
Recursion

EECS2030 E: Advanced
Object Oriented Programming

Summer 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

This module is designed to help you learn about:
1. How to solve problems recursively
2. Example recursions on string and arrays
3. Some more advanced example (if time permitted)

2 of 37

Beyond this lecture . . .

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2

● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

3 of 37

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:
○ Base Cases: Small problem instances immediately solvable.
○ Recursive Cases:

● Large problem instances not immediately solvable.
● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]
● Recursion can be easily expressed programmatically in Java:

m (i) {
if(i == . . .) { /* base case: do something directly */ }
else {

m (j);/* recursive call with strictly smaller value */
}

}

○ In the body of a method m, there might be a call or calls to m itself .
○ Each such self-call is said to be a recursive call .
○ Inside the execution of m(i), a recursive call m(j) must be that j < i.

4 of 37

Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.

⇒ The stack contains activation records of all active methods.
○ Top of stack denotes the current point of execution .
○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

5 of 37

Recursion: Factorial (1)
● Recall the formal definition of calculating the n factorial:

n! =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 0
n ⋅ (n − 1) ⋅ (n − 2) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1 if n ≥ 1

● How do you define the same problem recursively?

n! =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 0
n ⋅ (n − 1)! if n ≥ 1

● To solve n!, we combine n and the solution to (n - 1)!.

int factorial (int n) {
int result;
if(n == 0) { /* base case */ result = 1; }
else { /* recursive case */

result = n * factorial (n - 1);
}
return result;

}

6 of 37

Common Errors of Recursive Methods
● Missing Base Case(s).

int factorial (int n) {

return n * factorial (n - 1);
}

Base case(s) are meant as points of stopping growing the
runtime stack.

● Recursive Calls on Non-Smaller Problem Instances.

int factorial (int n) {
if(n == 0) { /* base case */ return 1; }

else { /* recursive case */ return n * factorial (n); }
}

Recursive calls on strictly smaller problem instances are
meant for moving gradually towards the base case(s).

● In both cases, a StackOverflowException will be thrown.
7 of 37

Recursion: Factorial (2)

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

8 of 37

Recursion: Factorial (3)

○ When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.

○ When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.
. . .

○ factorial(0) returns 1 back to suspended call factorial(1).
○ factorial(1) receives 1 from factorial(0), multiplies 1 to it, and

returns 1 back to the suspended call factorial(2).
○ factorial(2) receives 1 from factorial(1), multiplies 2 to it, and

returns 2 back to the suspended call factorial(3).
○ factorial(3) receives 2 from factorial(1), multiplies 3 to it, and

returns 6 back to the suspended call factorial(4).
○ factorial(4) receives 6 from factorial(3), multiplies 4 to it, and

returns 24 back to the suspended call factorial(5).
○ factorial(5) receives 24 from factorial(4), multiplies 5 to it, and

returns 120 as the result.
9 of 37

Recursion: Factorial (4)

● When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.g., factorial(4)):
○ The execution of the current method (i.e., factorial(5)) is

suspended , and a structure known as an activation record or
activation frame is created to store information about the

progress of that method (e.g., values of parameters and local
variables).

○ The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).

○ When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its
execution.

● What kind of data structure does this activation-suspension
process correspond to? [LIFO Stack]

10 of 37

Recursion: Fibonacci Sequence (1)
● Can you identify the pattern of a Fibonacci sequence?

F = 1,1,2,3,5,8,13,21,34,55,89, . . .

● Here is the formal, recursive definition of calculating the nth
number in a Fibonacci sequence (denoted as Fn):

Fn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

int fib (int n) {
int result;
if(n == 1) { /* base case */ result = 1; }
else if(n == 2) { /* base case */ result = 1; }
else { /* recursive case */

result = fib (n - 1) + fib (n - 2);
}
return result;

}

11 of 37

Recursion: Fibonacci Sequence (2)
fib(5)

= { fib(5) = fib(4) + fib(3); push(fib(5)); suspended: ⟨fib(5)⟩; active: fib(4) }
fib(4) + fib(3)

= { fib(4) = fib(3) + fib(2); suspended: ⟨fib(4), fib(5)⟩; active: fib(3) }
(fib(3) + fib(2)) + fib(3)

= { fib(3) = fib(2) + fib(1); suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(2) }
((fib(2) + fib(1)) + fib(2)) + fib(3)

= { fib(2) returns 1; suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(1) }
((1 + fib(1)) + fib(2)) + fib(3)

= { fib(1) returns 1; suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(3) }
((1 + 1) + fib(2)) + fib(3)

= { fib(3) returns 1 + 1; pop(); suspended: ⟨fib(4), fib(5)⟩; active: fib(2) }
(2 + fib(2)) + fib(3)

= { fib(2) returns 1; suspended: ⟨fib(4), fib(5)⟩; active: fib(4) }
(2 + 1) + fib(3)

= { fib(4) returns 2 + 1; pop(); suspended: ⟨fib(5)⟩; active: fib(3) }
3 + fib(3)

= { fib(3) = fib(2) + fib(1); suspended: ⟨fib(3),fib(5)⟩; active: fib(2) }
3 + (fib(2) + fib(1))

= { fib(2) returns 1; suspended: ⟨fib(3), fib(5)⟩; active: fib(1) }
3 + (1 + fib(1))

= { fib(1) returns 1; suspended: ⟨fib(3), fib(5)⟩; active: fib(3) }
3 + (1 + 1)

= { fib(3) returns 1 + 1; pop() ; suspended: ⟨fib(5)⟩; active: fib(5) }
3 + 2

= { fib(5) returns 3 + 2; suspended: ⟨⟩ }
5

12 of 37

Java Library: String
public class StringTester {
public static void main(String[] args) {
String s = "abcd";
System.out.println(s.isEmpty()); /* false */
/* Characters in index range [0, 0) */
String t0 = s.substring(0, 0);
System.out.println(t0); /* "" */
/* Characters in index range [0, 4) */
String t1 = s.substring(0, 4);
System.out.println(t1); /* "abcd" */
/* Characters in index range [1, 3) */
String t2 = s.substring(1, 3);
System.out.println(t2); /* "bc" */
String t3 = s.substring(0, 2) + s.substring(2, 4);
System.out.println(s.equals(t3)); /* true */
for(int i = 0; i < s.length(); i ++) {
System.out.print(s.charAt(i));

}
System.out.println();

}
}

13 of 37

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.

System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string Ð→ Return true immediately.
Base Case 2: String of length 1 Ð→ Return true immediately.
Recursive Case: String of length ≥ 2 Ð→
○ 1st and last characters match, and
○ the rest (i.e., middle) of the string is a palindrome .

14 of 37

Recursion: Palindrome (2)

boolean isPalindrome (String word) {
if(word.length() == 0 || word.length() == 1) {
/* base case */
return true;

}
else {
/* recursive case */
char firstChar = word.charAt(0);
char lastChar = word.charAt(word.length() - 1);
String middle = word.substring(1, word.length() - 1);
return

firstChar == lastChar
/* See the API of java.lang.String.substring. */

&& isPalindrome (middle);
}

}

15 of 37

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.

System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"

Base Case 1: Empty string Ð→ Return empty string.
Base Case 2: String of length 1 Ð→ Return that string.
Recursive Case: String of length ≥ 2 Ð→

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 2) and 1).

16 of 37

Recursion: Reverse of a String (2)

String reverseOf (String s) {
if(s.isEmpty()) { /* base case 1 */
return "";

}
else if(s.length() == 1) { /* base case 2 */
return s;

}
else { /* recursive case */
String tail = s.substring(1, s.length());

String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

}
}

17 of 37

Recursion: Number of Occurrences (1)
Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.

System.out.println(occurrencesOf("", ’a’)); /* 0 */
System.out.println(occurrencesOf("a", ’a’)); /* 1 */
System.out.println(occurrencesOf("b", ’a’)); /* 0 */
System.out.println(occurrencesOf("baaba", ’a’)); /* 3 */
System.out.println(occurrencesOf("baaba", ’b’)); /* 2 */
System.out.println(occurrencesOf("baaba", ’c’)); /* 0 */

Base Case: Empty string Ð→ Return 0.
Recursive Case: String of length ≥ 1 Ð→

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

18 of 37

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) {
if(s.isEmpty()) {
/* Base Case */
return 0;

}
else {
/* Recursive Case */
char head = s.charAt(0);
String tail = s.substring(1, s.length());
if(head == c) {

return 1 + occurrencesOf (tail, c);
}
else {

return 0 + occurrencesOf (tail, c);
}

}
}

19 of 37

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.
● Naively , explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /* base case */ }
else if(a.length == 1) { /* base case */ }
else {
int[] sub = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { sub[i - 1] = a[i]; }
m(sub) } }

● For efficiency , we pass the reference of the same array and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {
if(from > to) { /* base case */ }
else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]
● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]
● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]20 of 37

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st element positive, and
○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
∵ No witness (i.e., a positive number) from an empty array

21 of 37

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);

}
}

22 of 37

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st and 2nd elements are sorted in a non-descending order, and
○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending order .
23 of 37

Recursion: Is an Array Sorted? (2)

boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return true;

}
else {
return a[from] <= a[from + 1]

&& isSortedHelper (a, from + 1, to);

}
}

24 of 37

Tower of Hanoi: Specification
The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883.

His formulation involved three pegs and eight distinctly-sized
disks stacked on one of the pegs from the biggest on the
bottom to the smallest on the top, like so:

● Given: A tower of 8 disks, initially
stacked in decreasing size on
one of 3 pegs

● Rules:
○ Move only one disk at a time.
○ Never move a larger disk onto a

smaller one.

● Problem: Transfer the entire
tower to one of the other pegs.

25 of 37

Tower of Hanoi: Lengend

Brahmins at a temple in Benares, India
have been carrying out movement of
“Sacred Tower of Brahma”,
consisting of sixty-four golden disks,
according to the same rules as in the
Tower of Hanoi game, and that
the completion of the tower would lead
to the end of the world.

26 of 37

Tower of Hanoi: A Recursive Solution

The general, a recursive solution requires 3 steps:

1. Transfer the n - 1 smallest disks to a second peg.
2. Move the largest peg to the third peg (free of disks).
3. Transfer the n - 1 smallest disks back onto the largest disk.

27 of 37

Tower of Hanoi in Java (1)
void towerOfHanoi(String[] disks) {

tohHelper (disks, 0, disks.length - 1, 1, 3);

}
void tohHelper(String[] disks, int from, int to, int ori, int des){
if(from > to) { }
else if(from == to) {
print("move " + disks[to] + " from " + ori + " to " + des);

}
else {
int intermediate = 6 - ori - des;

tohHelper (disks, from, to - 1, ori, intermediate);

print("move " + disks[to] + " from " + ori + " to " + des);

tohHelper (disks, from, to - 1, intermediate, des);

}
}

● tohHelper(disks, from, to, ori, des) moves disks
{disks[from],disks[from + 1],. . . ,disks[to]} from peg ori to peg des.

● Peg id’s are 1, 2, and 3⇒ The intermediate one is 6 − ori − des.
28 of 37

Tower of Hanoi in Java (2)

Say ds (disks) is {A,B,C}, where A < B < C.

tohH(ds, 0, 2
´¸¶
{A,B,C}

, p1, p3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tohH(ds, 0, 1
´¸¶
{A,B}

, p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tohH(ds, 0, 0
´¸¶
{A}

, p1, p3) = { Move A: p1 to p3

Move B: p1 to p2

tohH(ds, 0, 0
´¸¶
{A}

, p3, p2) = { Move A: p3 to p2

Move C: p1 to p3

tohH(ds, 0, 1
´¸¶
{A,B}

, p2, p3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tohH(ds, 0, 0
´¸¶
{A}

, p2, p1) = { Move A: p2 to p1

Move B: p2 to p3

tohH(ds, 0, 0
´¸¶
{A}

, p1, p3) = { Move A: p1 to p3

29 of 37

Tower of Hanoi in Java (3)

towerOfHanio({A, B, C})

tohHelper({A, B, C}, 0, 2, p1, p3)

tohHelper({A, B, C}, 0, 1, p1, p2) tohHelper({A, B, C}, 0, 1, p2, p3)move C from p1 to p3

tohHelper({A, B, C}, 0, 0, p1, p3) move B from p1 to p2 tohHelper({A, B, C}, 0, 0, p3, p2)

move A from p1 to p3 move A from p3 to p2

tohHelper({A, B, C}, 0, 0, p2, p1) move B from p2 to p3 tohHelper({A, B, C}, 0, 0, p1, p3)

move A from p2 to p1 move A from p1 to p3

30 of 37

Running Time: Tower of Hanoi (1)

● Generalize the problem by considering n disks.
● Let T(n) denote the number of moves required to to transfer n

disks from one to another under the rules.
● Recall the general solution pattern:

1. Transfer the n - 1 smallest disks to a second peg.
2. Move the largest peg to the third peg (free of disks).
3. Transfer the n - 1 smallest disks back onto the largest disk.

● We end up with the following recurrence relation that allows us
to compute T(n) for any n we like:

{
T (1) = 1
T (n) = 2 ⋅ T (n − 1) + 1 where n > 0

● To solve this recurrence relation, we study the pattern of T(n)
and observe how it reaches the base case(s).

31 of 37

Running Time: Tower of Hanoi (2)
T (n) = 2

´¸¶
1 term

×T (n − 1) + 1
´¸¶

1 term

= 2 × (2
´¹¹¹¸¹¹¹¹¶

2 terms

×T (n − 2) + 1) + 1
´¹¹¹¸¹¹¹¹¶

2 terms

= 2 × (2 × (2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3 terms

×T (n − 3) + 1) + 1) + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3 terms

= . . .

= 2 × (2 × (2 × (⋅ ⋅ ⋅ × (2
´¹¹¹¸¹¹¶

n − 1 terms

×

T(n − (n−1))
³·¹µ

T (1) +1) + . . .) + 1) + 1) + 1
´¹¹¸¹¹¶

n − 1 terms

= 2n−1 + (n − 1)

∴ T(n) is O(2n)

32 of 37

Tower of Hanoi: Lengend

Brahmins at a temple in Benares, India
have been carrying out movement of
“Sacred Tower of Brahma”,
consisting of sixty-four golden disks,
according to the same rules as in the
Tower of Hanoi game, and that
the completion of the tower would lead
to the end of the world.

Say one disk can be moved in one second.
Q. How long does it take to finish moving 64 disks (n = 64)?
A. 264 seconds ≈ 585 billion years (>> 5 billion centries)!

33 of 37

Beyond this lecture . . .
● Recursions on Arrays: Lab Exercise from EECS2030-F19
● Notes on Recursion:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2024/F/EECS2030/notes/EECS2030_S25_
Notes_Recursion.pdf

● API for String:
https://docs.oracle.com/javase/8/docs/api/
java/lang/String.html

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2

● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

34 of 37

http://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_S25_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_S25_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_S25_Notes_Recursion.pdf
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Index (1)

Learning Outcomes

Beyond this lecture . . .

Recursion: Principle

Tracing Method Calls via a Stack

Recursion: Factorial (1)

Common Errors of Recursive Methods

Recursion: Factorial (2)

Recursion: Factorial (3)

Recursion: Factorial (4)

Recursion: Fibonacci Sequence (1)

Recursion: Fibonacci Sequence (2)
35 of 37

Index (2)
Java Library: String

Recursion: Palindrome (1)

Recursion: Palindrome (2)

Recursion: Reverse of a String (1)

Recursion: Reverse of a String (2)

Recursion: Number of Occurrences (1)

Recursion: Number of Occurrences (2)

Making Recursive Calls on an Array

Recursion: All Positive (1)

Recursion: All Positive (2)

Recursion: Is an Array Sorted? (1)
36 of 37

Index (3)
Recursion: Is an Array Sorted? (2)

Tower of Hanoi: Specification

Tower of Hanoi: Legend

Tower of Hanoi: A Recursive Solution

Tower of Hanoi in Java (1)

Tower of Hanoi in Java (2)

Tower of Hanoi in Java (3)

Running Time: Tower of Hanoi (1)

Running Time: Tower of Hanoi (2)

Tower of Hanoi: Legend

Beyond this lecture . . .

37 of 37

	Learning Outcomes
	Beyond this lecture …
	Recursion: Principle
	Tracing Method Calls via a Stack
	Recursion: Factorial (1)
	Common Errors of Recursive Methods
	Recursion: Factorial (2)
	Recursion: Factorial (3)
	Recursion: Factorial (4)
	Recursion: Fibonacci Sequence (1)
	Recursion: Fibonacci Sequence (2)
	Java Library: String
	Recursion: Palindrome (1)
	Recursion: Palindrome (2)
	Recursion: Reverse of a String (1)
	Recursion: Reverse of a String (2)
	Recursion: Number of Occurrences (1)
	Recursion: Number of Occurrences (2)
	Making Recursive Calls on an Array
	Recursion: All Positive (1)
	Recursion: All Positive (2)
	Recursion: Is an Array Sorted? (1)
	Recursion: Is an Array Sorted? (2)
	Tower of Hanoi: Specification
	Tower of Hanoi: Legend
	Tower of Hanoi: A Recursive Solution
	Tower of Hanoi in Java (1)
	Tower of Hanoi in Java (2)
	Tower of Hanoi in Java (3)
	Running Time: Tower of Hanoi (1)
	Running Time: Tower of Hanoi (2)
	Tower of Hanoi: Legend
	Beyond this lecture …

