Math Review: Logic, Sets, Relations

EECS4302 A:
Compilers and Interpreters
Summer 2025

UNIVERSITE '
UNIVERSITY

CHEN-WEI WANG

Background for Self-Study LASSONDE

ooooooooooooooooo

¢ Topics of sets and relations were covered in EECS1019/1090.
* Slide[3]to Slide [23|contain what you should recall.

Propositional Logic (1) o

ooooooooooooooooo

e A proposition is a statement of claim that must be of either
frue or false, but not both.

¢ Basic logical operands are of type Boolean: true and false.

¢ We use logical operators to construct compound statements.
o Unary logical operator: negation (-)

P I -, |
true false
false || true

o Binary logical operators: conjunction (), disjunction (v),
implication (=), equivalence (=), and if-and-only-if (<).

. p | g [[prg]pvglp=qg|p<=q|[p=q]
true | true true true true true true
true | false || false | true false false false
false | true || false | true true false false
false | false || false | false true true true

e

Propositional Logic: Implication (1) Mot

ooooooooooooooooo

e Writtenas p=q [pronounced as “p implies q”
o We call p the antecedent, assumption, or premise.

o We call g the consequence or conclusion.

Compare the truth of p = q to whether a contract is honoured:
o antecedent/assumption/premise p ~ promised terms [e.g., salary]
o consequence/conclusion g ~ obligations [e.g., duties]
When the promised terms are met, then the contract is:

o honoured if the obligations fulfilled. [(true = true) — true]
o breached if the obligations violated. [(true = false) < false]
When the promised terms are not met, then:

o Fulfilling the obligation (q) or not (-~q) does not breach the
contract.

| p | g [[p=4q]
false | true true
false | false true

Propositional Logic: Implication (2) I Propositional Logic (2) VT
There are alternative, equivalent ways to expressing p = q: * Axiom: Definition of =
o qifp , p=q=-pvq
qis trueif pis true e Theorem: Identity of =
o ponlyifqg _
If pis true, then for p = q to be frue, it can only be that g is also frue. e Theorem: Zero of = true=p=p
Otherwise, if p is true but q is false, then (true = false) = false.)
Note. To prove p = g, prove p < q (pronounced: “p if and only if g"): false = p = true
o pifg [p<=g=qg=p] e Axiom: De Morgan
e ponlyifg [p=q] _
o pis sufficient for g [similarto g if p] ﬁgp " qg = Phvma
For g to be true, it is sufficient to have p being true. -pvqg) = -PAr-q
o qis necessary for p [similar to p only if g] ¢ Axiom: Double Negation
If pis true, then it is necessarily the case that q is also frue. _
Otherwise, if p is true but q is false, then (true = false) = false. p=-(-p)
° g unless -p [Whenis p = q true?] » Theorem: Contrapositive
If g is true, then p = q true regardless of p.
If g is false, then p = q cannot be true unless p is false. p=q9g=-q=-p
Propositional Logic: Implication (3) o Predicate Logic (1) Lg%
e A predicate is a universal or existential statement about
objects in some universe of disclosure.
¢ Unlike propositions, predicates are typically specified using
Given an implication p = g, we may construct its: variables, each of which declared with some range of values.
¢ We use the following symbols for common numerical ranges:
e Inverse: -p = -q [negate antecedent and consequence |) .
o Z: the set of integers [-o0,...,—-1,0,1,... +00]
 Converse: g =p [swap antecedent and consequence] o N: the set of natural numbers [0,1,...,+00]
e Contrapositive: -qg = -p [inverse of converse] ¢ Variable(s) in a predicate may be quantified:

o Universal quantification :
All values that a variable may take satisfy certain property.
e.g., Given that / is a natural number, i is always non-negative.
o Existential quantification :
Some value that a variable may take satisfies certain property.

e.g., Given that i is an integer, i can be negative.
8 of 26!

——— e

\wy

Predicate Logic (2.1): Universal Q. (V)

* A universal quantification has the form (VX ¢ R= P)
o X is a comma-separated list of variable names
o Ris a constraint on types/ranges of the listed variables
o Pis a property to be satisfied
e For all (combinations of) values of variables listed in X that
satisfies R, it is the case that P is satisfied.

—

ASSONDE

ooooooooooooooooo

oViejeN=i>0 [true]
oViejeZ=1i>0 [false]
oVijeieZAjel=i<jvi>] [false]

e Proof Strategies
1. How to prove (VX o R= P) frue?
e Hint. When is R = P true? [true = true, false = _]
e Show that for all instances of x € X s.t. R(x), P(x) holds.
o Show that for all instances of x € X it is the case -R(x).
2. How to prove (VX e R = P) false?
e Hint. When is R = P false? [true = false]

o Give a witness/counterexample of x ¢ X s.t. R(x), -P(x) holds.

\wy

Predicate Logic (2.2): Existential Q. (3)

» An existential quantification has the form (3X e RAP)
o X is a comma-separated list of variable names
o Ris a constraint on types/ranges of the listed variables
o Pis a property to be satisfied
e There exist (a combination of) values of variables listed in X
that satisfy both R and P.

LASSONDE

ooooooooooooooooo

o JdiejeNAi>0 [true]
o JiejeZni>0 [true]
o Ji,jeieZAnjeZn(i<jvi>])) [true]

e Proof Strategies
1. How to prove (3X e R A P) true?
e Hint. When is R A P true?
e Give a witness of x € X s.t. R(x), P(x) holds.
2. How to prove (3X e R A P) false?
o Hint. When is R A P false? [true A false, false n _]
o Show that for all instances of x € X s.t. R(x), -P(x) holds.
¢ Show that for all instances of x € X it is the case -R(x).

[true A true]

Predicate Logic (3): Exercises Mot

ooooooooooooooooo

Prove or disprove: Vx e (xeZA1<x<10)= x>0.
All 10 integers between 1 and 10 are greater than 0.
Prove or disprove: Vx e (xeZA1<x<10)=x>1.

Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

Prove or disprove: 3x e (xeZA1<x<10)Ax>1.

Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

Prove or disprove that 3x e (x € ZA1<x<10)Ax>10?
All integers in the range between 1 and 10 are not greater than 10.

[11 of 26

Predicate Logic (4): Switching Quantificatiori%l%ﬁ

ooooooooooooooooo

Conversions between vV and 3:

(VX e« R=P) < =(3IX ¢ RA-P)
(3X e« RAP) < ~(VX ¢« R=-P)

12 of 26

Set of Tuples

LASSONDE

ooooooooooooooooo

Given nsets Sy, Sy, ..., Sy, a cross/Cartesian product of
theses sets is a set of n-tuples.

Each n-tuple (eq, eo,...,e,) contains n elements, each of
which a member of the corresponding set.

S, ><ng---><S,,:{(e1,eg,...,e,,)|e,-eS,-/\1 gisn}

e.g., {a b} x{2,4} x {$,&} is a set of triples:
{a,b} x {2,4} x {$,&}
{(e1,e0,63)|e1€e{ablreec{2,4} ne3e{$ &} }

_ | (a29),(a2,&) (a49),(a4&),
T (b,2,%).(b,2,&),(b,4,9),(b,4,&)

S—

Relations (1): Constructing a Relation

LASSONDE

ooooooooooooooooo

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T.

e.g., Say S={1,2,3}and T = {a, b}

o ¢ is the minimum relation (i.e., an empty relation).

° is the maximum relation (say ry) between S and T,
mapping from each member of S to each member in T:

{(1,2),(1,b),(2,2),(2,b),(3,a),(3,0)}

o {(x,¥) | (x,y) e Sx T Aax+1}is arelation (say r») that maps only
some members in S to every member in T:

{(2,a),(2,b),(3,2),(3,0)}

Relations (2.1): Set of Possible Relations

LASSONDE

ooooooooooooooooo

¢ We use the power set operator to express the set of all
possible relations on S and T:

P(SxT)
Each member in P(S x T) is a relation.

e To declare a relation variable r, we use the colon (:) symbol to
mean set membership:
r:P(SxT)
¢ Or alternatively, we write:
r:S< T
where the set S < T is synonymous to the set P(Sx T)

S———

LASSONDE

ooooooooooooooooo

Relations (2.2): Exercise

Enumerate {a, b} < {1,2,3}.
¢ Hints:
o You may enumerate all relations in P({a, b} x {1,2,3}) via their
cardinalities: 0,1, ..., [{a, b} x {1,2,3}|.
o What's the maximum relation in P({a, b} x {1,2,3})?
{ (a7 1)? (a7 2)’ (a73)’ (b7 1)? (b7 2)’ (b73) }
¢ The answer is a set containing all of the following relations:
o Relation with cardinality 0: @
o How many relations with cardinality 17?
o How many relations with cardinality 27 [(1{@2{1:23}l) = &5 _ 15]

[(\{a,b}x1{1,2,3}|) 6]

o Relation with cardinality |[{a, b} x {1,2,3}:
{ (a7 1)’ (a72)’ (a73)’ (b7 1)’ (b72)’ (b73) }

S——

Relations (3.1): Domain, Range, Inverse LASSONDE

ooooooooooooooooo

Given a relation
r= {(a7 1)5 (b! 2)7 (Ca 3)a (a, 4)! (ba 5)! (C’ 6)! (da 1)1 (e
« [domain of r | set of first-elements from r

o Definition: dom(r)={d|(d,r')er}
o e.g.,,dom(r)={a,b,c,d, e, f}

e | range of r |: set of second-elements from r

o Definition: ran(r) ={ r' | (d,r")er}
o e.g.,ran(r)={1,2,3,4,56}
o : a relation like r with elements swapped
o Definition: r™" = { (r',d) | (d,r')er}
°eg.,r'={(1a),(2b),(30),(4a),(5b)(6c)(1,d),(2e),3 N}

. 2), (f,3)}

17 of 26|

Relations (3.2): Image Mot

ooooooooooooooooo

Given a relation
r={(a 1), (b, 2), (c, 3), (a 4), (b, 5), (¢, 6), (d, 1), (e, 2), (f, 3)}
’ relational image of r over set s ‘: sub-range of r mapped by s.

o Definition: r(s]={r"|(d,r')erndes}
° eg.r[{ab}]={1,2,4,5}

18 of 26/

Relations (3.3): Restrictions s

ooooooooooooooooo

Given a relation

r={(a 1), (b, 2),(c,3), (a 4), (b 5), (c,6), (d, 1), (e, 2), (f, 3)}
o] domain restriction of r over set ds |: sub-relation of r with domain ds.
o Definition: ds<ir={ (d,r") | (d,r')erndeds}
o eg,{ab<r={(a),(b,2),(a4),(b,5)}
. ’ range restriction of r over set rs ‘: sub-relation of r with range rs.
o Definition: ri>rs={ (d,r') | (d,r')yernr ers}
o eg.,re{1,2} ={(a1),(b2),(d,1),(e,2)}

19 of 26/

Relations (3.4): Subtractions s

ooooooooooooooooo

Given a relation

r={(a1), (b, 2),(c,3), (a 4), (b 5),(c,6),(d, 1), (e, 2), (f, 3)}
o] domain subtraction of r over set ds \: sub-relation of r with domain not ds.
o Definition: ds<r={ (d,r") | (d,r')ernd¢ds}
o eg., {ab}<r={(c,3),(c,6),(d1),(e2),(f3)}
. ’ range subtraction of r over set rs ‘: sub-relation of r with range not rs.
o Definition: rers={ (d,r') | (d.r')yernr' ¢rs}
o eg., re{1,2}={(c3),(a,4),(b,5),(c,6),(f,3)}

Functions (1): Functional Property LASSONDE

e Arelationronsets Sand T (i.e,,re S« T)is also a function

if it satisfies the functional property:
isFunctional (r)
<

Vs, ti,lo o (SeSAheTabeT)=((S,)ern(s,b)er==4==h)

o Thatis, in a function, it is forbidden for a member of S to map to
more than one members of T.
o Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.
* eg.,Say S={1,2,3} and T = {a, b}, which of the following
relations satisfy the above functional property?

o SxT [No]
Witness 1: (1, a), (1, b); Witness 2: (2, a), (2, b); Witness 3: (3, a), (3, b).

o (SxT)~{(x,¥) | (x,y)eSxTarx=1} [No]
Witness 1: (2, a), (2, b); Witness 2: (3, a), (3, b)

o {(1,a),(2,0),(3,a)} [Yes]

o {(1,a),(2,b)} [Yes]

21 of 26|

Functions (2.1): Total vs. Partial e

Given arelationre S~ T
e ris a partial function if it satisfies the functional property:
< (isFunctional (r) Adom(r) c S)

Remark. r ¢ S » T means there may (or may not) be s S s.i.
r(s) is undefined (i.e., r[{s}] = @).

°eg.{{(2,a),(1,0)}{(24a),(3,a),(1,b)} } c{1,2,3} » {a,b}
e ris a total function if there is a mapping for each s¢ S:
<= (isFunctional (r) Adom(r)=2S)
Remark. r¢ S— T implies r ¢ S » T, but not vice versa. Why?
o e.g.,{(2a),(3,a),(1,b)} €{1,2,3} - {a, b}
o eg.,{(2a),(1,b)}¢{1,2,3} > {a,b}

e
Functions (2.2): LAssowE

Relation Image vs. Function Application

® Recall: A function is a relation, but a relation is not necessarily a function.
® Say we have a partial function f € {1,2,3} + {a, b}:
f={(8,a).(1,b)}

o With f wearing the relation hat, we can invoke relational images :

fi{3}] = {a}
fli1y] = {b}
fi{2}] = @

Remark. = |f[{v}]| <1
¢ each member in dom(f) is mapped to at most one member in ran(f)
e each input set {v} is a singleton set

o With f wearing the function hat, we can invoke functional applications :
f(3) a
f(1) b
f(2) is wundefined

e

Index (1) :AssoNDE

|Background for Self-Study|
[Propositional Logic (1)

[Propositional Logic: Implication (1)|

[Propositional Logic: Implication (2)|

[Propositional Logic: Implication (3)|
[Propositional Logic (2)|

[Predicate Logic (1)

[Predicate Logic (2.1): Universal Q. (V)|
|Predicate Logic (2.2): Existential Q. (3)|
[Predicate Logic (3): Exercises|

[Predicate Logic (4): Switching Quantifications|

Index (2) :AssoNDE

Set of Tuples

[Relations (1): Constructing a Relation|

[Relations (2.1): Set of Possible Relations|

[Relations (2.2): Exercise|

[Relations (3.1): Domain, Range, Inverse|
|Relations (3.2): Image|
[Relations (3.3): Restrictions|

[Relations (3.4): Subtractions|

[Functions (1): Functional Property]|

[Functions (2.1): Total vs. Partiall

Index (3) Lassonpe
[Functions (2.2): |
[Relation Image vs. Function Application|

