Overview of Compilation
Readings: EAC2 Chapter 1

EECS4302 A:
Compilers and Interpreters

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

What is a Compiler? (1)

A software system that automatically translates/transforms
input/source programs (written in one language) to
output/target programs (written in another language).

input output
semantic domain semantic domain

/ \ /7 \
i Input/Source “ -4/ Output/Target \
Language ™, gncoded encoded .- Language

1
1
1
1
I
I
l
|
|
\

passed to . generates Output/Target
Compiler —._> Program
\ i
\ /

Input/Source
Program

o Semantic Domain : Context with its own vocabulary & meanings
e.g., OO0 (EECS1022/2030/2011), database (3421), predicates (1090)

o Source and target may be in different semantic domains.
e.g., Java programs to SQL relational database schemas/queries
e.g., C procedural programs to MISP assembly instructions

I

What is a Compiler? (2) LASSONDE
e The idea about a compiler is extremely powerful:
You can turn anything to anything else,
as long as the following are clear about these two things:
o SYNTAX [specifiable as CFGs]
o SEMANTICS [programmable as mapping functions]
Mental Exercise. Let’s consider an A+ challenge.
e A compiler should be constructed with good SE principles .
o Modularity

[interacting components]
o Information Hiding

[hiding unstable, revealing stable]
o Single Choice Principle

[a change only causing minimum impact]
o Design Patterns
[polymorphism & dynamic binding]
o Regression Testing
[e.g., unit-level, acceptance-level]

I

Compiler: Typical Infrastructure (1) LASSONDE
Source Front End LR Back End Target
Program Program
Compiler
o FRON END:

e Encodes: knowledge of the source language
o Transforms: from the source to some IR (intermediate representation)
¢ Principle: meaning of the source must be preserved in the IR.
o BACK END:
e Encodes knowledge of the target language
o Transforms: from the IR to the target
e Principle: meaning of the IR must be reflected in the target.
Q. How many /Rs needed for building a number of compilers:
JAVA-TO-C, C#-T0-C, JAVA-TO-PYTHON, C#-TO-PYTHON?
A. Two IRs suffice: One for OO; one for procedural.

= IR should be as language-independent as possible.

I

Compiler: Typical Infrastructure (2)

Source Target
u Front End R Optimizer R Back End g
Program Program
Compiler
OPTIMIZER:

o An IR-to-IR transformer that aims at “improving” the output of

front end, before passing it as input of the back end.
o Think of this transformer as attempting to discover an “optimal”
solution to some computational problem.
e.g., runtime performance, static design
Q. Behaviour of the target program depends upon?
1. Meaning of the source preserved in IR?
2. IR-to-IR transformation of the optimizer semantics-preserving?
3. Meaning of IR preserved in the generated target?
(1) — (3) necessary & sufficient for the soundness of a compiler.

_

Example Compiler 1

I

e Consider a conventional compiler which turns

a C-like program into executable machine instructions.

e The source and target are at different levels of abstractions :
o C-like program is like “high-level” specification.
o Macine instructions are the low-level, efficient implementation.

Front End

Scanner

Elaboration

Optimizer

Optimization 1
Optimization 2

Optimization n

Back End

Inst Selection
Inst Scheduling

Reg Allocation

Infrastructure

_

Compiler Infrastructure: ‘i\%ﬁsom
Scanner vs. Parser vs. Optimizer

Semantic Analysis

Lexical Analysis Syntactic Analysis

T e [inininiiuiuiuiuie IR !

' I

1| Source Program ' v ! pretty printed

| (seq. of charagclers) | ASTy el ASTh :pre Lo Target Program
! '
! '

'

,,,,,,,,,,,,,,,,,,,,

e The same input program may be perceived differently:

1. As a character sequence [subject to lexical analysis]
2. As a token sequence [subject to syntactic analysis]

3. As a abstract syntax tree (AST) [subjectto semantic analysis]
e (1) & (2) are routine tasks of lexical/grammar rule specification.
e (3) is where the] most creativity‘ is used to a compiler:

A series of semantics-preserving AST-to-AST transformations.

_

I

Compiler Infrastructure: Scanner

e The source program is perceived as a sequence of characters.
* A scanner performs lexical analysis on the input character
sequence and produces a sequence of tokens.
e ANALOGY: Tokens are like individual words in an essay.
= Invalid tokens ~ Misspelt words

e.g., a token for a useless delimiter: e.g., space, tab, new line
e.g., a token for a useful delimiter: e.g., (,), {, }, ,

e.g., a token for an identifier (for e.g., a variable, a function)
e.g., a token for a keyword (e.g,. int, char, if, for, while)
e.g., a token for a number (for e.g., 1.23, 2.456)

Q. How to specify such pattern of characters?
A. Regular Expressions (REs)

e.g., RE for keyword while [while]
e.g., RE for an identifier [[a—zA-7Z] [a—zA-Z0-9_] *]
e.g., RE for a white space [[\t\r]+]

I

Compiler Infrastructure: Parser LASSONDE

e A parser’s input is a sequence of fokens (by some scanner).
» A parser performs syntactic analysis on the input token
sequence and produces an abstract syntax tree (AST).
e ANALOGY: ASTs are like individual sentences in an essay.
= Tokens not parseable into a valid AST ~ Grammatical errors
Q. An essay with no speling and grammatical errors good enough?
A. No, it may talk about non-sense (sentences in wrong contexts).
= An input program with no lexical/syntactic errors should still be
subject to semantic analysis (e.g., type checking, code optimization).
Q.: How to specify such pattern of tokens?
A.: Context-Free Grammars (CFGs)
e.g., CFG (with terminals and non-terminals) for a while-loop:

WhileLoop
Impl

WHILE LPAREN BoolExpr RPAREN LCBRAC /mpl RCBRAC

Instruction SEMICOL Impl

I

Compiler Infrastructure: Optimizer (1)
e Consider an input AST which has the pretty printing:
b :=...; Cc = ... ; a:= ...
across 1 |..| nis 1
loop
read d
a:=a* 2 b x c * d
end

Q. AST of above program optimized for performance?
A. No - values of 2, b, c stay invariant within the loop.

e An optimizer may transform AST like above into:

b= ...; Cc = ... ; a:= ...
temp := 2 * b * C
across 1 |..| nis 1
loop
read d
a = a x temp x d
end

i ot ot

I

Compiler Infrastructure: Optimizer (2) LASSONDE

Problem: Given a user-written program, optimize it for best
runtime performance.

b= ...; c:i=...; a:=... b= ...; c:=...; a:=...
across 1 |..| nis i L. temp := 2 * b * C
Too optimized across 1 |..| n is i
P P> loop
. >
read d voad d
a:=ax2xbxcxd ai=a x temp x d
end end
parsed pretty-printed

PROGRAM PROGRAM

Loop i Loop
» f
AN TN WANANATNA t
m EXP VAR EXP VAR EXP RANGE COUNTER PROGRAM transformed VAR EXP VAR EXP VAR EXP VAR EXP RANGE COUNTER PROGRA
[to4o4 ottt N
! e a / \ I / \ 3 e a tomp fw / \ 1 /
VAR VAR VAR READ = VAR VAR VAR READ
+
1 orr .
i 1 '
a 2'brcrd d

1) U0

I

Example Compiler 2

e Consider a compiler which turns an object-based
Domain-Specific Language (DSL) into a SQL database.

e Why is an object-to-relational compiler valuable?

Hint. Which semantic domain is better for high-level specification?

Hint. Which semantic domain is better for data management?

[managing big data | specifying data & updates |

object-oriented environment

X

v

relational database

v

X

e Challenge : Object-Relational Impedance Mismatch

12 ot ol

Example Compiler 2

I

e The input/source contains 2 parts:
o DATA MODEL: classes & associations

e.g., data model of a Hotel Reservation System:

License Account

ermit
consultants per
*seq
employers
. licensee
1

account _owner|
0.1

1 Traveller

registered

clients i
- Hotel
reservations host host allocations
B]] B
reservations = host
*seq 1
rooms

Allocation

allocations

o BEHAVIOURAL MODEL: update methods specified as predicates

30100

I

Example Compiler 2: Transforming Data LASSONDE

class A { class B {
attributes attributes
s: string is: set (int)
bs: set(B . a) [*] } a: A . bs }

e Each class is turned into a class table:

o Column oid stores the object reference. [PRIMARY KEY]
o Implementation strategy for attributes:
] | SINGLE-VALUED [MULTI-VALUED |
PRIMITIVE-TYPED column in class table \ collection table
REFERENCE-TYPED association table

e Each collection table:

o Column o1id stores the context object.

o 1 column stores the corresponding primitive value or oid.
e Each association table:

o Column oid stores the association reference.

o 2 columns store oid’s of both association ends. [FOREIGN KEY]

I

Example Compiler 2: Input/Source ¥

e Consider a valid input/source program:

class Account { class Traveller {
attributes attributes
owner: Traveller . account name: string
balance: int reglist: set (Hotel . registered) [*
} }

class Hotel {
attributes
name: string
registered: set (Traveller . reglist) [«]

methods
register {
t? : extent (Traveller)

& t? /: registered
==>
registered
|| t?.reglist :
}

registered \/ {t?}
t?.reglist \/ {this}

e How do you specify the scanner and parser accordingly?
-_—

I

Example Compiler 2: Output/Target LASSONDE

o Class associations are transformed to database schemas.

CREATE TABLE ‘Account‘(
‘oid' INTEGER AUTO_INCREMENT, ‘balance‘ INTEGER,
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Traveller‘(
‘oid' INTEGER AUTO_INCREMENT, ‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Hotel(
‘oid' INTEGER AUTO_INCREMENT, ‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Account_owner_Traveller_account*(
‘oid' INTEGER AUTO_INCREMENT, ‘owner‘' INTEGER, ‘account‘ INTEGER,
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Traveller_reglist_Hotel_registered"(
‘oid' INTEGER AUTO_INCREMENT, ‘reglist‘ INTEGER, ‘registered‘ INTEGER,
PRIMARY KEY (‘oid‘));

* Method predicates are compiled into stored procedures.

CREATE PROCEDURE ‘Hotel register'(IN ‘this?‘ INTEGER, IN ‘t?‘ INTEGER)
BEGIN

END

I

Example Compiler 2: Transforming Updates).ssono:

Challenge : Transform dot notations into relational queries.

e.g., The AST corresponding to the following dot notation
(in the context of class Account,
retrieving the owner’s list of registrations)

this.owner.reglist

may be transformed into the following (nested) table lookups:

SELECT (VAR ‘reglist?‘)
(TABLE ‘Hotel_registered_Traveller_reglist®)
(VAR ‘registered = (SELECT (VAR ‘owner‘)
(TABLE ‘Account_owner_Traveller_account ‘)
(VAR ‘owner' = VAR ‘this‘)))

Lot o0

Beyond this lecture ...

e Read Chapter 1 of EAC2 to find out more about Example
Compiler 1

» Read this paper to find out more about Example Compiler 2:
http://dx.doi.orq/10.4204/EPTCS.105.8

8 ot o1

http://dx.doi.org/10.4204/EPTCS.105.8

Index (1)

[Whatis a Compiler? (1)
[Whatis a Compiler? (2)

ompiler: Typical Infrastructure
[Compiler: Typical Infrastructure (2)

[Example Compiler 1]

[Compiler Infrastructure:]
canner vs. Parser vs. Optimize

[Compiler Infrastructure: Scannei]
[Compiler Infrastructure: Parser|
[Compiler Infrastructure: Optimizer (1)
[Compiler Infrastructure: Optimizer (2)

19 ot o0

Index (2)

[Example Compiler 2|

[Example Compiler 2|

[Example Compiler 2: Transforming Datal

Xampie compilier <. Input/sourc

Example Compller 2: UU[DUB Iar§e|

Xampie Compiier 2. Iransrormin ate

Beyond this Tecture. "]

241N} 210

	What is a Compiler? (1)
	What is a Compiler? (2)
	Compiler: Typical Infrastructure (1)
	Compiler: Typical Infrastructure (2)
	Example Compiler 1
	Compiler Infrastructure: Scanner vs. Parser vs. Optimizer
	Compiler Infrastructure: Scanner
	Compiler Infrastructure: Parser
	Compiler Infrastructure: Optimizer (1)
	Compiler Infrastructure: Optimizer (2)
	Example Compiler 2
	Example Compiler 2
	Example Compiler 2: Transforming Data
	Example Compiler 2: Input/Source
	Example Compiler 2: Output/Target
	Example Compiler 2: Transforming Updates
	Beyond this lecture…

