
Exceptions

EECS2030 E: Advanced
Object Oriented Programming

Summer 2025

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● Caller vs. Callee in a Method Invocation
● Error Handling via Console Message
● The Catch-or-Specify Requirement
● Example: To Handle or Not to Handle?
● Error Handling via Exceptions
● What to Do When an Exception is Thrown at Runtime
● More Examples on Exception Handling

2 of 39

Caller vs. Callee

● Within the body implementation of a method ({. . .}), we may
call other methods.

1 class C1 {
2 void m1() {
3 C2 o = new C2();
4 o.m2(); /* static type of o is C2 */

5 }
6 }

● From Line 4, we say:
○ Method C1.m1 (i.e., method m1 from class C1) is the caller of

method C2.m2.○ Method C2.m2 is the callee of method C1.m1.

3 of 39

Stack of Method Calls

● Execution of a Java project starts from the main method of
some class (e.g., CircleTester, BankApplication).

● Each line of method call involves the execution of that method’s
body implementation○ That method’s body implementation may also involve method

calls, which may in turn involve more method calls, and etc.○ It is typical that we end up with a chain of method calls !
○ We visualize this chain of method calls as a call stack .

For example:
● Account.withdraw [top of stack; latest called]● Bank.withdrawFrom● BankApplication.main [bottom of stack; earliest called]○ The closer a method is to the top of the call stack, the later its call

was made.

4 of 39

Error Reporting via Consoles: Circles (1)
1 class Circle {
2 double radius;
3 Circle() { /* radius defaults to 0 */ }
4 void setRadius(double r) {

5 if (r < 0) { System.out.println("Invalid radius."); }
6 else { radius = r; }
7 }
8 double getArea() { return radius * radius * 3.14; }
9 }

● A negative radius is considered as an invalid input value to
method setRadius.● What if the caller of Circle.setRadius passes a negative
value for r?○ An error message is printed to the console (Line 5) to warn the

caller of setRadius.
○ However, printing an error message to the console does not force

the caller of setRadius to stop and handle invalid values of r.
5 of 39

Error Reporting via Consoles: Circles (2)
1 class CircleCalculator {
2 public static void main(String[] args) {
3 Circle c = new Circle();
4 c.setRadius(-10);
5 double area = c.getArea();
6 System.out.println("Area: " + area);
7 }
8 }

● L4: CircleCalculator.main is caller of Circle.setRadius● A negative radius is passed to setRadius in Line 4.● The execution always flows smoothly from Lines 4 to Line 5,
even when there was an error message printed from Line 4.● It is not feasible to check if there is any kind of error message
printed to the console right after the execution of Line 4.● Solution: A way to force CircleCalculator.main, caller of
Circle.setRadius, to realize that things might go wrong.⇒When things do go wrong, immediate actions are needed.

6 of 39

Error Reporting via Consoles: Bank (1)
class Account {
int id; double balance;
Account(int id) { this.id = id; /* balance defaults to 0 */ }
void deposit(double a) {

if (a < 0) { System.out.println("Invalid deposit."); }
else { balance += a; }

}
void withdraw(double a) {

if (a < 0 || balance - a < 0) {

System.out.println("Invalid withdraw."); }
else { balance -= a; }

}
}

● A negative deposit or withdraw amount is invalid .● When an error occurs, a message is printed to the console.● However, printing error messages does not force the caller of
Account.deposit or Account.withdraw to stop and
handle invalid values of a.

7 of 39

Error Reporting via Consoles: Bank (2)
1 class Bank {
2 Account[] accounts; int numberOfAccounts;
3 Bank(int id) { . . . }
4 void withdrawFrom(int id, double a) {
5 for(int i = 0; i < numberOfAccounts; i ++) {
6 if(accounts[i].id == id) {
7 accounts[i].withdraw(a);
8 }
9 } /* end for */

10 } /* end withdraw */

11 }

● L7: Bank.withdrawFrom is caller of Account.withdraw
● What if in Line 7 the value of a is negative?

Error message Invalid withdraw printed from method
Account.withdraw to console.

● Impossible to force Bank.withdrawFrom, the caller of
Account.withdraw , to stop and handle invalid values of a.

8 of 39

Error Reporting via Consoles: Bank (3)
1 class BankApplication {
2 pubic static void main(String[] args) {
3 Scanner input = new Scanner(System.in);
4 Bank b = new Bank(); Account acc1 = new Account(23);
5 b.addAccount(acc1);
6 double a = input.nextDouble();
7 b.withdrawFrom(23, a);
8 System.out.println("Transaction Completed.");
9 }

○ There is a chain of method calls:● BankApplication.main calls Bank.withdrawFrom● Bank.withdrawFrom calls Account.withdraw .○ The actual update of balance occurs at the Account class.● What if in Line 7 the value of a is negative?
Invalid withdraw printed from Bank.withdrawFrom,

originated from Account.withdraw to console.● However, impossible to stop BankApplication.main from
continuing to execute Line 8, printing Transaction Completed.○ Solution: Define error checking only once and let it propagate.

9 of 39

What is an Exception?

● An exception is an event , which
○ occurs during the execution of a program○ disrupts the normal flow of the program’s instructions

● When an error occurs within a method:○ the method throws an exception:
● first creates an exception object● then hands it over to the runtime system○ the exception object contains information about the error:
● type [e.g., NegativeRadiusException]● the state of the program when the error occurred

10 of 39

What to Do When an Exception Is Thrown? (1)
● After a method throws an exception, the runtime system

searches the corresponding call stack for a method that
contains a block of code to handle the exception.○ This block of code is called an exception handler .

● An exception handler is appropriate if the type of the exception object
thrown matches the type that can be handled by the handler.● The exception handler chosen is said to catch the exception.○ The search goes from the top to the bottom of the call stack:● The method in which the error occurred is searched first.● The exception handler is not found in the current method being
searched⇒ Search the method that calls the current method, and etc.● When an appropriate handler is found, the runtime system passes the
exception to the handler.○ The runtime system searches all the methods on the call stack

without finding an appropriate exception handler⇒ The program terminates and the exception object is directly
“thrown” to the console!

11 of 39

What to Do When an Exception Is Thrown? (2)

Method where error occurred and an
exception object thrown

(top of call stack)

Method without an exception handler

Method with an exception handler

main method
(bottom of call stack)

method call

method call

method call

throws an
exception

forwards/
propagates
an exception

catches an
exception

12 of 39

The Catch or Specify Requirement (1)

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:
1. The “Catch” Solution: A try statement that catches and

handles the exception

(without propagating that exception to the method’s caller).

main(. . .) {
Circle c = new Circle();
try {
c.setRadius(-10);

}
catch(NegativeRaidusException e) {
. . .

}
}

13 of 39

The Catch or Specify Requirement (2)

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:
2. The “Specify” Solution: A method that specifies as part of its

header that it may (or may not) throw the exception

(which will be thrown to the method’s caller for handling).

class Bank {
Account[] accounts; /* attribute */

void withdraw (double amount)
throws InvalidTransactionException {

. . .
accounts[i].withdraw(amount);
. . .

}
}

14 of 39

Example: to Handle or Not to Handle? (1.1)
Consider the following three classes:

class A {
ma(int i) {
if(i < 0) { /* Error */ }
else { /* Do something. */ }

} }

class B {
mb(int i) {
A oa = new A();
oa.ma(i); /* Error occurs if i < 0 */

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i); /* Where can the error be handled? */

} }

15 of 39

Example: to Handle or Not to Handle? (1.2)

● We assume the following kind of error for negative values:
class NegValException extends Exception {

NegValException(String s) { super(s); }
}

● The above kind of exception may be thrown by calling A.ma.
● We will see three kinds of possibilities of handling this

exception:
Version 1:
Handle it in B.mb
Version 2:
Pass it from B.mb and handle it in Tester.main
Version 3:
Pass it from B.mb, then from Tester.main, then throw it to the
console.

16 of 39

Example: to Handle or Not to Handle? (2.1)
Version 1: Handle the exception in B.mb.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) {
A oa = new A();
try { oa.ma(i); }
catch(NegValException nve) { /* Do something. */ }

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i); /* Error, if any, would have been handled in B.mb. */

} }

17 of 39

Example: to Handle or Not to Handle? (2.2)
Version 1: Handle the exception in B.mb.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses to handle the error
right away using a try-catch block.

Method Tester.main method
need not worry about this error.

method call

method call

throws an
exception

catches an
exception

18 of 39

Example: to Handle or Not to Handle? (3.1)
Version 2: Handle the exception in Tester.main.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
try { ob.mb(i); }
catch(NegValException nve) { /* Do something. */ }

} }

19 of 39

Example: to Handle or Not to Handle? (3.2)
Version 2: Handle the exception in Tester.main.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses not to handle the
error and propagates it

to its caller (i.e., Tester.main).

Method Tester.main method
chooses to handle this error, so that

this NegValException is not
propagated further.

method call

method call

throws an
exception

catches an
exception

forwards/
propagates
an exception

20 of 39

Example: to Handle or Not to Handle? (4.1)
Version 3: Handle in neither of the classes.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

} }

class Tester {
public static void main(String[] args) throws NegValException {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i);

} }

21 of 39

Example: to Handle or Not to Handle? (4.2)
Version 3: Handle in neither of the classes.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses not to handle the
error and propagates it

to its caller (i.e., Tester.main).

Method Tester.main method
chooses not to handle the error, so that

this NegValException is propagated
further (i.e., thrown to console).

method call

method call

throws an
exception

forwards/
propagates
an exception

forwards/
propagates
an exception

22 of 39

Error Reporting via Exceptions: Circles (1)

public class InvalidRadiusException extends Exception {
public InvalidRadiusException(String s) {
super(s);

}
}

● A new kind of Exception: InvalidRadiusException
● For any method that can have this kind of error, we declare at

that method’s header that it may throw an
InvalidRaidusException object.

23 of 39

Error Reporting via Exceptions: Circles (2)

class Circle {
double radius;
Circle() { /* radius defaults to 0 */ }
void setRadius(double r) throws InvalidRadiusException {
if (r < 0) {
throw new InvalidRadiusException("Negative radius.");

}
else { radius = r; }

}
double getArea() { return radius * radius * 3.14; }

}

● As part of the header of setRadius, we declare that it may
throw an InvalidRadiusException object at runtime.

● Any method that calls setRadius will be forced to
deal with this potential error .

24 of 39

Error Reporting via Exceptions: Circles (3)
1 class CircleCalculator1 {
2 public static void main(String[] args) {
3 Circle c = new Circle();
4 try {
5 c.setRadius(-10);
6 double area = c.getArea();
7 System.out.println("Area: " + area);
8 }
9 catch(InvalidRadiusException e) {

10 System.out.println(e);
11 }
12 } }

● Line 5 is forced to be wrapped within a try-catch block, since it
may throw an InvalidRadiusException object.

● If an InvalidRadiusException object is thrown from Line
6, then the normal flow of execution is interrupted and we go to
the catch block starting from Line 9.

25 of 39

Error Reporting via Exceptions: Circles (4)

Exercise: Extend CircleCalculator1: repeatedly prompt
for a new radius value until a valid one is entered (i.e., the
InvalidRadiusException does not occur).

Enter a radius:
-5
Radius -5.0 is invalid, try again!
Enter a radius:
-1
Radius -1.0 is invalid, try again!
Enter a radius:
5
Circle with radius 5.0 has area: 78.5

26 of 39

Error Reporting via Exceptions: Circles (5)
1 public class CircleCalculator2 {
2 public static void main(String[] args) {
3 Scanner input = new Scanner(System.in);

4 boolean inputRadiusIsValid = false;

5 while(!inputRadiusIsValid) {
6 System.out.println("Enter a radius:");
7 double r = input.nextDouble();
8 Circle c = new Circle();
9 try { c.setRadius(r);

10 inputRadiusIsValid = true;

11 System.out.print("Circle with radius " + r);
12 System.out.println(" has area: "+ c.getArea()); }

13 catch(InvalidRadiusException e) { print("Try again!"); }

14 } } }

● At L7, if the user’s input value is:○ Non-Negative: L8 – L12. [inputRadiusIsValid set true]○ Negative: L8, L9, L13. [inputRadiusIsValid remains false]
27 of 39

Error Reporting via Exceptions: Bank (1)

public class InvalidTransactionException extends Exception {
public InvalidTransactionException(String s) {
super(s);

}
}

● A new kind of Exception:
InvalidTransactionException

● For any method that can have this kind of error, we declare at
that method’s header that it may throw an
InvalidTransactionException object.

28 of 39

Error Reporting via Exceptions: Bank (2)

class Account {
int id; double balance;
Account() { /* balance defaults to 0 */ }
void withdraw(double a) throws InvalidTransactionException {
if (a < 0 || balance - a < 0) {
throw new InvalidTransactionException("Invalid withdraw."); }

else { balance -= a; }
}

}

● As part of the header of withdraw, we declare that it may
throw an InvalidTransactionException object at
runtime.

● Any method that calls withdraw will be forced to
deal with this potential error .

29 of 39

Error Reporting via Exceptions: Bank (3)
class Bank {
Account[] accounts; int numberOfAccounts;
Account(int id) { . . . }
void withdraw(int id, double a)

throws InvalidTransactionException {
for(int i = 0; i < numberOfAccounts; i ++) {
if(accounts[i].id == id) {
accounts[i].withdraw(a);

}
} /* end for */ } /* end withdraw */ }

● As part of the header of withdraw, we declare that it may
throw an InvalidTransactionException object.

● Any method that calls withdraw will be forced to
deal with this potential error .

● We are propagating the potential error for the right party (i.e.,
BankApplication) to handle.

30 of 39

Error Reporting via Exceptions: Bank (4)
1 class BankApplication {
2 pubic static void main(String[] args) {
3 Bank b = new Bank();
4 Account acc1 = new Account(23);
5 b.addAccount(acc1);
6 Scanner input = new Scanner(System.in);
7 double a = input.nextDouble();
8 try {
9 b.withdraw(23, a);

10 System.out.println(acc1.balance); }
11 catch (InvalidTransactionException e) {
12 System.out.println(e); } } }

● Lines 9 is forced to be wrapped within a try-catch block, since
it may throw an InvalidTransactionException object.

● If an InvalidTransactionException object is thrown from
Line 9, then the normal flow of execution is interrupted and we
go to the catch block starting from Line 11.

31 of 39

More Examples (1)

double r = . . .;
double a = . . .;
try{
Bank b = new Bank();
b.addAccount(new Account(34));
b.deposit(34, 100);
b.withdraw(34, a);
Circle c = new Circle();
c.setRadius(r);
System.out.println(r.getArea());

}
catch(NegativeRadiusException e) {
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();

}
catch(InvalidTransactionException e) {
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();

}

32 of 39

More Example (2.1)

The Integer class supports a method for parsing Strings:
public static int parseInt(String s)

throws NumberFormatException

e.g., Integer.parseInt("23") returns 23
e.g., Integer.parseInt("twenty-three") throws a
NumberFormatException

Write a fragment of code that prompts the user to enter a string
(using nextLine from Scanner) that represents an integer.
If the user input is not a valid integer, then prompt them to enter
again.

33 of 39

More Example (2.2)

Scanner input = new Scanner(System.in);
boolean validInteger = false;
while (!validInteger) {
System.out.println("Enter an integer:");
String userInput = input.nextLine();
try {
int userInteger = Integer.parseInt(userInput);
validInteger = true;

}
catch(NumberFormatException e) {
System.out.println(userInput + " is not a valid integer.");
/* validInteger remains false */

}
}

34 of 39

Beyond this lecture. . .

● Practice creating a new exception class upon a method
throwing it in the body of implementation (e.g.,
InvalidRadiusException,
InvalidTransactionException).

● Play with the source code:○ ExceptionsCircleAndBank.zip○ ExceptionsToHandleOrNotToHandle.zip

Tip. Change input values so as to explore, in Eclipse debugger ,

possible (normal vs. abnormal) execution paths .

35 of 39

Index (1)

Learning Outcomes

Caller vs. Callee

Stack of Method Calls

Error Reporting via Consoles: Circles (1)

Error Reporting via Consoles: Circles (2)

Error Reporting via Consoles: Bank (1)

Error Reporting via Consoles: Bank (2)

Error Reporting via Consoles: Bank (3)

What is an Exception?

What to Do When an Exception Is Thrown? (1)

What to Do When an Exception Is Thrown? (2)
36 of 39

Index (2)
The Catch or Specify Requirement (1)

The Catch or Specify Requirement (2)

Example: to Handle or Not to Handle? (1.1)

Example: to Handle or Not to Handle? (1.2)

Example: to Handle or Not to Handle? (2.1)

Example: to Handle or Not to Handle? (2.2)

Example: to Handle or Not to Handle? (3.1)

Example: to Handle or Not to Handle? (3.2)

Example: to Handle or Not to Handle? (4.1)

Example: to Handle or Not to Handle? (4.2)

Error Reporting via Exceptions: Circles (1)
37 of 39

Index (3)
Error Reporting via Exceptions: Circles (2)

Error Reporting via Exceptions: Circles (3)

Error Reporting via Exceptions: Circles (4)

Error Reporting via Exceptions: Circles (5)

Error Reporting via Exceptions: Bank (1)

Error Reporting via Exceptions: Bank (2)

Error Reporting via Exceptions: Bank (3)

Error Reporting via Exceptions: Bank (4)

More Examples (1)

More Example (2.1)

More Example (2.2)
38 of 39

Index (4)
Beyond this lecture. . .

39 of 39

