Scanner: Lexical Analysis Readings: EAC2 Chapter 2

EECS4302 A: Compilers and Interpreters Summer 2025

CHEN-WEI WANG

Scanner in Context

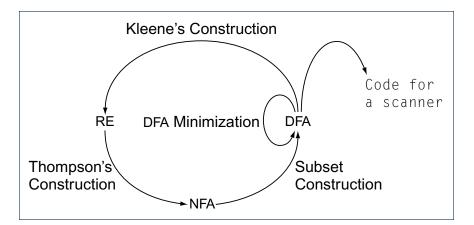
• Recall:

- Treats the input programas as a *a sequence of characters*
- Applies rules recognizing character sequences as tokens

[lexical analysis]

- Upon termination:
 - Reports character sequences not recognizable as tokens
 - Produces a *a sequence of tokens*
- Only part of compiler touching every character in input program.
- Tokens recognizable by scanner constitute a regular language.

Scanner: Formulation & Implementation



LASSON

Alphabets

An *alphabet* is a *finite*, *nonempty* set of symbols.

- The convention is to write Σ, possibly with a informative subscript, to denote the alphabet in question.
- Use either a set enumeration or a set comprehension to define your own alphabet.

e.g.,
$$\Sigma_{eng} = \{a, b, \dots, z, A, B, \dots, Z\}$$

e.g., $\Sigma_{bin} = \{0, 1\}$
e.g., $\Sigma_{dec} = \{d \mid 0 \le d \le 9\}$
e.g., Σ_{key}

[the English alphabet] [the binary alphabet] [the decimal alphabet] [the keyboard alphabet]

Strings (1)

• A *string* or a *word* is *finite* sequence of symbols chosen from some *alphabet*.

e.g., Oxford is a string over the English alphabet Σ_{eng} e.g., 01010 is a string over the binary alphabet Σ_{bin} e.g., 01010.01 is <u>not</u> a string over Σ_{bin} e.g., 57 is a string over the decimal alphabet Σ_{dec}

• It is **<u>not</u>** correct to say, e.g., 01010 $\in \Sigma_{bin}$

[Why?]

- The *length* of a string w, denoted as |w|, is the number of characters it contains.
 - e.g., |*Oxford*| = 6
 - ϵ is the *empty string* ($|\epsilon| = 0$) that may be from any alphabet.
- Given two strings *x* and *y*, their *concatenation*, denoted as *xy*, is a new string formed by a copy of *x* followed by a copy of *y*.

• e.g., Let x = 01101 and y = 110, then xy = 01101110

• The empty string ϵ is the *identity for concatenation*:

 $\epsilon w = w = w\epsilon$ for any string w

Strings (2)

Given an *alphabet* Σ, we write Σ^k, where k ∈ N, to denote the set of strings of <u>length k</u> from Σ

$$\Sigma^{k} = \{ w \mid w \text{ is a string over } \Sigma \land |w| = k \}$$

more formal?

• e.g., $\{0,1\}^2 = \{00, 01, 10, 11\}$

• Given Σ , Σ^0 is $\{\epsilon\}$

• Given Σ , Σ^+ is the *set of <u>nonempty</u> strings*.

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \ldots = \{ w \mid w \in \Sigma^k \land k > 0 \} = \bigcup_{k > 0} \Sigma^k$$

• Given Σ , Σ^* is the set of strings of <u>all</u> possible lengths.

$$\boldsymbol{\Sigma}^* = \boldsymbol{\Sigma}^+ \cup \{\epsilon\}$$

- **1.** What is $|\{a, b, ..., z\}^5|$?
- **2.** Enumerate, in a systematic manner, the set $\{a, b, c\}^4$.
- **3.** Explain the difference between Σ and Σ^1 .
- 4. Prove or disprove: $\Sigma_1 \subseteq \Sigma_2 \Rightarrow \Sigma_1^* \subseteq \Sigma_2^*$

Languages

- A language L over Σ (where $|\Sigma|$ is finite) is a set of strings s.t. $L \subset \Sigma^*$
- When useful, include an informative subscript to denote the *language L* in question.
 - e.g., The language of *compilable* Java programs

 $L_{Java} = \{ prog \mid prog \in \Sigma_{key}^* \land prog \text{ compiles in Eclipse} \}$

Note. prog compiling means no lexical, syntactical, or type errors.

- e.g., The language of strings with *n* 0's followed by *n* 1's ($n \ge 0$) { ϵ , 01, 0011, 000111, ...} = { $0^n 1^n | n \ge 0$ }

Review Exercises: Languages

- 1. Use *set comprehensions* to define the following *languages*. Be as *formal* as possible.
 - A language over {0,1} consisting of strings beginning with some 0's (possibly none) followed by at least as many 1's.
 - A language over {*a*, *b*, *c*} consisting of strings beginning with some a's (possibly none), followed by some b's and then some c's, s.t. the # of a's is at least as many as the sum of #'s of b's and c's.
- **2.** Explain the difference between the two languages $\{\epsilon\}$ and \emptyset .
- **3.** Justify that Σ^* , \emptyset , and $\{\epsilon\}$ are all languages over Σ .
- 4. Prove or disprove: If L is a language over Σ, and Σ₂ ⊇ Σ, then L is also a language over Σ₂.

Hint: Prove that $\Sigma \subseteq \Sigma_2 \land L \subseteq \Sigma^* \Rightarrow L \subseteq \Sigma_2^*$

5. Prove or disprove: If *L* is a language over Σ , and $\Sigma_2 \subseteq \Sigma$, then *L* is also a language over Σ_2 .

Hint: Prove that $\Sigma_2 \subseteq \Sigma \land L \subseteq \Sigma^* \Rightarrow L \subseteq \Sigma_2^*$

Given a *language* L over some *alphabet* Σ, a *problem* is the *decision* on whether or not a given *string* w is a member of L.

$w \in L$

Is this equivalent to deciding $w \in \Sigma^*$? [*No*] $w \in \Sigma^* \Rightarrow w \in L$ is **not** necessarily true.

e.g., The Java compiler solves the problem of *deciding* if a user-supplied *string of symbols* is a <u>member</u> of L_{Java}.

Regular Expressions (RE): Introduction

- *Regular expressions* (RegExp's) are:
 - A type of <u>language-defining</u> notation
 - This is *similar* to the <u>equally-expressive</u> *DFA*, *NFA*, and *∈-NFA*.
 - Textual and look just like a programming language
 - e.g., Set of strings denoted by $01^* + 10^*$? [specify formally] $L = \{0x \mid x \in \{1\}^*\} \cup \{1x \mid x \in \{0\}^*\}$
 - e.g., Set of strings denoted by (0*10*10*)*10*?
 L = { W | W has odd # of 1's }
 - This is *dissimilar* to the diagrammatic *DFA*, *NFA*, and *ε*-*NFA*.
 - RegExp's can be considered as a "user-friendly" alternative to *NFA* for describing software components.
 [e.g., text search]
 - Writing a RegExp is like writing an <u>algebraic</u> expression, using the defined operators, e.g., ((4 + 3) * 5) % 6
- Despite the programming convenience they provide, *RegExp's*, *DFA*, *NFA*, and *e-NFA* are all *provably equivalent*.

 $\circ\,$ They are capable of defining \underline{all} and \underline{only} regular languages.

RE: Language Operations (1)

- Given Σ of input alphabets, the simplest RegExp is? [$s \in \Sigma^1$]
 - e.g., Given Σ = {a, b, c}, expression a denotes the language { a } consisting of a single string a.
- Given two languages L, M ∈ Σ*, there are 3 operators for building a *larger language* out of them:

1. Union

$$L \cup M = \{w \mid w \in L \lor w \in M\}$$

In the textual form, we write + for union.

2. Concatenation

$$LM = \{xy \mid x \in L \land y \in M\}$$

In the textual form, we write either $% \left({{{\mathbf{r}}_{i}}} \right)$. or nothing at all for concatenation.

RE: Language Operations (2)

3. Kleene Closure (or Kleene Star)

$$L^* = \bigcup_{i \ge 0} L^i$$

where

$$L^{0} = \{\epsilon\}$$

$$L^{1} = L$$

$$L^{2} = \{x_{1}x_{2} \mid x_{1} \in L \land x_{2} \in L\}$$

$$\dots$$

$$L^{i} = \{\underbrace{x_{1}x_{2} \dots x_{i}}_{i \text{ concatenations}} \mid x_{j} \in L \land 1 \leq j \leq i\}$$

$$\dots$$

In the textual form, we write * for closure.

<u>Question</u>: What is $|L^i|$ ($i \in \mathbb{N}$)? **<u>Question</u>**: Given that $L = \{0\}^*$, what is L^* ? [|*L*|^{*i*}] [*L*]

RE: Construction (1)

We may build *regular expressions recursively*:

- Each (*basic* or *recursive*) form of regular expressions denotes a *language* (i.e., a set of strings that it accepts).
- Base Case:
 - Constants ϵ and \emptyset are regular expressions.

$$L(\epsilon) = \{\epsilon\}$$
$$L(\emptyset) = \emptyset$$

• An input symbol $a \in \Sigma$ is a regular expression.

 $L(a) = \{a\}$

If we want a regular expression for the language consisting of only the string $w \in \Sigma^*$, we write *w* as the regular expression.

• Variables such as L, M, etc., might also denote languages.

RE: Construction (2)

- **Recursive Case**: Given that *E* and *F* are regular expressions:
 - The union E + F is a regular expression.

 $L(\mathbf{E} + \mathbf{F}) = L(\mathbf{E}) \cup L(\mathbf{F})$

• The concatenation *EF* is a regular expression.

 $L(\mathbf{EF}) = L(E)L(F)$

• Kleene closure of *E* is a regular expression.

 $L(\mathbf{E}^*) = (L(\mathbf{E}))^*$

• A parenthesized *E* is a regular expression.

L((E)) = L(E)

RE: Construction (3)

Exercises:

- $\emptyset + L$
- øL

 $[\emptyset + L = L = \emptyset + L]$ $[\emptyset L = \emptyset = L\emptyset]$

• Ø*

• ø*L

$$\left[\varnothing^* L = L = L \varnothing^* \right]$$

RE: Construction (4)

Write a regular expression for the following language

```
\{ w \mid w \text{ has alternating } 0' \text{ s and } 1' \text{ s} \}
```

- Would (01)* work?
- Would (01)* + (10)* work?

[alternating 10's?]

[starting and ending with 1?]

- $0(10)^* + (01)^* + (10)^* + 1(01)^*$
- It seems that:
 - $\circ~$ 1st and 3rd terms have $(10)^*$ as the common factor.
 - $\circ~$ 2nd and 4th terms have (01)* as the common factor.
- · Can we simplify the above regular expression?
- $(\epsilon + 0)(10)^* + (\epsilon + 1)(01)^*$

RE: Review Exercises

Write the regular expressions to describe the following languages:

- { $w \mid w$ ends with **01** }
- { $w \mid w$ contains **01** as a substring }
- { $w \mid w$ contains no more than three consecutive 1's }
- { $w \mid w$ ends with $01 \lor w$ has an odd # of 0's }

$$\left(\begin{array}{c|c} \mathbf{SX.y} \\ \mathbf{SX.y} \\ \end{array} \right| \begin{array}{c} \mathbf{S \in \{+,-,\epsilon\}} \\ \land & \mathbf{X \in \Sigma^*_{dec}} \\ \land & \mathbf{y \in \Sigma^*_{dec}} \\ \land & \neg (\mathbf{X = \epsilon \land y = \epsilon}) \end{array}$$

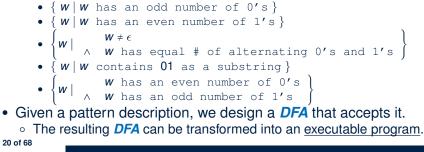
$$\begin{cases} x \in \{0,1\}^* \land y \in \{0,1\}^* \\ \land x \text{ has alternating } 0' \text{ s and } 1' \text{ s} \\ \land y \text{ has an odd } \# 0' \text{ s and an odd } \# 1' \text{ s} \end{cases}$$

RE: Operator Precedence

- In an order of *decreasing precedence*:
 - Kleene star operator
 - Concatenation operator
 - Union operator
- When necessary, use *parentheses* to force the intended order of evaluation.
- e.g., • 10^* vs. $(10)^*$ [10^* is equivalent to $1(0^*)$] • $01^* + 1$ vs. $0(1^* + 1)$ [$01^* + 1$ is equivalent to $(0(1^*)) + (1)$] • $0 + 1^*$ vs. $(0 + 1)^*$ [$0 + 1^*$ is equivalent to $(0) + (1^*)$]

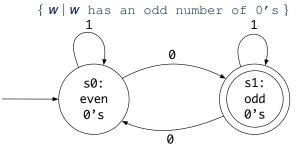
DFA: Deterministic Finite Automata (1.1)

- A deterministic finite automata (DFA) is a finite state machine (FSM) that accepts (or recognizes) a pattern of behaviour.
 - For *lexical* analysis, we study patterns of *strings* (i.e., how *alphabet* symbols are ordered).
 - $\circ~$ Unless otherwise specified, we consider strings in $\{0,1\}^*$
 - Each pattern contains the set of satisfying strings.
 - We describe the patterns of strings using set comprehensions:



DFA: Deterministic Finite Automata (1.2)

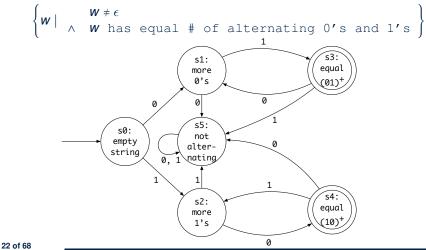
• The *transition diagram* below defines a DFA which *accepts/recognizes* exactly the language



- Each incoming or outgoing arc (called a *transition*) corresponds to an input alphabet symbol.
- s_0 with an unlabelled **incoming** transition is the **start state**.
- s_3 drawn as a double circle is a *final state*.
- All states have **<u>outgoing</u>** transitions covering $\{0, 1\}$.

DFA: Deterministic Finite Automata (1.3)

The *transition diagram* below defines a DFA which *accepts/recognizes* exactly the language



Draw the transition diagrams for DFAs which accept other example string patterns:

- { $W \mid W$ has an even number of 1's }
- { *w* | *w* contains **01** as a substring }

• $\begin{cases} w \mid & w \text{ has an even number of 0's} \\ \land & w \text{ has an odd number of 1's} \end{cases}$

A deterministic finite automata (DFA) is a 5-tuple

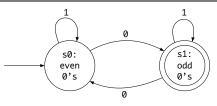
$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states.
- Σ is a finite set of *input symbols* (i.e., the *alphabet*).
- $\delta: (Q \times \Sigma) \rightarrow Q$ is a transition function

 δ takes as arguments a state and an input symbol and returns a state.

- $q_0 \in Q$ is the start state.
- $F \subseteq Q$ is a set of final or accepting states.

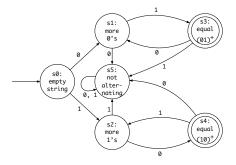
DFA: Deterministic Finite Automata (2.2)



We formalize the above DFA as $M = (Q, \Sigma, \delta, q_0, F)$, where

- $Q = \{s_0, s_1\}$
- $\Sigma = \{0, 1\}$
- $\delta = \{((s_0, 0), s_1), ((s_0, 1), s_0), ((s_1, 0), s_0), ((s_1, 1), s_1)\}$ <u>state \ input || 0 | 1</u> <u>s_0 || s_1 || s_0</u> <u>s_1 || s_0 || s_1</u>
- $q_0 = s_0$
- $F = \{S_1\}$

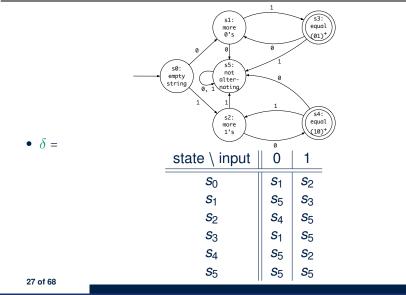
DFA: Deterministic Finite Automata (2.3.1)



We formalize the above DFA as $M = (Q, \Sigma, \delta, q_0, F)$, where

- $Q = \{s_0, s_1, s_2, s_3, s_4, s_5\}$
- $\Sigma = \{0, 1\}$
- $q_0 = s_0$
- $F = \{s_3, s_4\}$ 26 of 68

DFA: Deterministic Finite Automata (2.3.2)



DFA: Deterministic Finite Automata (2.4)

- Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$:
 - We write L(M) to denote the language of M : the set of strings that M accepts.
 - A string is *accepted* if it results in a sequence of transitions: beginning from the *start* state and ending in a *final* state.

$$L(M) = \left\{ \begin{array}{c} a_1 a_2 \dots a_n \mid \\ 1 \leq i \leq n \land a_i \in \Sigma \land \delta(q_{i-1}, a_i) = q_i \land q_n \in F \end{array} \right\}$$

• *M* rejects any string $w \notin L(M)$.

• We may also consider L(M) as <u>concatenations of labels</u> from the set of all valid **paths** of M's transition diagram; each such path starts with q_0 and ends in a state in F.

DFA: Deterministic Finite Automata (2.5)

Given a *DFA M* = (Q, Σ, δ, q₀, F), we may simplify the definition of *L(M)* by extending δ (which takes an input symbol) to δ̂ (which takes an input string).

 $\hat{\delta}: (Q \times \Sigma^*) \to Q$

We may define $\hat{\delta}$ recursively, using δ !

$$\hat{\delta}(q,\epsilon) = q \hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a)$$

where $q \in Q$, $x \in \Sigma^*$, and $a \in \Sigma$

• A neater definition of L(M): the set of strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ is an *accepting state*.

$$L(M) = \{ w \mid w \in \Sigma^* \land \hat{\delta}(q_0, w) \in F \}$$

• A language *L* is said to be a *regular language*, if there is some **DFA** *M* such that L = L(M).

Formalize DFAs (as 5-tuples) for the other example string patterns mentioned:

- { $W \mid W$ has an even number of 0's }
- { $w \mid w$ contains **01** as a substring }

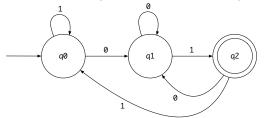
	{ w		W	has	an	even	number	c of	0's
		\wedge	w	has	an	odd	number	of	1′s

NFA: Nondeterministic Finite Automata (1.1)

Problem: Design a DFA that accepts the following language:

$$L = \{ x01 \mid x \in \{0,1\}^* \}$$

That is, *L* is the set of strings of 0s and 1s ending with 01.



Given an input string *w*, we may simplify the above DFA by:

• *nondeterministically* treating state q_0 as both:

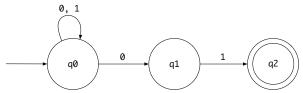
31 of 68

- a state *ready* to read the last two input symbols from w
- a state *not yet ready* to read the last two input symbols from w
- substantially reducing the outgoing transitions from q_1 and q_2

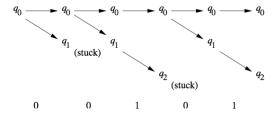
Compare the above DFA with the DFA in slide 39.

NFA: Nondeterministic Finite Automata (1.2)

A non-deterministic finite automata (NFA) that accepts the same language:



• How an NFA determines if an input 00101 should be processed:



NFA: Nondeterministic Finite Automata (2)

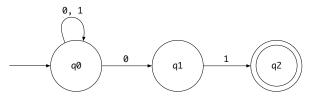
- A *nondeterministic finite automata (NFA)*, like a **DFA**, is a *FSM* that *accepts* (or *recognizes*) a pattern of behaviour.
- An *NFA* being *nondeterministic* means that from a given state, the <u>same</u> input label might corresponds to <u>multiple</u> transitions that lead to <u>distinct</u> states.
 - Each such transition offers an *alternative path*.
 - Each alternative path is explored in parallel.
 - If <u>there exists</u> an alternative path that *succeeds* in processing the input string, then we say the *NFA accepts* that input string.
 - If <u>all</u> alternative paths get stuck at some point and *fail* to process the input string, then we say the *NFA rejects* that input string.
- *NFAs* are often more succinct (i.e., fewer states) and easier to design than **DFAs**.
- However, NFAs are just as expressive as are DFAs.
 - We can **always** convert an *NFA* to a **DFA**.

NFA: Nondeterministic Finite Automata (3.1)

• A nondeterministic finite automata (NFA) is a 5-tuple

$$\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F})$$

- Q is a finite set of states.
- Σ is a finite set of *input symbols* (i.e., the *alphabet*).
- $\delta : (\mathbf{Q} \times \Sigma) \to \mathbb{P}(\mathbf{Q})$ is a transition function
 - Given a state and an input symbol, δ returns a set of states.
 - Equivalently, we can write: $\delta : (Q \times \Sigma) \Rightarrow Q$ [a <u>partial</u> function]
- $q_0 \in Q$ is the start state.
- $F \subseteq Q$ is a set of *final* or *accepting states*.
- What is the difference between a DFA and an NFA?
 - δ of a **DFA** returns a single state.
 - δ of an *NFA* returns a (possibly empty) <u>set</u> of states.



Given an input string 00101:

- **Read 0**: $\delta(q_0, 0) = \{q_0, q_1\}$
- Read 0: $\delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- Read 1: $\delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
- Read 0: $\delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- Read 1: $\delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0, q_1\} \cup \{q_2\} = \{q_0, q_1, q_2\}$ $:: \{q_0, q_1, q_2\} \cap \{q_2\} \neq \emptyset : 00101 \text{ is accepted}$ 35 of 68

NFA: Nondeterministic Finite Automata (3.3)

Given a NFA M = (Q, Σ, δ, q₀, F), we may simplify the definition of L(M) by extending δ (which takes an input symbol) to δ̂ (which takes an input string).

 $\hat{\delta}: (Q \times \Sigma^*) \to \mathbb{P}(Q)$

We may define $\hat{\delta}$ recursively, using δ !

$$\hat{\delta}(q,\epsilon) = \{q\} \hat{\delta}(q,xa) = \bigcup \{\delta(q',a) \mid q' \in \hat{\delta}(q,x)\}$$

where $q \in Q$, $x \in \Sigma^*$, and $a \in \Sigma$

• A neater definition of L(M): the set of strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ contains **at least one** *accepting state*.

$$L(M) = \{ w \mid w \in \Sigma^* \land \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

DFA = NFA (1)

- For many languages, constructing an accepting *NFA* is easier than a *DFA*.
- From each state of an NFA:
 - Outgoing transitions need \underline{not} cover the entire Σ .
 - From a given state, the same symbol may *non-deterministically* lead to <u>multiple</u> states.
- In <u>practice</u>:
 - An NFA has just as many states as its equivalent DFA does.
 - An NFA often has fewer transitions than its equivalent DFA does.
- In the <u>worst</u> case:
 - While an *NFA* has *n* states, its equivalent *DFA* has 2^{*n*} states.
- Nonetheless, an NFA is still just as expressive as a DFA.
 - A language accepted by some NFA is accepted by some DFA:

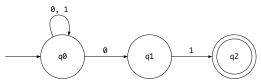
 $\forall N \bullet N \in NFA \Rightarrow (\exists D \bullet D \in DFA \land L(D) = L(N))$

• And vice versa, trivially?

 $\forall D \bullet D \in DFA \Rightarrow (\exists N \bullet N \in NFA \land L(D) = L(N))$

DFA \equiv **NFA** (2.2): Lazy Evaluation (1)

Given an **NFA**:



Subset construction (with *lazy evaluation*) produces a *DFA* with δ as:

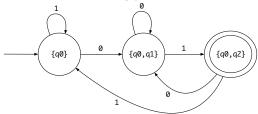
state \setminus input	0	1
{ q ₀ }	$\delta(q_0, 0) = \{q_0, q_1\}$	$\delta(q_0, 1) = \begin{cases} q_0 \end{cases}$
	$\frac{\delta(q_0,0)\cup\delta(q_1,0)}{\delta(q_0,0)\cup\delta(q_1,0)}$	$\frac{\delta(q_0, 1) \cup \delta(q_1, 1)}{\delta(q_1, 1)}$
$\{q_0, q_1\}$	$= \{q_0, q_1\} \cup \emptyset$	$= \{q_0\} \cup \{q_2\}$
	$= \{q_0, q_1\}$	$= \{q_0, q_2\}$
	$\delta(q_0,0)\cup \delta(q_2,0)$	$\delta(q_0,1)\cup\delta(q_2,1)$
$\{q_0, q_2\}$	$= \{q_0, q_1\} \cup \emptyset$	$= \{q_0\} \cup \emptyset$
	$= \{q_0, q_1\}$	$= \{q_0\}$

DFA = NFA (2.2): Lazy Evaluation (2)

Applying *subset construction* (with *lazy evaluation*), we arrive in a *DFA* transition table:

state \ input	0	1		
$\{q_0\}$	$\{q_0, q_1\}$	{ q ₀ }		
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$		
$\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$		

We then draw the **DFA** accordingly:



Compare the above DFA with the DFA in slide 31.

 $[O(2^{|Q_N|})]$

DFA = NFA (2.2): Lazy Evaluation (3)

• Given an *NFA* $N = (Q_N, \Sigma_N, \delta_N, q_0, F_N)$:

- RT of ReachableSubsetStates?
- Often only a small portion of the |P(Q_N)| subset states is reachable from {q₀} ⇒ Lazy Evaluation efficient in practice!
 ⁴⁰ of 68

ϵ-NFA: Examples (1)

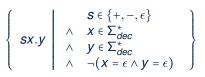
Draw the NFA for the following two languages: **1.**

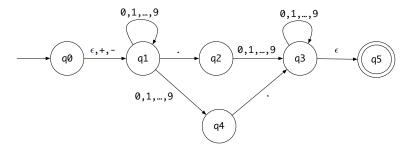
 $\left\{ \begin{array}{c|c} w: \{0,1\}^* & w \text{ has alternating } 0' \text{ s and } 1' \text{ s} \\ v & w \text{ has an odd } \# 0' \text{ s and an odd } \# 1' \text{ s} \end{array} \right\}$

3.

$$\begin{cases} SX.Y & S \in \{+, -, \epsilon\} \\ \land & X \in \sum_{dec}^{*} \\ \land & y \in \sum_{dec}^{*} \\ \land & \neg (X = \epsilon \land Y = \epsilon) \end{cases}$$

ϵ -NFA: Examples (2)





From q_0 to q_1 , reading a sign is **optional**: a *plus* or a *minus*, or *nothing at all* (i.e., ϵ).

An ϵ -NFA is a 5-tuple

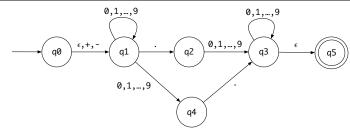
$$\boldsymbol{M} = (\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F})$$

- *Q* is a finite set of *states*.
- Σ is a finite set of *input symbols* (i.e., the *alphabet*).
- $\delta : (\mathbf{Q} \times (\mathbf{\Sigma} \cup \{\epsilon\})) \to \mathbb{P}(\mathbf{Q})$ is a transition function

 δ takes as arguments a state and an input symbol, or *an empty string*

- ϵ , and returns a set of states.
- $q_0 \in Q$ is the start state.
- $F \subseteq Q$ is a set of final or accepting states.

ϵ-NFA: Formalization (2)



Draw a transition table for the above NFA's δ function:

	ϵ	+, -		09
q_0	{ <i>q</i> ₁ }	{ q ₁ }	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1, q_4\}$
q ₂	Ø	Ø	Ø	$\{q_3\}$
q ₃	$\{q_5\}$	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	$\{q_3\}$	Ø
q 5	Ø	Ø	Ø	Ø

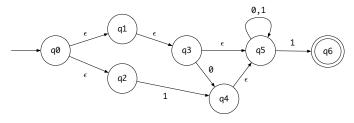
ϵ-NFA: Epsilon-Closures (1)

• Given ϵ -NFA N $N = (Q, \Sigma, \delta, q_0, F)$ we define the *epsilon closure* (or ϵ -closure) as a function $ECLOSE : Q \rightarrow \mathbb{P}(Q)$

• For any state $q \in Q$

 $\mathsf{ECLOSE}(q) = \{q\} \cup \bigcup_{p \in \delta(q, \epsilon)} \mathsf{ECLOSE}(p)$

ϵ-NFA: Epsilon-Closures (2)



 $ECLOSE(q_0)$

$$= \{ \delta(q_0, \epsilon) = \{q_1, q_2\} \}$$

$$\{q_0\} \cup \text{ECLOSE}(q_1) \cup \text{ECLOSE}(q_2)$$

- $= \{ ECLOSE(q_1), \ \delta(q_1, \epsilon) = \{q_3\}, ECLOSE(q_2), \ \delta(q_2, \epsilon) = \emptyset \} \\ \{q_0\} \cup (\{q_1\} \cup ECLOSE(q_3)) \cup (\{q_2\} \cup \emptyset) \}$
- $= \{ ECLOSE(q_3), \delta(q_3, \epsilon) = \{q_5\} \} \\ \{q_0\} \cup (\{q_1\} \cup (\{q_3\} \cup ECLOSE(q_5))) \cup (\{q_2\} \cup \emptyset) \}$
- $= \left\{ \begin{array}{l} ECLOSE(q_5), \quad \delta(q_5, \epsilon) = \varnothing \\ \{q_0\} \cup \left(\{q_1\} \cup \left(\{q_3\} \cup \left(\{q_5\} \cup \varnothing \right) \right) \right) \cup \left(\{q_2\} \cup \varnothing \right) \end{array} \right)$

ϵ-NFA: Formalization (3)

Given a *ε*-NFA M = (Q, Σ, δ, q₀, F), we may simplify the definition of L(M) by extending δ (which takes an input symbol) to δ (which takes an input string).

 $\hat{\delta}: (Q \times \Sigma^*) \to \mathbb{P}(Q)$

We may define $\hat{\delta}$ recursively, using δ !

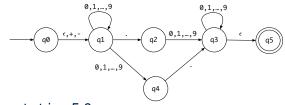
 $\hat{\delta}(q, \epsilon) = \text{ECLOSE}(q)$ $\hat{\delta}(q, xa) = \bigcup \{ \text{ECLOSE}(q'') \mid q'' \in \delta(q', a) \land q' \in \hat{\delta}(q, x) \}$

where $q \in Q$, $x \in \Sigma^*$, and $a \in \Sigma$

• Then we define L(M) as the set of strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ contains **at least one** *accepting state*.

$$L(M) = \{ w \mid w \in \Sigma^* \land \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

ϵ-NFA: Formalization (4)



Given an input string 5.6:

 $\hat{\delta}(q_0,\epsilon) = \texttt{ECLOSE}(q_0) = \{q_0,q_1\}$

- Read 5: $\delta(q_0, 5) \cup \delta(q_1, 5) = \emptyset \cup \{q_1, q_4\} = \{q_1, q_4\}$ $\hat{\delta}(q_0, 5) = \text{ECLOSE}(q_1) \cup \text{ECLOSE}(q_4) = \{q_1\} \cup \{q_4\} = \{q_1, q_4\}$
- **Read** :: $\delta(q_1,.) \cup \delta(q_4,.) = \{q_2\} \cup \{q_3\} = \{q_2,q_3\}$ $\hat{\delta}(q_0,5.) = \text{ECLOSE}(q_2) \cup \text{ECLOSE}(q_3) = \{q_2\} \cup \{q_3,q_5\} = \{q_2,q_3,q_5\}$
- Read 6: $\delta(q_2, 6) \cup \delta(q_3, 6) \cup \delta(q_5, 6) = \{q_3\} \cup \{q_3\} \cup \emptyset = \{q_3\}$ $\hat{\delta}(q_0, 5.6) = \text{ECLOSE}(q_3) = \{q_3, q_5\}$ [5.6 is accepted] 48 of 68

DFA $\equiv \epsilon$ -NFA: Extended Subset Const. (1)

Subset construction (with *lazy evaluation* and *epsilon closures*) produces a *DFA* transition table.

 $d \in 0..9 | s \in \{+, -\} |$ $\{q_0, q_1\}$ $\{q_1, q_4\}$ $| \{q_1\}$ $\{q_2\}$ $\{q_1, q_4\}$ $\{q_1, q_4\}$ Ø $\{q_2, q_3, q_5\}$ $\{q_1\}$ $\{q_1, q_4\}$ Ø $\{q_2\}$ $\{q_2\}$ $\{q_3, q_5\}$ Ø Ø $\{q_2, q_3, q_5\} \mid \{q_3, q_5\}$ Ø Ø $\{q_3, q_5\}$ Ø $\{q_3, q_5\}$ Ø

For example, $\delta(\{q_0, q_1\}, d)$ is calculated as follows: $[d \in 0..9]$

 $\cup \{ \texttt{ECLOSE}(q) \mid q \in \delta(q_0, d) \cup \delta(q_1, d) \}$

- $= \bigcup \{ \texttt{ECLOSE}(q) \mid q \in \emptyset \cup \{q_1, q_4\} \}$
- $= \bigcup \{ \texttt{ECLOSE}(q) \mid q \in \{q_1, q_4\} \}$
- = $ECLOSE(q_1) \cup ECLOSE(q_4)$
- $= \{q_1\} \cup \{q_4\}$

$$= \{q_1, q_4\}$$

Given an ϵ =*NFA N* = ($Q_N, \Sigma_N, \delta_N, q_0, F_N$), by applying the extended subset construction to it, the resulting *DFA* $D = (Q_D, \Sigma_D, \delta_D, q_{D_{start}}, F_D)$ is such that:

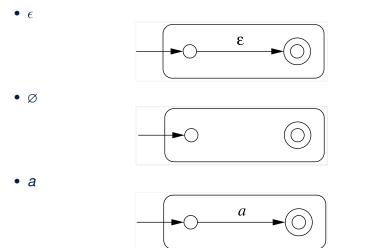
Σ_D	=	Σ_N
$q_{D_{start}}$	=	$ECLOSE(q_0)$
F_D	=	$\{ S \mid S \subseteq Q_N \land S \cap F_N \neq \emptyset \}$
Q_D	=	$\{ S \mid S \subseteq Q_N \land (\exists w \bullet w \in \Sigma^* \Rightarrow S = \hat{\delta}_N(q_0, w)) \}$
$\delta_D(S,a)$	=	$\bigcup \{ \texttt{ECLOSE}(s') \mid s \in S \land s' \in \delta_N(s, a) \}$

- Just as we construct each complex regular expression recursively, we define its equivalent ε-NFA recursively.
- Given a regular expression *R*, we construct an *ϵ*-NFA *E*, such that *L*(*R*) = *L*(*E*), with
 - Exactly one accept state.
 - No incoming arc to the start state.
 - No outgoing arc from the accept state.

Regular Expression to *e***-NFA**

[*a* ∈ Σ]

Base Cases:

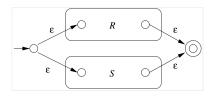


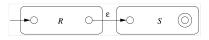
Regular Expression to *e***-NFA**

[R and S are RE's]

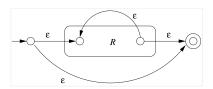
• *R* + *S*

Recursive Cases:

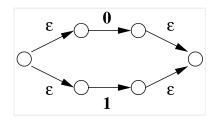


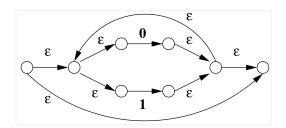


• *R**



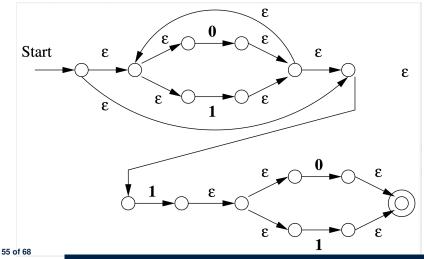
• 0 + 1





Regular Expression to ϵ -NFA: Examples (1.2)

• $(0+1)^*1(0+1)$



- Recall: Regular Expression $\longrightarrow \overline{\epsilon}$ -NFA $\longrightarrow \overline{DFA}$
- DFA produced by the <u>extended</u> subset construction (with lazy evaluation) may <u>not</u> be minimum on its size of state.
- When the required size of memory is sensitive

(e.g., processor's cache memory),

the fewer number of DFA states, the better.

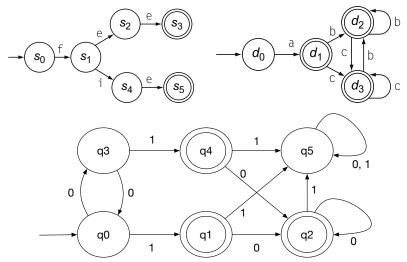
Minimizing DFA: Algorithm


```
ALGORITHM: MinimizeDFAStates
  INPUT: DFA M = (Q, \Sigma, \delta, q_0, F)
  OUTPUT: M' s.t. minimum |Q| and equivalent behaviour as M
PROCEDURE :
  P := \emptyset / * refined partition so far */
  T := \{ F, Q-F \} /* last refined partition */
  while (P \neq T):
     P := T
     T := \emptyset
     for (p \in P):
        find the maximal S \subset p s.t. splittable(p, S)
        if S \neq \emptyset then
         T := T \cup \{S, p-S\}
        else
        T := T \cup \{q\}
        end
```

splittable(p, S) holds <u>iff</u> there is $c \in \Sigma$ s.t.

- **1.** $S \subset p$ (or equivalently: $p S \neq \emptyset$)
- **2.** Transitions via *c* lead <u>all</u> $s \in S$ to states in *same partition* p1 ($p1 \neq p$).

Minimizing DFA: Examples



Exercises: Minimize the DFA from here; Q1 & Q2, p59, EAC2.

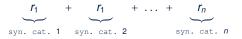
Exercise: Regular Expression to Minimized DFA

Given regular expression r[0..9] + which specifies the pattern of a register name, derive the equivalent DFA with the minimum number of states. Show <u>all</u> steps.

Implementing DFA as Scanner

[[\t\r]+]

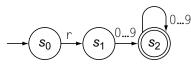
- The source language has a list of *syntactic categories*:
 - e.g., keyword while [while] e.g., identifiers [[a-zA-Z][a-zA-Z0-9]*]
 - e.g., white spaces
- A compiler's scanner must recognize words from all syntactic categories of the source language.
 - Each syntactic category is specified via a *regular expression*.



- Overall, a scanner should be implemented based on the *minimized DFA* accommodating all syntactic categories.
- Principles of a scanner:
 - Returns one word at a time
 - Each returned word is the longest possible that matches a pattern
 - A priority may be specified among patterns (e.g., new is a keyword, not identifier)

Implementing DFA: Table-Driven Scanner (1)

- Consider the *syntactic category* of register names.
- Specified as a *regular expression*: r[0..9]+
- Afer conversion to *e*-NFA, then to DFA, then to *minimized DFA*:



• The following tables encode knowledge about the above DFA:

		Transition				$(\delta$)				
Classifier (CharCa		arCat)		Register	Digit	Other	Token	Туре		(Type)	
r	0,1,2,,9	EOF	Other	s 0	s ₁	s _e	s _e	s 0	s ₁	\$ ₂	Se
Register	Digit	Other	Other	s ₁ s ₂	Se Se	\$2 \$2	s _e s _e	invalid	invalid	register	invalid
				s _e	Se	s _e	S _e				

Implementing DFA: Table-Driven Scanner (2)

The scanner then is implemented via a 4-stage skeleton:

```
NextWord()
 -- Stage 1: Initialization
 state := S_0 ; word := \epsilon
 initialize an empty stack S; s.push(bad)
 -- Stage 2: Scanning Loop
 while (state ≠ S<sub>e</sub>)
   NextChar(char) ; word := word + char
   if state ∈ F then reset stack S end
   s.push(state)
   cat := CharCat[char]
   state := \delta[state, cat]
 -- Stage 3: Rollback Loop
 while (state \notin F \land state \neq bad)
   state := s.pop()
   truncate word
 -- Stage 4: Interpret and Report
 if state ∈ F then return Type[state]
 else return invalid
 end
```

Index (1)

Scanner in Context

Scanner: Formulation & Implementation

Alphabets

Strings (1)

Strings (2)

Review Exercises: Strings

Languages

Review Exercises: Languages

Problems

Regular Expressions (RE): Introduction

RE: Language Operations (1)

Index (2)

- **RE: Language Operations (2)**
- **RE: Construction (1)**
- **RE: Construction (2)**
- **RE: Construction (3)**
- **RE: Construction (4)**
- **RE: Review Exercises**
- **RE: Operator Precedence**
- DFA: Deterministic Finite Automata (1.1)
- DFA: Deterministic Finite Automata (1.2)
- DFA: Deterministic Finite Automata (1.3)
- **Review Exercises: Drawing DFAs**

Index (3)

- DFA: Deterministic Finite Automata (2.1)
- DFA: Deterministic Finite Automata (2.2)
- DFA: Deterministic Finite Automata (2.3.1)
- DFA: Deterministic Finite Automata (2.3.2)
- DFA: Deterministic Finite Automata (2.4)
- DFA: Deterministic Finite Automata (2.5)
- **Review Exercises: Formalizing DFAs**
- NFA: Nondeterministic Finite Automata (1.1)
- NFA: Nondeterministic Finite Automata (1.2)
- NFA: Nondeterministic Finite Automata (2)
- NFA: Nondeterministic Finite Automata (3.1)

Index (4)

- NFA: Nondeterministic Finite Automata (3.2)
- NFA: Nondeterministic Finite Automata (3.3)
- DFA = NFA (1)
- DFA = NFA (2.2): Lazy Evaluation (1)
- DFA = NFA (2.2): Lazy Evaluation (2)
- DFA = NFA (2.2): Lazy Evaluation (3)
- *ϵ*-NFA: Examples (1)
- e-NFA: Examples (2)
- ϵ -NFA: Formalization (1)
- ϵ -NFA: Formalization (2)
- e-NFA: Epsilon-Closures (1)

Index (5)

- ϵ -NFA: Epsilon-Closures (2)
- e-NFA: Formalization (3)
- e-NFA: Formalization (4)
- **DFA** $\equiv \epsilon$ -NFA: Extended Subset Const. (1)
- DFA $\equiv \epsilon$ -NFA: Extended Subset Const. (2)
- Regular Expression to ϵ -NFA
- Regular Expression to ϵ -NFA
- Regular Expression to *c*-NFA
- Regular Expression to *e*-NFA: Examples (1.1)
- Regular Expression to *c*-NFA: Examples (1.2)
- Minimizing DFA: Motivation

Index (6)

Minimizing DFA: Algorithm Minimizing DFA: Examples Exercise: Regular Expression to Minimized DFA Implementing DFA as Scanner Implementing DFA: Table-Driven Scanner (1) Implementing DFA: Table-Driven Scanner (2)