

LASSONDE

Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 Unary logical operator: negation (¬)

-	· ·
р	$\neg p$
true	false
false	true

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

	р	q	$p \land q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	<i>p</i> ≡ <i>q</i>
t	rue	true	true	true	true	true	true
t	rue	false	false	true	false	false	false
fa	alse	true	false	true	true	false	false
fá	alse	false	false	false	true	true	true

3 of 26

• Topics of sets and relations were covered in EECS1019/1090.

Math Review: Logic, Sets, Relations

EECS4302 A: Compilers and Interpreters

Summer 2025

CHEN-WEI WANG

• Slide 3 to Slide 23 contain what you should recall.

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$ [pronounced as "p implies q"]
 - $\circ~$ We call p the antecedent, assumption, or premise.
 - We call *q* the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - o antecedent/assumption/premise p ≈ promised terms [e.g., salary]
 - consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - \circ honoured if the obligations fulfilled. [(true \Rightarrow true) \iff true]
 - *breached* if the obligations violated. $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

р	q	$p \Rightarrow q$
false	true	true
false	false	true

Propositional Logic: Implication (2)

There are alternative, equivale	ent ways to expressing $p \Rightarrow q$:	• Axi
 q if p 	she haye to expressing p > qi	
<i>q</i> is <i>true</i> if <i>p</i> is <i>true</i>		• The
 p only if q 		
	a true it can aply be that a is also true	
	the true, it can only be that q is also true. false, then $(true \Rightarrow false) \equiv false$.	• The
Note. To prove $p \equiv q$, prove $p \leftarrow$	\Rightarrow q (pronounced: "p if and only if q"):	
• p if q	$[p \leftarrow q \equiv q \Rightarrow p]$	• Axi
• p only if q	$[p \Rightarrow q]$	
 <i>p</i> is sufficient for <i>q</i> 	[similar to q if p]	
For <i>q</i> to be <i>true</i> , it is sufficient	to have <i>p</i> being <i>true</i> .	
 q is necessary for p 	[similar to p only if q]	• Axi
If p is true, then it is necessar	ily the case that q is also true.	
	<i>false</i> , then $(true \Rightarrow false) \equiv false$.	
$\circ q$ unless $\neg p$	[When is $p \Rightarrow q$ true?]	• The
If q is true, then $p \Rightarrow q$ true re	gardless of p.	-
If q is <i>false</i> , then $p \Rightarrow q$ canned	t be <i>true</i> unless <i>p</i> is <i>false</i> .	
5 of 26	-	7 of 26

Propositional Logic (2)

- **Axiom**: Definition of \Rightarrow
- $p \Rightarrow q \equiv \neg p \lor q$ **Theorem**: Identity of \Rightarrow

$$true \Rightarrow p \equiv p$$

 $false \Rightarrow p \equiv true$

LASSONDE

LASSONDE

Axiom: De Morgan

Theorem: Zero of \Rightarrow

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

Theorem: Contrapositive

 $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$

Propositional Logic: Implication (3)

LASSONDE

LASSONDE

Given an implication $p \Rightarrow q$, we may construct its:

- Inverse: $\neg p \Rightarrow \neg q$
- [negate antecedent and consequence]
- Converse: $q \Rightarrow p$
- [swap antecedent and consequence]
- Contrapositive: $\neg q \Rightarrow \neg p$
- - [inverse of converse]

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:

 Z: the set of integers 	$[-\infty,\ldots,-1,0,1,\ldots,+\infty]$
$\circ \mathbb{N}$: the set of natural numbers	$[0,1,\ldots,+\infty]$

• Variable(s) in a predicate may be *quantified*:

• Universal quantification : All values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• *Existential quantification* :

Some value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

6 of 26

Predicate Logic (2.1): Universal Q. (∀)

LASSONDE

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- *For all* (combinations of) values of variables listed in *X* that satisfies *R*, it is the case that *P* is satisfied.

$\circ \forall i \bullet i \in \mathbb{N} \implies i \ge 0$	[true]
$\circ \forall i \bullet i \in \mathbb{Z} \implies i \ge 0$	[false]
° ∀i.i • i∈ℤ∧i∈ℤ⇒i <i∨i>i</i∨i>	[false]

- Proof Strategies
 - **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?
 - <u>Hint</u>. When is $R \Rightarrow P$ true? [true \Rightarrow true, false \Rightarrow]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), P(x) holds.
 - Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.
 - **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ *false*?
 - <u>Hint</u>. When is $R \Rightarrow P$ false? [true \Rightarrow false]
- Give a **witness/counterexample** of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1. Integer 1 (a witness/counterexample) in the range between 1 and 10 is <u>not</u> greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are *not* greater than 10.

11 of 26

Predicate Logic (2.2): Existential Q. (∃)

- An *existential quantification* has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - *P* is a *property* to be satisfied
- *There exist* (a combination of) values of variables listed in *X* that satisfy both *R* and *P*.

$\circ \exists i \bullet i \in \mathbb{N} \land i \ge 0$	[true]
$\circ \exists i \bullet i \in \mathbb{Z} \land i \ge 0$	[true]
$\circ \exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)$	[true]

- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is $R \land P$ true? [true \land true]
 - Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
 - **2.** How to prove $(\exists X \bullet R \land P)$ false?
 - <u>Hint</u>. When is $R \wedge P$ false? [true \wedge false, false, \wedge _]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

Predicate Logic (4): Switching Quantifications

Conversions between \forall and \exists :

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P) (\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

Set of Tuples

Given *n* sets $S_1, S_2, ..., S_n$, a *cross/Cartesian product* of theses sets is a set of *n*-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \ldots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples:

$$\{a, b\} \times \{2, 4\} \times \{\$, \&\}$$

$$= \left\{ (e_1, e_2, e_3) \mid e_1 \in \{a, b\} \land e_2 \in \{2, 4\} \land e_3 \in \{\$, \&\} \right\}$$

$$= \left\{ (a, 2, \$), (a, 2, \&), (a, 4, \$), (a, 4, \&), \\ (b, 2, \$), (b, 2, \&), (b, 4, \$), (b, 4, \&) \right\}$$

We use the *power set* operator to express the set of *all possible relations* on *S* and *T*:

Relations (2.1): Set of Possible Relations

 $\mathbb{P}(S \times T)$

LASSONDE

LASSONDE

Each member in $\mathbb{P}(S \times T)$ is a relation.

 To declare a relation variable r, we use the colon (:) symbol to mean set membership:

 $r: \mathbb{P}(S \times T)$

• Or alternatively, we write:

$$r: S \leftrightarrow 7$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

15 of 26

Relations (1): Constructing a Relation

A *relation* is a set of mappings, each being an *ordered pair* that maps a member of set S to a member of set T.

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$

- $\circ \emptyset$ is the *minimum* relation (i.e., an empty relation).
- $S \times T$ is the *maximum* relation (say r_1) between *S* and *T*, mapping from each member of *S* to each member in *T*:

 $\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

• $\{(x, y) | (x, y) \in S \times T \land x \neq 1\}$ is a relation (say r_2) that maps only some members in *S* to every member in *T*:

 $\{(2, a), (2, b), (3, a), (3, b)\}$

Relations (2.2): Exercise

Enumerate $\{a, b\} \leftrightarrow \{1, 2, 3\}$.

- Hints:
 - You may enumerate all relations in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$ via their *cardinalities*: 0, 1, ..., $|\{a, b\} \times \{1, 2, 3\}|$.
 - What's the *maximum* relation in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$?

$$\{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) \}$$

- The answer is a set containing <u>all</u> of the following relations:
 - Relation with cardinality 0: Ø
 - How many relations with cardinality 1? $[(|\{a,b\}\times\{1,2,3\}|)=6]$
 - How many relations with cardinality 2? $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{2}\right] = \frac{6\times5}{2!} = 15$
 - Relation with cardinality $|\{a, b\} \times \{1, 2, 3\}|$:

 $\{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) \}$

16 of 26

. . .

Relations (3.1): Domain, Range, Inverse

Given a relation

- $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$
- *domain* of *r* : set of first-elements from *r*

• Definition: dom
$$(r) = \{ d \mid (d, r') \in r \}$$

- e.g., $dom(r) = \{a, b, c, d, e, f\}$
- *range* of *r* : set of second-elements from *r*
 - Definition: $\operatorname{ran}(r) = \{ r' \mid (d, r') \in r \}$
 - e.g., $ran(r) = \{1, 2, 3, 4, 5, 6\}$
- *inverse* of *r* : a relation like *r* with elements swapped
 - Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$
 - **e.g.**, $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$

17 of 26

Relations (3.3): Restrictions

Given a relation

- $\mathsf{r} = \{(\mathsf{a},\,\mathsf{1}),\,(\mathsf{b},\,\mathsf{2}),\,(\mathsf{c},\,\mathsf{3}),\,(\mathsf{a},\,\mathsf{4}),\,(\mathsf{b},\,\mathsf{5}),\,(\mathsf{c},\,\mathsf{6}),\,(\mathsf{d},\,\mathsf{1}),\,(\mathsf{e},\,\mathsf{2}),\,(\mathsf{f},\,\mathsf{3})\}$
- *domain restriction* of *r* over set *ds*: sub-relation of *r* with domain *ds*.
 Definition: *ds* ⊲ *r* = { (*d*, *r'*) | (*d*, *r'*) ∈ *r* ∧ *d* ∈ *ds* }
 - e.g., $\{a, b\} \triangleleft r = \{(a, 1), (b, 2), (a, 4), (b, 5)\}$
- **range restriction** of r over set rs : sub-relation of r with range rs.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
 - e.g., $r ▷ \{1,2\} = \{(a,1), (b,2), (d,1), (e,2)\}$

19 of 26

Relations (3.2): Image

Relations (3.4): Subtractions

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

relational image of r over set s : sub-range of r mapped by s.

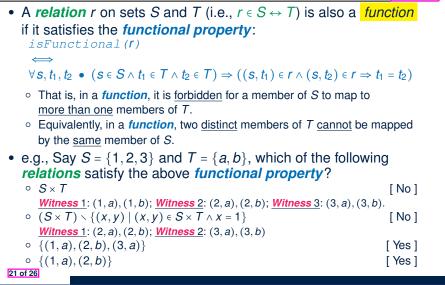
• Definition: $r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$

• e.g., $r[\{a, b\}] = \{1, 2, 4, 5\}$

Given a relation

- $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$
- *domain subtraction* of *r* over set *ds* : sub-relation of *r* with domain <u>not</u> *ds*.
 Definition: *ds* ⊲ *r* = { (*d*, *r'*) | (*d*, *r'*) ∈ *r* ∧ *d* ∉ *ds* }
 e.g., {*a*, *b*} ⊲ *r* = { (*c*, 3), (*c*, 6), (*d*, 1), (*e*, 2), (*f*, 3) }
- **range subtraction** of r over set rs : sub-relation of r with range not rs.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(c,3), (a,4), (b,5), (c,6), (f,3)\}$

Functions (1): Functional Property



LASSONDE

LASSONDE

Relation Image vs. Function Application

- Recall: A *function* is a *relation*, but a *relation* is not necessarily a *function*.
- Say we have a *partial function* f ∈ {1,2,3} → {a,b}:
 f = {(3, a), (1, b)}
 - With f wearing the *relation* hat, we can invoke relational images :

[{3}]	=	{ a
[{1}]	=	{ b
[{2}]	=	Ø

<u>**Remark</u>.** $\Rightarrow |f[\{v\}]| \le 1$::</u>

Functions (2.2):

- each member in dom(f) is mapped to at most one member in ran(f)
- each input set $\{v\}$ is a <u>singleton</u> set

• With f wearing the *function* hat, we can invoke *functional applications* :

23 of 26

Functions (2.1): Total vs. Partial

LASSONDE

Given a **relation** $r \in S \leftrightarrow T$

• *r* is a *partial function* if it satisfies the *functional property*: $r \in S \Rightarrow T \iff (isFunctional(r) \land dom(r) \subseteq S)$

<u>Remark</u>. $r \in S \Rightarrow T$ means there <u>may (or may not) be</u> $s \in S$ s.t. r(s) is *undefined* (i.e., $r[\{s\}] = \emptyset$).

- ∘ e.g., { {(**2**, *a*), (**1**, *b*)}, {(**2**, *a*), (**3**, *a*), (**1**, *b*)} } ⊆ {1, 2, 3}
- *r* is a *total function* if there is a mapping for each $s \in S$:

 $\begin{array}{c} \hline r \in S \rightarrow T \end{array} \iff (\texttt{isFunctional}(\texttt{r}) \land \texttt{dom}(r) = S) \\ \hline \textbf{Remark.} \ r \in S \rightarrow T \ \texttt{implies} \ r \in S \not\Rightarrow T, \ \texttt{but} \ \underline{\texttt{not}} \ \texttt{vice} \ \texttt{versa.} \ \texttt{Why?} \\ \circ \ \texttt{e.g.}, \ \{(\textbf{2}, a), (\textbf{3}, a), (\textbf{1}, b)\} \in \{1, 2, 3\} \rightarrow \{a, b\} \\ \circ \ \texttt{e.g.}, \ \{(\textbf{2}, a), (\textbf{1}, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\} \end{array}$

Index (1)

Background for Self-Study

- Propositional Logic (1)
- Propositional Logic: Implication (1)
- Propositional Logic: Implication (2)
- Propositional Logic: Implication (3)
- Propositional Logic (2)
- Predicate Logic (1)

24 of 26

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

Index (2)

艜

LASSONDE

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

25 of 26

Index (3)

Functions (2.2): Relation Image vs. Function Application