
Overview of Compilation
Readings: EAC2 Chapter 1

EECS4302 A:
Compilers and Interpreters

Summer 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What is a Compiler? (1)
A software system that automatically translates/transforms
input /source programs (written in one language) to
output /target programs (written in another language).

Compiler
Input/Source
Program

Output/Target
Program

Input/Source
Language

Output/Target
Language

passed to generates

input
semantic domain

output
semantic domain

encoded
into

encoded
into

○ Semantic Domain : Context with its own vocabulary & meanings
e.g., OO (EECS1022/2030/2011), database (3421), predicates (1090)

○ Source and target may be in different semantic domains.
e.g., Java programs to SQL relational database schemas/queries
e.g., C procedural programs to MISP assembly instructions

2 of 20

What is a Compiler? (2)
● The idea about a compiler is extremely powerful:

You can turn anything to anything else,
as long as the following are clear about these two things:
○ SYNTAX [specifiable as CFGs]
○ SEMANTICS [programmable as mapping functions]

Mental Exercise. Let’s consider an A+ challenge.
● A compiler should be constructed with good SE principles .

○ Modularity
[interacting components]

○ Information Hiding
[hiding unstable, revealing stable]

○ Single Choice Principle
[a change only causing minimum impact]

○ Design Patterns
[polymorphism & dynamic binding]

○ Regression Testing
[e.g., unit-level, acceptance-level]

3 of 20

Compiler: Typical Infrastructure (1)

6 CHAPTER 1 Overview of Compilation

A traditional compiler improves the input program by making it directly
executable on some target machine. Other “compilers” improve their input
in different ways. For example, tpic is a program that takes the specifica-
tion for a drawing written in the graphics language pic and converts it into
LATEX; the “improvement” lies in LATEX’s greater availability and generality.
A source-to-source translator for c must produce code that is, in some mea-
sure, better than the input program; if it is not, why would anyone invoke it?

1.2 COMPILER STRUCTURE
A compiler is a large, complex software system. The community has been
building compilers since 1955, and over the years, we have learned many
lessons about how to structure a compiler. Earlier, we depicted a compiler as
a simple box that translates a source program into a target program. Reality,
of course, is more complex than that simple picture.

As the single-box model suggests, a compiler must both understand the
source program that it takes as input and map its functionality to the target
machine. The distinct nature of these two tasks suggests a division of labor
and leads to a design that decomposes compilation into two major pieces: a
front end and a back end.

Front End
IR

Back End

Compiler

TargetSource

Program Program

The front end focuses on understanding the source-language program. The
back end focuses on mapping programs to the target machine. This sep-
aration of concerns has several important implications for the design and
implementation of compilers.

The front end must encode its knowledge of the source program in some
structure for later use by the back end. This intermediate representation (ir)IR

A compiler uses some set of data structures to
represent the code that it processes. That form is
called an intermediate representation, or IR.

becomes the compiler’s definitive representation for the code it is translating.
At each point in compilation, the compiler will have a definitive represen-
tation. It may, in fact, use several different irs as compilation progresses,
but at each point, one representation will be the definitive ir. We think of
the definitive ir as the version of the program passed between independent
phases of the compiler, like the ir passed from the front end to the back end
in the preceding drawing.

In a two-phase compiler, the front end must ensure that the source program
is well formed, and it must map that code into the ir. The back end must map

○ FRON END:
● Encodes: knowledge of the source language
● Transforms: from the source to some IR (intermediate representation)
● Principle: meaning of the source must be preserved in the IR.

○ BACK END:
● Encodes knowledge of the target language
● Transforms: from the IR to the target
● Principle: meaning of the IR must be reflected in the target.

Q. How many IRs needed for building a number of compilers:
JAVA-TO-C, C#-TO-C, JAVA-TO-PYTHON, C#-TO-PYTHON?
A. Two IRs suffice: One for OO; one for procedural .
⇒ IR should be as language-independent as possible.

4 of 20

Compiler: Typical Infrastructure (2)

8 CHAPTER 1 Overview of Compilation

languages producing the same ir and using a common back end. Both
scenarios assume that one ir can serve for several combinations of source
and target; in practice, both language-specific and machine-specific details
usually find their way into the ir.

Introducing an ir makes it possible to add more phases to compilation. The
compiler writer can insert a third phase between the front end and the back
end. This middle section, or optimizer, takes an ir program as its input andOptimizer

The middle section of a compiler, called an
optimizer, analyzes and transforms the IR to
improve it.

produces a semantically equivalent ir program as its output. By using the ir
as an interface, the compiler writer can insert this third phase with minimal
disruption to the front end and back end. This leads to the following compiler
structure, termed a three-phase compiler.

Front End
IR

Optimizer
IR

Back End

Compiler

TargetSource

Program Program

The optimizer is an ir-to-ir transformer that tries to improve the ir program
in some way. (Notice that these transformers are, themselves, compilers
according to our definition in Section 1.1.) The optimizer can make one or
more passes over the ir, analyze the ir, and rewrite the ir. The optimizer
may rewrite the ir in a way that is likely to produce a faster target program
from the back end or a smaller target program from the back end. It may
have other objectives, such as a program that produces fewer page faults or
uses less energy.

Conceptually, the three-phase structure represents the classic optimizing
compiler. In practice, each phase is divided internally into a series of passes.
The front end consists of two or three passes that handle the details of
recognizing valid source-language programs and producing the initial ir
form of the program. The middle section contains passes that perform dif-
ferent optimizations. The number and purpose of these passes vary from
compiler to compiler. The back end consists of a series of passes, each of
which takes the ir program one step closer to the target machine’s instruc-
tion set. The three phases and their individual passes share a common
infrastructure. This structure is shown in Figure 1.1.

In practice, the conceptual division of a compiler into three phases, a front
end, a middle section or optimizer, and a back end, is useful. The problems
addressed by these phases are different. The front end is concerned with
understanding the source program and recording the results of its analy-
sis into ir form. The optimizer section focuses on improving the ir form.

OPTIMIZER:
○ An IR-to-IR transformer that aims at “improving” the output of

front end, before passing it as input of the back end.
○ Think of this transformer as attempting to discover an “optimal”

solution to some computational problem.
e.g., runtime performance, static design

Q. Behaviour of the target program depends upon?
1. Meaning of the source preserved in IR?
2. IR-to-IR transformation of the optimizer semantics-preserving?
3. Meaning of IR preserved in the generated target?

(1) – (3) necessary & sufficient for the soundness of a compiler.
5 of 20

Example Compiler 1
● Consider a conventional compiler which turns

a C-like program into executable machine instructions.
● The source and target are at different levels of abstractions :

○ C-like program is like “high-level” specification.
○ Macine instructions are the low-level, efficient implementation.

1.3 Overview of Translation 9

Front End Optimizer Back End�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
- - - - - - - -- -

S
ca

nn
er

P
ar

se
r

E
la

bo
ra

tio
n

O
pt

im
iz

at
io

n
1

O
pt

im
iz

at
io

n
2

. . .

O
pt

im
iz

at
io

n
n

In
st

S
el

ec
tio

n

In
st

S
ch

ed
ul

in
g

R
eg

A
llo

ca
tio

n

�� ��Infrastructure

? ? ? ? ? ? ? ? ?
6 6 6 6 6 6 6 6 6

n FIGURE 1.1 Structure of a Typical Compiler.

The back end must map the transformed ir program onto the bounded
resources of the target machine in a way that leads to efficient use of those
resources.

Of these three phases, the optimizer has the murkiest description. The term
optimization implies that the compiler discovers an optimal solution to some
problem. The issues and problems that arise in optimization are so com-
plex and so interrelated that they cannot, in practice, be solved optimally.
Furthermore, the actual behavior of the compiled code depends on interac-
tions among all of the techniques applied in the optimizer and the back end.
Thus, even if a single technique can be proved optimal, its interactions with
other techniques may produce less than optimal results. As a result, a good
optimizing compiler can improve the quality of the code, relative to an unop-
timized version. However, an optimizing compiler will almost always fail to
produce optimal code.

The middle section can be a single monolithic pass that applies one or more
optimizations to improve the code, or it can be structured as a series of
smaller passes with each pass reading and writing ir. The monolithic struc-
ture may be more efficient. The multipass structure may lend itself to a less
complex implementation and a simpler approach to debugging the compiler.
It also creates the flexibility to employ different sets of optimization in dif-
ferent situations. The choice between these two approaches depends on the
constraints under which the compiler is built and operates.

1.3 OVERVIEW OF TRANSLATION
To translate code written in a programming language into code suitable for
execution on some target machine, a compiler runs through many steps.

6 of 20

Compiler Infrastructure:
Scanner vs. Parser vs. Optimizer

Scanner
Source Program

(seq. of characters) seq. of tokens Parser AST1

Lexical Analysis Syntactic Analysis

ASTn… Target Program

Semantic Analysis

pretty printed

● The same input program may be perceived differently:
1. As a character sequence [subject to lexical analysis]
2. As a token sequence [subject to syntactic analysis]
3. As a abstract syntax tree (AST) [subject to semantic analysis]

● (1) & (2) are routine tasks of lexical/grammar rule specification.
● (3) is where the most creativity is used to a compiler:

A series of semantics-preserving AST -to-AST transformations.

7 of 20

Compiler Infrastructure: Scanner
● The source program is perceived as a sequence of characters.
● A scanner performs lexical analysis on the input character

sequence and produces a sequence of tokens.
● ANALOGY: Tokens are like individual words in an essay.

⇒ Invalid tokens ≈ Misspelt words
e.g., a token for a useless delimiter: e.g., space, tab, new line
e.g., a token for a useful delimiter: e.g., (,), {, }, ,
e.g., a token for an identifier (for e.g., a variable, a function)
e.g., a token for a keyword (e.g,. int, char, if, for, while)
e.g., a token for a number (for e.g., 1.23, 2.46)
Q. How to specify such pattern of characters?
A. Regular Expressions (REs)
e.g., RE for keyword while [while]
e.g., RE for an identifier [[a-zA-Z][a-zA-Z0-9_]*]
e.g., RE for a white space [[\t\r]+]

8 of 20

Compiler Infrastructure: Parser
● A parser’s input is a sequence of tokens (by some scanner).
● A parser performs syntactic analysis on the input token

sequence and produces an abstract syntax tree (AST).
● ANALOGY: ASTs are like individual sentences in an essay.

⇒ Tokens not parseable into a valid AST ≈ Grammatical errors

Q. An essay with no speling and grammatical errors good enough?
A. No, it may talk about non-sense (sentences in wrong contexts).
⇒ An input program with no lexical/syntactic errors should still be
subject to semantic analysis (e.g., type checking, code optimization).

Q.: How to specify such pattern of tokens?
A.: Context-Free Grammars (CFGs)

e.g., CFG (with terminals and non-terminals) for a while-loop:

WhileLoop ∶∶= WHILE LPAREN BoolExpr RPAREN LCBRAC Impl RCBRAC
Impl ∶∶=

∣ Instruction SEMICOL Impl

9 of 20

Compiler Infrastructure: Optimizer (1)
● Consider an input AST which has the pretty printing:

b := . . . ; c := . . . ; a := . . .
across 1 |..| n is i
loop
read d
a := a * 2 * b * c * d

end

Q. AST of above program optimized for performance?
A. No ∵ values of 2, b, c stay invariant within the loop.

● An optimizer may transform AST like above into:
b := . . . ; c := . . . ; a := . . .
temp := 2 * b * c
across 1 |..| n is i
loop
read d
a := a * temp * d

end

10 of 20

Compiler Infrastructure: Optimizer (2)

Problem: Given a user-written program, optimize it for best
runtime performance.

PROGRAM

:=

VAR

b

EXP

…

:=

VAR

c

EXP

…

:=

VAR

a

EXP

…

LOOP

RANGE

VAR VAR

1 n

PROGRAM

READ

VAR

d

:=

VAR

a

EXP

a * 2 * b * c * d

COUNTER

VAR

i

optimized

PROGRAM

:=

VAR

b

EXP

…

:=

VAR

c

EXP

…

:=

VAR

a

EXP

…

LOOP

RANGE

VAR VAR

1 n

PROGRAM

READ

VAR

d

:=

VAR

a

EXP

a * temp * d

COUNTER

VAR

i

:=

VAR

temp

EXP

2 * b * c

parsed pretty-printed

transformed

11 of 20

Example Compiler 2

● Consider a compiler which turns an object-based
Domain-Specific Language (DSL) into a SQL database.

● Why is an object-to-relational compiler valuable?

Hint. Which semantic domain is better for high-level specification?
Hint. Which semantic domain is better for data management?

managing big data specifying data & updates
object-oriented environment × ✓

relational database ✓ ×

● Challenge : Object-Relational Impedance Mismatch

12 of 20

Example Compiler 2

● The input/source contains 2 parts:
○ DATA MODEL: classes & associations

e.g., data model of a Hotel Reservation System:

Room

AllocationHotel
allocations

*
host

1

Reservation
reservations

*seq
host

1 host
1

rooms
*seq

room
0..1

allocations
*

room
0..1

reservations
*seq

Staff employees
*seq

consultants
*seq employers

*seq

clients
*

mentor
0..1

mentee
0..1

Account Travellerowner
1

account
0..1

registered
*

reglist
*

License

permit
1

licensee
1

○ BEHAVIOURAL MODEL: update methods specified as predicates
13 of 20

Example Compiler 2: Transforming Data
class A {
attributes
s: string
bs: set(B . a) [*] }

class B {
attributes
is: set (int)
a: A . bs }

● Each class is turned into a class table:
○ Column oid stores the object reference. [PRIMARY KEY]
○ Implementation strategy for attributes:

SINGLE-VALUED MULTI-VALUED

PRIMITIVE-TYPED column in class table collection table
REFERENCE-TYPED association table

● Each collection table:
○ Column oid stores the context object.
○ 1 column stores the corresponding primitive value or oid.

● Each association table:
○ Column oid stores the association reference.
○ 2 columns store oid’s of both association ends. [FOREIGN KEY]

14 of 20

Example Compiler 2: Input/Source
● Consider a valid input/source program:

class Account {
attributes
owner: Traveller . account
balance: int

}

class Traveller {
attributes
name: string
reglist: set(Hotel . registered)[*]

}

class Hotel {
attributes
name: string
registered: set(Traveller . reglist)[*]

methods
register {

t? : extent(Traveller)
& t? /: registered
==>

registered := registered \/ {t?}
|| t?.reglist := t?.reglist \/ {this}

}
}

● How do you specify the scanner and parser accordingly?
15 of 20

Example Compiler 2: Output/Target

● Class associations are transformed to database schemas.
CREATE TABLE ‘Account‘(

‘oid‘ INTEGER AUTO_INCREMENT,‘balance‘ INTEGER,
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Traveller‘(
‘oid‘ INTEGER AUTO_INCREMENT,‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Hotel‘(
‘oid‘ INTEGER AUTO_INCREMENT,‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Account_owner_Traveller_account‘(
‘oid‘ INTEGER AUTO_INCREMENT, ‘owner‘ INTEGER, ‘account‘ INTEGER,
PRIMARY KEY (‘oid‘));

CREATE TABLE ‘Traveller_reglist_Hotel_registered‘(
‘oid‘ INTEGER AUTO_INCREMENT, ‘reglist‘ INTEGER, ‘registered‘ INTEGER,
PRIMARY KEY (‘oid‘));

● Method predicates are compiled into stored procedures.
CREATE PROCEDURE ‘Hotel_register‘(IN ‘this?‘ INTEGER, IN ‘t?‘ INTEGER)

BEGIN
...

END

16 of 20

Example Compiler 2: Transforming Updates

Challenge : Transform dot notations into relational queries.
e.g., The AST corresponding to the following dot notation
(in the context of class Account,
retrieving the owner’s list of registrations)

this.owner.reglist

may be transformed into the following (nested) table lookups:

SELECT (VAR ‘reglist‘)
(TABLE ‘Hotel_registered_Traveller_reglist‘)
(VAR ‘registered‘ = (SELECT (VAR ‘owner‘)

(TABLE ‘Account_owner_Traveller_account‘)
(VAR ‘owner‘ = VAR ‘this‘)))

17 of 20

Beyond this lecture . . .

● Read Chapter 1 of EAC2 to find out more about Example
Compiler 1

● Read this paper to find out more about Example Compiler 2:
http://dx.doi.org/10.4204/EPTCS.105.8

18 of 20

http://dx.doi.org/10.4204/EPTCS.105.8

Index (1)

What is a Compiler? (1)

What is a Compiler? (2)

Compiler: Typical Infrastructure (1)

Compiler: Typical Infrastructure (2)

Example Compiler 1
Compiler Infrastructure:
Scanner vs. Parser vs. Optimizer

Compiler Infrastructure: Scanner

Compiler Infrastructure: Parser

Compiler Infrastructure: Optimizer (1)

Compiler Infrastructure: Optimizer (2)
19 of 20

Index (2)
Example Compiler 2

Example Compiler 2

Example Compiler 2: Transforming Data

Example Compiler 2: Input/Source

Example Compiler 2: Output/Target

Example Compiler 2: Transforming Updates

Beyond this lecture. . .

20 of 20

	What is a Compiler? (1)
	What is a Compiler? (2)
	Compiler: Typical Infrastructure (1)
	Compiler: Typical Infrastructure (2)
	Example Compiler 1
	Compiler Infrastructure: Scanner vs. Parser vs. Optimizer
	Compiler Infrastructure: Scanner
	Compiler Infrastructure: Parser
	Compiler Infrastructure: Optimizer (1)
	Compiler Infrastructure: Optimizer (2)
	Example Compiler 2
	Example Compiler 2
	Example Compiler 2: Transforming Data
	Example Compiler 2: Input/Source
	Example Compiler 2: Output/Target
	Example Compiler 2: Transforming Updates
	Beyond this lecture…

