,re{1,2}={(a1),(b2),(d1),(e2)}

19 o1 o8



I

Relations (3.4): Subtractions

Given a relation
r=1{(a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

° ] domain subtraction of r over set ds \: sub-relation of r with domain not ds.
o Definition: ds<ir={ (d,r") | (d,r')ernd¢ds}
© eg7 {a7 b} <]r = {(073)7 (c7 6)7 (d7 1 )7 (e72)7 (f73)}

° ’ range subtraction of r over set rs ‘: sub-relation of r with range not rs.

o Definition: re=rs={ (d,r')| (d,r'yernr ¢rs}
o eg, re{1,2}={(c3),(a4),(b5),(c6),(f,3)}

ot o8



I

Functions (1): Functional Property Retoue

e Arelationronsets Sand T (i.e.,, r ¢ S<> T)is also a function

if it satisfies the functional property:
isFunctional (r)

<
Vs, ti,to e (SeSAteTAbeT)=((s,ti)ern(s,b)er=1t=b)
o Thatis, in a function, it is forbidden for a member of S to map to
more than one members of T.
o Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.
e e.g.,Say S={1,2,3} and T = {a, b}, which of the following
relations satisfy the above functional property?

o SxT [No]
Witness 1: (1, a), (1,b); Witness 2: (2, a), (2,b); Witness 3: (3, a), (3, b).

o (SxTN{(x,y) | (x,y)eSxTarx=1} [No]
Witness 1: (2, a), (2, b); Witness 2: (3, a), (3,b)

o {(1,a),(2,b)} [ Yes]



I

Functions (2.1): Total vs. Partial LASSONDE

Given arelationre S« T
e ris a partial function if it satisfies the functional property:

<= (isFunctional (r) Adom(r)c S)

Remark. r ¢ S » T means there may (or may not) be s¢ S s.t.
r(s) is undefined (i.e., r[{s}] = @).
°eg.{{(2a),1,b)}.{(2a),3a)(1,b)}}<{1,23}»{ab}

e ris a total function if there is a mapping for each s e S:

<= (isFunctional (r) Adom(r) =S)

Remark. r ¢ S— T implies r ¢ S » T, but not vice versa. Why?
o eg., {(2,a),(3,a),(1,b)} €{1,2,3} - {a,b}
o eg.,{(2,a),(1,b)} ¢{1,2,3} > {a, b}

v oron



Functions (2.2): LASSONDE

Relation Image vs. Function Application

® Recall: A function is a relation, but a relation is not necessarily a function.
® Say we have a partial function f ¢ {1,2,3} - {a, b}:
f= {(3, a)7 (17b)}

o With f wearing the relation hat, we can invoke relational images :

fli{3y] = {a
fi{13] = {b}
fl{2}] = o

Remark. = |f[{v}]| <1
o each member in dom(f) is mapped to at most one member in ran(f)
e each input set {v} is a singleton set

o With f wearing the function hat, we can invoke functional applications :

f3) = a
f1)y = b
f(2) is undefined



Index (1)

ackground for selr-otu
Propositional Logic (1)
Propositional Logic: Tmplication (1)
Propositional Logic: Tmplication (2]
Propositional Logic: Implication (3)
Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1); Universal 0. (V)
Predicate Logic (2.2): Existential O (J)
Predicate Logic (3); EXercises
Predicate Logic (4] Switching Quantificafions

27\ W) W15




Index (2)

» J S
[Relations (1): Cons[ruchng a Relation
elations (Z2.1): oet or Fossible helation

[Relations (2.2): Exercis¢g|
[Relations (3.7): Domain, Range, Inversel

elafions (3.2): Tma
[Relations (3.3): Restrictions
elafions (3.4): Subtraction
unctions (1): Functional Proper
uncfions (2.1): Total vs. Parfia

8 ot o8



Index (3) ngsgmﬁgﬂs
fFunctions (2.2): |
[Relation Tmage vs. Function Application|

ZiWe) W45



	Background for Self-Study
	Propositional Logic (1)
	Propositional Logic: Implication (1)
	Propositional Logic: Implication (2)
	Propositional Logic: Implication (3)
	Propositional Logic (2)
	Predicate Logic (1)
	Predicate Logic (2.1): Universal Q. ()
	Predicate Logic (2.2): Existential Q. ()
	Predicate Logic (3): Exercises
	Predicate Logic (4): Switching Quantifications
	Set of Tuples
	Relations (1): Constructing a Relation
	Relations (2.1): Set of Possible Relations
	Relations (2.2): Exercise
	Relations (3.1): Domain, Range, Inverse
	Relations (3.2): Image
	Relations (3.3): Restrictions
	Relations (3.4): Subtractions
	Functions (1): Functional Property
	Functions (2.1): Total vs. Partial
	Functions (2.2): Relation Image vs. Function Application

