EECS2030 (Section E) Summer 2025
Review Notes on OOP
Tracing Point, PointCollector, and PointCollectorTester

CHEN-WEI WANG

Contents

3 Class PointCollectorTester

1

~N O O =

Class Point

1 |class Point {

2 private double x;

3 private double y;

4 public Point(double x, double y) {

5 this.x = x;

6 this.y = y;

7 3

8 public double getX() { return this.x; }
9 public double getY() { return this.y; }
10 |}

Figure 1: Template for Two-Dimensional Points

e Figure 1 (page 2) shows the complete definition of class Point, which is a template for entities (i.e., points)

on a two-dimensional plane. The common attributes (Lines 2 and 3) of all points are the x-coordinate
and y-coordinate:

private double x;
private double y;

To create an instance of the above Point class, you need to make a call to its (in this case, the only)
constructor (Lines 4 to 7) by giving two argument values whose types match the types of the constructor’s
two parameters.

public Point(double x, double y) {
this.x = x;
this.y = y;

}

For example, the call Point (3, 4) is valid, because the first argument value 3 matches the type of the
first parameter x, and the second argument value should 4 matches the type of the second parameter y.

There are occurrences of name clashes of variables in the above constructor: input parameters x and y
clash with, respectively, attributes x and y.

— There are no compilation errors, but both sources (RHS) of the variable assignments at Line 5 and
Line 6 (i.e., x and y) reference the input parameters x and y (rather than the attributes). This
phenomenon is called variable shadowing.

— The use of “this.” preceding both targets (LHS) of the variable assignments (Line 5 and Line 6)
are necessary for disambiguating references to the attributes x and y.

To retrieve values of the two private attributes x and y of a Point object, one must invoke the two public
accessor methods:

public double getX() { return this.x; }
public double getY() { return this.y; }

2 Class PointCollector

1 |public class PointCollector {
private Point[] points;
3 private int nop; /* number of points */

[\)

4 public PointCollector() {

5 this.points = new Point[100];

6 }

7 public void addPoint(double x, double y) {
8 this.points[this.nop] = new Point(x, y);
9 this.nop ++;

10 3

11 public Point[] getPointsInQuadrantI() {

12 Point[] ps = new Point[this.nop];

13 int count = 0; /* number of points in Quadrant I */
14 for(int i = 0; i < this.nop; i ++) {
15 Point p = points[i];

16 if(p.getX() > 0 && p.getY() > 0) {
17 ps[count] = p;

18 count ++;

19 }

20 }

21 Point[] qlPoints = new Point[count];
22 /* ps contains null if count < nop */
23 for(int i = 0; i < count; i ++) {

24 qlPoints[i] = ps[i]

25 }

26 return glPoints;

27 }

28 public int getNumberOfPoints() {

29 return this.nop;

30 }

31 |}

Figure 2: Template for Entities which Collect Points

2.1 Attributes of PointCollector

Figure 2 (page 3) shows the complete definition of class PointCollector, which is a template for entities
(i.e., collectors of points), each of which collecting a list of points on the two-dimensional plane. The
common attributes (Lines 2 and 3) of all point collectors are:

— Line 2: An array of points, which is of type Point[]. Declaring the attribute

private Point[] points;

means that at runtime, each point collector has an array named points, where each slot stores the
address (which may be null) of some Point object.

— Line 3: An integer counter named nop (standing for number of points), which serves two purposes:

1. Records how many points have been collected (i.e., added to the points array) so far. Notice
that the value of nop should start with 8, and get incremented by one as each new Point object
is collected, until it reaches points.length.

2. Indicates where in points (i.e., an index value between 0 and points.length - 1). When the
value of nop reaches its maximum points.length, meaning that all slots of the points array
are occupied by addresses of Point objects, this maximum value also means that storing a next
Point object is not possible (because the value points.length is out of the index bounds for
array points).

— Lines 28 — 30: To retrieve values of the private attribute nop of a PointCollector object, one
must invoke the public accessor method:

28 public int getNumberOfPoints() {
29 return this.nop;
30 }

Constructor of PointCollector

To create an instance of the above PointCollector class, you need to make a call to its (only) constructor
(Lines 4 to 6) by giving zero argument values. For example, consider the the following line

PointCollector pc = new PointCollector();

where

Step 1:

The RHS (i.e., new PointCollector()) creates a new object of type PointCollector.

Step 2:

The LHS (i.e., PointCollector pc) declares a variable pc which, at runtime, stores only an address
of some PointCollector object.

Step 3:

The middle equal sign (=) assigns (i.e., stores) the address of the new PointCollector object (created
in Step 1) to the PointCollector address placeholder (declared in Step 2).

Here is a visual summary of the effect of executing the above three steps (where we use an addition dashed
arrow to make it explicit that the value of nop can be seen as pointing to a position in array pc.points):

Object Structure After Initializing the Point Collector ‘pc’

nop ==

S <--
~
N
W
'
8

PointCollector
(' points

pec nop

where

— The path pc.nop (where pc is the context object) brings us to the value of attribute nop of the specific
PointCollector instance pc.

— The path pc.ponts (where pc is the context object) brings us to the value of attribute points.
That is, pc.points denotes the address of an array object, whose each slot stores the address of
some Point object.

Why is it the case that pc.nop has the value O and pc.points has the value of an array whose each
slot stores the null (i.e., unknown address) value? Inspect the definition of the constructor in class
PointCollector (Lines 5 to 6 in Figure 2, page 3):

4 public PointCollector() {
5 this.points = new Point[100];
6 }

— When each instance of type PointCollector is created, it is critical to initialize the points array that
it possesses (so that subsequent method calls on each PointCollector object can access/modify its
points array without triggering a Nul1PointerException). That is, here is a wrong implementation
of the constructor of PointCollector:

public PointCollector() { /* wrong implementation of the constructor */
/* points array is implicitly initialized to null */

3

where the points array is not explicitly initialized to certain length, so it is implicitly assigned to
the default value of reference types: null. Here is a visual summary of the effect of the above wrong
implementation of constructor:

PointCollector
(points null

pe nop

Why is it wrong? Try access contents of the points array, for example, calling pc.points[0], then
it will trigger a NullPointerException, because pc.points is null and calling pc.points[0] is
equivalent to calling null.points[0], which simply does not make sense.

— Line 5 initializes points as an array of size 180 (just for this example as the assumed maximum
number of points that each PointCollectr may collect). We only initializes the array points with
a fixed size, without storing in any of its slots addresses of Point (simply because initially no points
have been collected yet), so all slots in points store values null only.

— Since there is no explicit assignments that given an initial value to the attribute nop, it is initialized
(implicitly) with the default value of integers: 0.

Remark: The above digram shows a sensible configuration of objects: 1) pc.points.length is 100,
meaning that we can in the future store at most 188 objects of type Point into it; and 2) pc.nop is
0, meaning that so far we have collected zero points, and that the next (i.e., very first) point object
to be stored will be stored at pc.points[0].

2.3 Mutator Method addPoint of PointCollector

The mutator method void addPoint(double x, double y) (Lines 7 to 10, page §) defines how a new
point with coordinate values x and y can be added to the point collector.

7 public void addPoint(double x, double y) {

8 this.points[this.nop] = new Point(x, y); /* store the new point at index ’'nop’ of ’pd
9 this.nop++; /* increment # of points collected, update index for storing next point
10 }

1/

There are two steps involved:

Step 1 (Line 8):

8 this.points[this.nop] = new Point(x, y);

ints’

7’:/

Step 1.1: The RHS (i.e., new Point(x, y)) creates a new Point object, by calling the con-
structor of Point: the parameter values x and y of method addPoint are used as argument
values for the call to the constructor call Point (x, y).

Step 1.2: The LHS (i.e., this.points[this.nop]) brings us to the specific slot at index nop
in array points.

Step 1.3: The middle equal sign (=) assigns/stores the address of the new Point object (created
in Step 1.1) at index nop in array points. Remember that one of the purposes of counter nop
is that it indicates where a new Point to be collected should be stored.

Step 2 (Line 9):

this.nop++;

Now that from Step 1 we already store a new Point object at index nop of array points, this line
updates (by incrementing) the value of nop so that it still serves its purpose well. For example, if in
Step 1 the value of nop is 2, that means so far the slots points[®], points[1], points[2] are all
occupied by addresses of some Point object. So to make sure that

— value of nop correctly records the number of Point objects collected so far (which should be 3
rather than 2), and that

— value of nop indicates the position for storing the next new Point to be collected (which should
be points[3] rather than points[2]),

we increment the value of nop by 1.

2.4 Accessor Method getPointsInQuadrantI of PointCollector

The accessor method |P0int[] getPointsInQuadrantI() | (Lines 11 to 27, page 3) defines, out of the

Point objects collected so far, how to return an array containing only those points which are located at
the first quadrant (i.e., those points whose both coordinates are positive).

First of all, we need to understand that simply returning points (which is also of type Point[]) is not
acceptable, because: 1) if nop < points.length, there are points.length - nop slots storing null
values; and 2) even if nop == points.length, not necessarily all points collected so far are all located in
the first quadrant. Therefore, this accessor method getPointsInQuadrantI is supposed to return an array
of Point objects, whose length corresponds to exactly the number of collected points that are located in
the first quadrant.

There are three steps involved:

12
13
14
15
16
17
18
19
20

Step 1 (Lines 12 to 20):

Point[] ps = new Point[this.nop];
int count = 0; /* number of points in Quadrant I (Q1) */
for(int 1 0; i < this.nop; i ++) {
Point p = this.points[i]; /* store the current point under consideration into p */
if(p.getX() > 0 && p.getY() > 0) { /* the point being considered is in 1st quadran
pslcount] = p; /* copy what’s stored in ’'p’ to slot at index ’'count’ of ’'ps’ */
count ++; /* increment # of Ql points, update index for storing next Q1 point */

}

~

}

— Line 12 initializes an array of size nop, indicating that might be up to nop points that we have
collected are located in the first quadrant. Why? Given that so far we have collected nop (rather
than points.length) Point objects in the point collector, the maximum number of Point that
are located in the first quadrant is simply nop (i.e., when all points collected are located in the
first quadrant).

21
22
23
24
25

26

— As we iterate through the points array (slots points[®8], points[1], ..., points[nop - 1])
some collected points might be located in the first quadrant, and some might not be. As a result,
we need a separate counter count that records exactly how many points are located in the first
quadrant. How count is used (Lines 17 and 18, Figure 2, page 3) to keep track of how many
collected Point objects are located in the first quadrant is analogous to how nop is used (Lines
8 and 9, Figure 2, page 3) to keep track of how many Point objects are collected so far.

Step 2 (Lines 21 to 25):

Point[] qlPoints = new Point[count];

/% ps contains null if count < nop */

for(int i = 0; i < count; i ++) {
qlPoints[i] = ps[i]

}

— From Step 1, we have updated the integer variable count so that it records the number of
collected points that are located in the first quadrant, and that the count slots ps[0], ps[1],
..., ps[count - 1] store addresses of such first-quadrant points. Notice that it is the case that
count <= nop:

Case 1) if count == nop, then all slots of array ps (whose length is nop as can be seen in
Line 12 in Figure 2, page §) are occupied;
Case 2) if count < nop, then at at least one slots of array ps (i.e., ps[count], ps[count
+ 1], ..., ps[nop]) store the null points (simply because not all points collected happen
to be in the first quadrant).
If the above Case 2 is true, meaning that there are null values in array ps, then we cannot
simply return ps as the return value for method getPointsInQuadrantI.

— Therefore:
% In Line 21 we initialize an array qlPoints whose length corresponds the exact number of
first-quadrant points (i.e., the value of count).
x In Lines 23 to 25, we copy addresses of all such first-quadrant (stored in ps[0], ps[1],
.., ps[count - 1]) to their corresponding positions in array qlPoints to be returned:
qlPoints[0], qlPoints[1], ..., qlPoints[count - 1].

Step 3 (Line 26):

return glPoints;

Now that the previous two steps store addresses of all first-quadrant points (no more, and no less)
into the array qlPoints, we return it as the return value of method getPointsInQuadrantI (whose
return type is Point[]).

3

Class PointCollectorTester

After understanding the descriptions of the attributes and methods of the classes Point (Section 1) and
PointCollector (Section 2) from the previous two sections, let us learn how objects of these two classes
may interact.

[ISNEUCR R

ot

11
12

13
14
15
16
17

public class PointCollectorTester {
public static void main(String[] args) {
PointCollector pc = new PointCollector();
System.out.println(pc.getNumberOfPoints()); /* 0 */

pc.addPoint(3, 4);
System.out.println(pc.getNumberOfPoints()); /* 1 */

pc.addPoint(-3, 4);
System.out.println(pc.getNumberOfPoints()); /* 2 */

pc.addPoint(-3, -4);
System.out.println(pc.getNumberOfPoints()); /* 3 */

pc.addPoint(3, -4);

System.out.println(pc.getNumberOfPoints()); /* 4 */

Point[] ps = pc.getPointsInQuadrantI();

System.out.println(ps.length); /* 1 */

System.out.println("(" + ps[0].getX() + ", " + ps[0].getY() + ")"); /* (3, 4) */
3

Figure 3: Tester for Instances of Point and PointTester

e | Line 3 of PointTester |

PointCollector pc = new PointCollector();

As explained in the constructor of PointCollector (Section 2, page 3), the above line results in the
following object structure:

Object Structure After Initializing the Point Collector ‘pc’

nop == 0

(poir:T’tcs:intCollector ’ 0 I 1 I 2 ‘ 3 ‘ 4 l ‘ 99‘
" Ll

null null null null null null

Therefore, executing the print statement System.out.println(pc.getNumberOfPoints()) in Line 4 of
PointCollector outputs 8 to the console.

e | Line 5 of PointTester |:

pc.addPoint(3, 4);

This method call has the context object pc, declared as an address holder of some PointCollector object,
and the mutator method void addPoint(double x, double y) (defined in Lines 7 to 10 in Figure 2,
Section 2, page 3) is instantiated (by substituting this by pc, x by 3 and y by 4) as:

public void addPoint(3, 4) {
/* current value of nop is 0 */
pc.points[pc.nop] = new Point(3, 4);
pC.nop++;
/* current value of nop is 1 */

}

Executing the above method call results in the following object structure:

Object Structure After Adding the 1st Point to the Point Collector ‘pc’

nop == 1
|
|
|
\/
PointCollector 0 1 2 3 4 99
< S T T T 1o
" L]
null null null null null

Therefore, executing the print statement System.out.println(pc.getNumberOfPoints()) in Line 6 of
PointCollector outputs 1 to the console.

e | Line 7 of PointTester |:

pc.addPoint(-3, 4);

This method call has the context object pc, declared as an address holder of some PointCollector object,
and the mutator method void addPoint(double x, double y) (defined in Lines 7 to 10 in Figure 2,
Section 2, page 3) is instantiated (by substituting this by pc, x by -3 and y by 4) as:

public void addPoint(—3, 4) {
/* current value of nop is 1 */
pc.points[pc.nop] = new Point(—3, 4);
pC.nop++;
/* current value of nop is 2 */

}

Executing the above method call results in the following object structure:

Object Structure After Adding the 2nd Point to the Point Collector ‘pc’

(» p':’inl’tc;intCollector ’ 0 l 2 ‘ 3 l 4 l ‘ 99‘
p N

null

/ ~
o]
o
~
~
o]
o
~
~
3
o
~
~

Therefore, executing the print statement System.out.println(pc.getNumberOfPoints()) in Line 8 of
PointCollector outputs 2 to the console.

e | Line 9 of PointTester |:

pc.addPoint(-3, -4);

This method call has the context object pc, declared as an address holder of some PointCollector object,
and the mutator method void addPoint(double x, double y) (defined in Lines 7 to 10 in Figure 2,
Section 2, page 3) is instantiated (by substituting this by pc, x by -3 and y by -4) as:

public void addPoint(—3, —4) {
/* current value of nop is 2 */
pc.points[pc.nop] = new Point(—3, —4);
pC.Nnop++;
/* current value of nop is 3 */

}

Executing the above method call results in the following object structure:

Object Structure After Adding the 3rd Point to the Point Collector ‘pc’

nop == 3

|

|

|

v
PointCollector 0 1 2 3 4 99

S — T 1]

pc nop l

ull null null

Therefore, executing the print statement System.out.println(pc.getNumberOfPoints()) in Line 10 of
PointCollector outputs 3 to the console.

10

e | Line 11 of PointTester |:

pc.addPoint(3, -4);

This method call has the context object pc, declared as an address holder of some PointCollector object,
and the mutator method void addPoint(double x, double y) (defined in Lines 7 to 10 in Figure 2,
Section 2, page 3) is instantiated (by substituting this by pc, x by 3 and y by -4) as:

public void addPoint(3, —4) {
/* current value of nop is 3 */
pc.points[pc.nop] = new Point(3, —4);
pC.nop++;
/* current value of nop is 4 */

}

Executing the above method call results in the following object structure:

Object Structure After Adding the 4th Point to the Point Collector ‘pc’

nop == 4

PointCollector 0 1 2 3
(' points

pc nop

N - - -

99

Therefore, executing the print statement System.out.println(pc.getNumberOfPoints()) in Line 12 of
PointCollector outputs 4 to the console.

Pause and think: Up to this point, nop == 4 indicates that there have been four points collected in the
points array of the point collector object pc. We observe that out of these four points collected, only the
points stored at pc.points[0] is located in the first quadrant. Therefore, we would expect the return
value from a subsequent (accessor) method call pc.getPointsInQuadrantI() to be an array of length 1.

e | Line 13 of PointTester |:

Point[] ps = pc.getPointsInQuadrantI();

This method call has the context object pc, declared as an address holder of some PointCollector
object, and the accessor method Point[] getPointsInQuadrantI() (defined in Lines 11 to 27 in Figure 2,
Section 2, page 3) is executed (by substituting this by pc, nop by its current value 4 and points by the
array above where the first four slots are occupied) as:

11

- |Lines 12 to 20 of PointCollector I:

12
13
14
15
16
17
18
19
20

Point[] ps = new Point[pc.nopl; /* current value of nop is 4 */
int count = 0; /* number of points in Quadrant I */
for(int i 0; 1 < pc.nop; i ++) {
Point p = points[i];
if(p.getX() > 0 && p.getY() > 0) {
pslcount] = p;
count ++;
}
}

Right after Line 13, we initialize an array ps of size nop (whose current value is 4, meaning that at
most the four points collected are all located in the first quadrant) and a counter count (whose job
is to keep track of out of those points collected so far, how many of them are located in the first
quadrant). Here is a visual summary of the object structure after right after executing Line 13:

nop == 4

v

PointCollector 0 1 2 3 4 99
O — (T T TTT-T]
pe nop \ l

null null

point | [Point | [Point |[Point
[RO | > Bl [BERo) | > JEXe)
[y] [y 2] (v Bl v

null null null null

count == 0

Then, the for loop in Lines 14 to 20 is executed to iterate through pc.points[0], pc.points[1],
pc.points[2], and pc.points[3], and store whichever that is located in the first quadrant into
slots in ps. Ounly the first iteration (when i == 0) which inspects pc.points[0] would pass the
condition in Line 16, store the address of the point object (3,4) into ps, and update the count value
accordingly; all later three iterations (when i is 1, 2, and 3), the condition in Line 6 evaluates to
false, so none of those three points would be stored in ps and the value of count would not be
incremented any further.

Here is a visual summary of the object structure after right after executing Line 20:

nop == 4

v

PointCollector 0 1 2 3 4 99
O T N O O S
pc nop \ l

null null

Point || Point || Point
[=30 [x B | < B
e v) |y B

null null null

[x X
[y 250

12

21
22
23
24
25

Remarks. It is important to notice that in Line 14, the value of nop (which is currently 4), rather
than the value of pc.points.length (which has remained 100 since it was first created), is used
as the upper bound of the loop counter. What if i < pc.points.length was used instead as the
stay condition of the for loop? Unfortunately, when the value of loop counter i reaches 4 (which
corresponds to the first, left-most index at which pc.points stores a null value), we would still
pass this (wrong) stay condition i < pc.points.length and enter the body of the for loop. Con-
sequently, executing Line 15 assigns null to variable p, and when the execution reaches Line 16,
executing p.getX() and p.getY() is equivalent to executing null.getX() and null.getY(), which
would trigger a NullPointerException.

|Lines 21 to 25 of PointCollector I:

Point[] qlPoints = new Point[count];

/* ps contains null if count < nop */

for(int i = 0; i < count; i ++) {
gqlPoints[i] = ps[i]

}

From Lines 12 to 20, we have updated the values of count (which is now 1) and ps, so that array
ps now has 1 non-null slot and 3 (calculated through ps.length - count, where ps.length ==
nop & nop == 4) null slots. We cannot simply return array ps as the return value for method
getPointsInQuadrantlI, as it contains null slots. As a result, we execute Lines 21 to 25 to initialize
an array qlPoints whose length corresponds to exactly those (indicated by the value of count)
collected points that are located in the first quadrant, and we simply copy over the addresses of the
first-quadrant points to slots in array qlPoints.

Figure 4 summarizes the object structure after right after executing Line 25:

nop == 4

v

PointCollector 0 1 2 3 4 99
(points

pc nop

11 null null

glPoints

count == 1

Figure 4: Final Object Structure from Executing PointCollectorTester

Again, it is important to notice that in Line 23, the value of count (which is currently 1), rather
than the value of nop (which is 4), is used as the upper bound of the loop counter. What if i <
nop was used instead as the stay condition of the for loop? Unfortunately, when the value of loop
counter i reaches 1, we would still pass this (wrong) stay condition i < nop and enter the body
of the for loop. Consequently, executing the expression qlPoints[i] in Line 24 would trigger an
ArrayIndexOutOfBoundException because the array q1Points was created in Line 21 to have length
count (which is 1).

13

— | Line 26 of PointCollector I:

26 return glPoints;

Up to now, there are three candidate objects (whose types all match the return type Point[] of the
accessor method getPointsInQuadrantI) that can be the return values:

. [z

This should not be returned, since it contains pc.points.length - nop slots that store null
values, and even for those slots that store addresses of Point objects, some of them are actually
not located in the first quadrant.

2. [e2]

This should not be returned, since it contains nop - count slots that store null value.

5 [atzoinss]

This should be returned, since it contains exactly those collected points that are located in the
first quadrant, and there are no null-slots in this array.

Therefore, we return qlPoints (which stores the address of the array of size 1) as the return
value of accessor method getPointsInQuadrantI. This return value is stored, from Line 13 of
PointCollectorTester (Figure 3, page 8), into variable ps. Consequently:

x In Line 14 of PointCollectorTester, the print statement System.out.println(ps.length)
outputs 1 to the console.

x In Line 15 of PointCollectorTester, the print statement System.out.println(" (" + ps[0].getX()
+ ", " + ps[0].getY() + ")™) outputs (3, 4) to the console.

e Exercise. Figure 3 (page 8) above shows declarations and manipulations in the context of a console
application. As an exercise, convert it into a JUnit test method. For example, Line 3 and 4 may be
converted to:

@Test
public void test() {
PointCollector pc = new PointCollector();
assertEquals (0, pc.getNumberOfPoints());
}

14

	Class Point
	Class PointCollector
	Attributes of PointCollector
	Constructor of PointCollector
	Mutator Method addPoint of PointCollector
	Accessor Method getPointsInQuadrantI of PointCollector

	Class PointCollectorTester

