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Solving Problems Recursively
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Given a problem of size n (e.g., an integer of value n, an array of n elements, etc.), adopt the following steps to solve
the problem recursively :

Step 1: Understand the Problem We denote the original problem to be solved as Pn

(i.e,. a problem P , where the subscript n denotes its size). For example:

Example 1. Compute the factorial of n.

Example 2. Compute the nth number in the Fibonacci sequence.

Example 3. Compute if a string s of length n is a palindrome.

Example 4. Compute the reverse of a string s of length n.

Example 5. Compute the number of occurrences of a character c in a string s of length n.

Example 6. Compute if elements in index range [from, to] of an array a are all positive.

Example 7. Compute if elements in index range [from, to] of an array a are sorted in a non-descending order.

Step 2: Define the Base Cases We first define the solutions to the same problem whose sizes are small so that

they can be solved immediately: P0, P1, P2, etc. For example:

Example 1. Factorial 0 is just 1.

Example 2. The first and second Fibonacci numbers are both 1.

Example 3. An empty string and a string of length one are both palindromes.

Example 4. The reverse of an empty string or of a string of length one is simply the string itself.

Example 5. The number of occurrences of any character in an empty string is 0.

1. If index range [from, to] is such that from > to, e.g., [3, 2], then there is an empty collection of elements to
be considered.

Example 6. Since you cannot find a counter-example (i.e., a number which is not positive) from an empty
collection, the result of determining all numbers being positive is simply true.

Example 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted
in a non-descending order) from an empty collection, the result of determining all numbers in an empty
collection being sorted in a non-descending order is simply true.

2. If index range [from, to] is such that from == to, e.g., [3, 3], then there is a collection of exactly one element
to be considered. We call such a collection a singleton collection. Say e is such an element that a singleton
collection contains.

Example 6. The result of determining all numbers being positive is simply e > 0.

Example 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted
in a non-descending order) from a collection of just one number, the result of determining all numbers in
a singleton collection being sorted in a non-descending order is simply true.

Step 3: Assume that Solutions to Smaller Problems Exist We then assume that there exist solutions to

sub-problems whose sizes are strictly smaller than the original problem: e.g., Pn−1, Pn−2, etc. For example:

Example 1. Assume the factorial of n− 1 already exists (where n > 0). We denote this solution as Pn−1 as its
input size (i.e., value of number) is exactly one less than the original problem.
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Example 2. Assume the (n−1)th and (n−2)th numbers in the Fibonacci sequence already exist (where n > 2).
We denote these solutions as Pn−1 and Pn−2 as their input sizes (i.e., position in the Fibonacci sequence) are
exactly, respectively, one and two less than the original problem.

Example 3. Assume we already know if a smaller substring of s (where s.length() > 1), with the first and last
characters of s taken out, is a palindrome. We denote this solution as Pn−2 as its input size (i.e., length of
string) is two less than the original problem.

Example 4. Assume we already know the reverse of a smaller substring of s (where s.length() > 1), with the
first character of s taken out. We denote this solution as Pn−1 as its input size (i.e., length of string) is one
less than the original problem.

Example 5. Assume we already know the the number of occurrences of a character c in a smaller substring of
s (where s.length() > 0), with the first character of s taken out. We denote this solution as Pn−1 as its input
size (i.e., length of string) is one less than the original problem.

We assume we already know the solution for elements in a smaller index range [from + 1, to] of an array a:

Example 6. We denote Pn−1 as the solution for if the n− 1 elements are all positive.

Example 7. We denote Pn−1 as the solution for if the n− 1 elements are sorted in a non-descending order.

Step 4: Define the Recursive Cases We finally define the solution to the original problem Pn in terms of the

solutions to other strictly smaller sub-problems: Pn = f( Pn−1, Pn−2, . . . ). That is, Pn is defined as a function
f that combines solutions to strictly smaller problems Pn−1, Pn−2, etc. via some simple calculations. Informally
speaking, we “massage” solutions to smaller problems into the solution to a bigger problem. For example:

Example 1. We define Pn = n× Pn−1.

Example 2. We define Pn = Pn−1 + Pn−2.

Example 3. We define Pn = (c1 == c2 && Pn−2) (where c1 and c2 are, respectively, the first and the last
characters of s). For example, abcbc is a palindrome because a == c and bcb is a palindrome. However, abccc
is not a palindrome because bcc is not a palindrome, even though a == c.

Example 4. We define Pn = Pn−1 + c1 (where c1 is the first character of s, and the operator + means string
concatenation). For example, the reverse of abcd is the reverse of abc (which is dcb) concatenated with a.

Example 5. We define Pn = 1 + Pn−1 if the first character of s matches c, and in case they do not match, we
define Pn = 0 +Pn−1. For example, the number of occurrences of character a in string ababa is 1 (∵ a matches
the first character in the string) plus the number of occurrences of a in baba (which is 2). But, the number of
occurrences of character b in string ababa is 0 (∵ b does not the first character a in the string) plus the number
of occurrences of b in baba (which is 2).

Example 6. We define Pn = a[from] > 0 && Pn−1. For example, numbers in {1, 2, 3, 4, 5} are all positive
because 1 > 0 and numbers in {2, 3, 4, 5} are all positive. But, numbers in {−1, 2, 3, 4, 5} are not all positive
because −1 > 0 is false, even though and numbers in {2, 3, 4, 5} are all positive. Also, numbers in {1, 2,−3, 4, 5}
are not all positive because numbers in {2,−3, 4, 5} are not all positive, even though 1 > 0 is true.

Example 7. We define Pn = a[from] ≤ a[from + 1] && Pn−1. For example, say from is 0, then numbers in
{1, 2, 2, 3, 4} are sorted because 1 ≤ 2 and numbers in {2, 2, 3, 4} are sorted. But, numbers in {1,−1, 2, 3, 4}
are not sorted because 1 ≤ −1 is false, even though numbers in {−1, 2, 3, 4} are sorted. Also, numbers in
{1, 2, 2,−1, 4} are not sorted because numbers in {2, 2,−1, 4} are not sorted, even though 2 ≤ 2 is true.
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