Introduction

MEB: Prologue, Chapter 1

EECS3342 E: System Specification and Refinement Fall 2025

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you understand:

- What a safety-critical system is
- Code of Ethics for Professional Engineers
- What a Formal Method Is
- Verification vs. Validation
- Model-Based System Development

What is a Safety-Critical System (SCS)?

- A safety-critical system (SCS) is a system whose failure or malfunction has one (or more) of the following consequences:
 - death or serious injury to people
 - loss or severe damage to equipment/property
 - harm to the environment
- Based on the above definition, do you know of any systems that are *safety-critical*?

8 of 13

Professional Engineers: Code of Ethics

- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- o It is the duty of a practitioner to act at all times with,
 - fairness and loyalty to the practitioner's associates, employers, clients, subordinates and employees;
 - 2. fidelity (i.e., dedication, faithfulness) to public needs;
 - 3. devotion to *high ideals* of personal honour and professional integrity;
 - **4.** *knowledge* of developments in the area of professional engineering relevant to any services that are undertaken; and
 - competence in the performance of any professional engineering services that are undertaken.
- Consequence of misconduct?
 - **suspension** or **termination** of professional licenses
 - civil law suits

Source: PEO's Code of Ethics

Developing Safety-Critical Systems

Industrial standards in various domains list **acceptance criteria** for **mission**- or **safety**-critical systems that practitioners need to comply with: e.g.,

Aviation Domain: **RTCA DO-178C** "Software Considerations in Airborne Systems and Equipment Certification"

Nuclear Domain: **IEEE 7-4.3.2** "Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations"

Two important criteria are:

- 1. System *requirements* are <u>precise</u> and <u>complete</u>
- **2.** System *implementation* conforms to the requirements But how do we accomplish these criteria?

5 of 13

Safety-Critical vs. Mission-Critical?

• Critical:

A task whose successful completion ensures the success of a larger, more complex operation.

e.g., Success of a pacemaker ⇒ Regulated heartbeats of a patient

Safety:

Being free from danger/injury to or loss of human lives.

Mission:

An operation or task assigned by a higher authority.

Q. Formally relate being *safety*-critical and *mission*-critical.

- \circ **safety**-critical \Rightarrow **mission**-critical
- mission-critical ⇒ safety-critical
- Relevant industrial standard: RTCA DO-178C (replacing RTCA DO-178B in 2012) "Software Considerations in Airborne Systems and Equipment Certification"

Source: Article from OpenSystems

Using Formal Methods for Certification

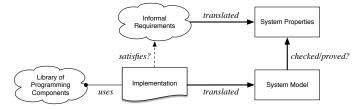
- A formal method (FM) is a mathematically rigorous technique for the specification, development, and verification of software and hardware systems.
- **DO-333** "Formal methods supplement to DO-178C and DO-278A" advocates the use of formal methods:

The use of **formal methods** is motivated by the expectation that, as in other engineering disciplines, performing appropriate **mathematical analyses** can contribute to establishing the **correctness** and **robustness** of a design.

- FMs, because of their mathematical basis, are capable of:
 - Unambiguously describing software system requirements.
 - Enabling *precise* communication between engineers.
 - Providing verification (towards certification) evidence of:
 - A *formal* representation of the system being *healthy*.
 - A formal representation of the system satisfying safety properties.

7 of 13

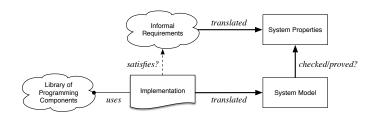
Verification: Building the Product Right?



- o Implementation built via reusable programming components.
- Goal : Implementation Satisfies Intended Requirements
- To verify this, we *formalize* them as a *system model* and a set of (e.g., safety) *properties*, using the specification language of a <u>theorem prover</u> (EECS3342) or a <u>model checker</u> (EECS4315).
- Two Verification Issues:
 - 1. Library components may not behave as intended.
 - **2.** Successful checks/proofs ensure that we *built the product right*, with respect to the informal requirements. **But**...

8 of 13

Validation: Building the Right Product?



- Successful checks/proofs
 ⇒ We built the right product.
- The target of our checks/proofs may <u>not</u> be valid:
 The requirements may be <u>ambiguous</u>, <u>incomplete</u>, or <u>contradictory</u>.
- <u>Solution</u>: *Precise Documentation* [EECS4312]

9 of 13

Catching Defects – When?

- To minimize *development costs*, minimize *software defects*.
- Software Development Cycle:

Requirements → *Design* → *Implementation* → Release

Q. Design or Implementation Phase?

Catch defects as early as possible.

Design and architecture	Implementation	Integration testing	Customer beta test	Postproduct release
1X*	5X	10X	15X	30X

- .. The cost of fixing defects *increases exponentially* as software progresses through the development lifecycle.
- Discovering *defects* after **release** costs up to <u>30 times more</u> than catching them in the **design** phase.
- Choice of a design language, amendable to formal verification, is therefore critical for your project.

Source: IBM Report

Model-Based System Development

- Modelling and formal reasoning should be performed <u>before</u> implementing/coding a system.
 - A system's *model* is its *abstraction*, filtering irrelevant details.
 A system *model* means as much to a software engineer as a *blueprint* means to an architect.
 - A system may have a list of models, "sorted" by accuracy:

$$\langle m_0, m_1, \ldots, \boxed{m_i}, \boxed{m_j}, \ldots, m_n \rangle$$

- The list starts by the most abstract model with least details.
- A more *abstract* model m_i is said to be *refined by* its subsequent, more *concrete* model m_i .
- The list ends with the most concrete/refined model with most details.
- It is far easier to reason about:
 - a system's *abstract* models (rather than its full *implementation*)
 - **refinement steps** between subsequent models
- The final product is **correct by construction**.

11 of 13

Learning through Case Studies

- We will study example models of programs/codes, as well as proofs on them, drawn from various application domains:
 - REACTIVE Systems [sensors vs. actuators]
 - DISTRIBUTED Systems [(geographically) distributed parties]
- What you learn in this course will allow you to explore example in other application domains:
 - SEQUENTIAL Programs [single thread of control]
 CONCURRENT Programs [interleaving processes]
- The Rodin Platform will be used to:
 - Construct system models using the Even-B notation.
 - Prove properties and refinements using classical logic (propositional and predicate calculus) and set theory.

Index (1)

Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

Safety-Critical vs. Mission-Critical?

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Catching Defects – When?

Model-Based System Development

Learning through Case Studies

13 of 13

Review of Math

MEB: Chapter 9

EECS3342 E: System Specification and Refinement Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you **review**:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions

2 of 41

Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - Unary logical operator: negation (¬)

р	$\neg p$	
true	false	
false	true	

Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

	р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	$p \equiv q$
ſ	true	true	true	true	true	true	true
Ì	true	false	false	true	false	false	false
İ	false	true	false	true	true	false	false
	false	false	false	false	true	true	true

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$ [pronounced as "p implies q"]
 - We call p the antecedent, assumption, or premise.
 - We call *q* the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - ∘ antecedent/assumption/premise *p* ≈ promised terms [e.g., salary]
 - consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - ∘ honoured if the obligations fulfilled. $[(true \Rightarrow true) \iff true]$
 - breached if the obligations violated. $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

p	q	$p \Rightarrow q$	
false	true	true	
false	false	true	

4 of 41

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$:

 \circ q if p

q is *true* if *p* is *true*

o p only if a

If p is true, then for $p \Rightarrow q$ to be true, it can only be that q is also true. Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$.

Note. To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p if and only if q"):

• *p* **if** *q*

 $[q \Rightarrow p]$

p only if q

 $[p \Rightarrow q]$

• p is sufficient for q

For q to be true, it is sufficient to have p being true.

• q is **necessary** for p

[similar to p only if q]

If p is true, then it is necessarily the case that q is also true.

Otherwise, if p is true but q is false, then $(true \Rightarrow false) \equiv false$.

q unless ¬p

[When is $p \Rightarrow a true$?]

If *q* is *true*, then $p \Rightarrow q$ *true* regardless of *p*.

If q is false, then $p \Rightarrow q$ cannot be true unless p is false.

5 of 41

Propositional Logic: Implication (3)

Given an implication $p \Rightarrow q$, we may construct its:

- **Inverse**: $\neg p \Rightarrow \neg q$ [negate antecedent and consequence]
- **Converse**: $q \Rightarrow p$ [swap antecedent and consequence]
- **Contrapositive**: $\neg q \Rightarrow \neg p$ [inverse of converse]

6 of 41

Propositional Logic (2)

- Axiom: Definition of ⇒
- **Theorem**: Identity of \Rightarrow $q \equiv \neg p \lor q$
 - .
 - $true \Rightarrow p \equiv p$
- **Theorem**: Zero of ⇒
- $false \Rightarrow p \equiv true$
- Axiom: De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

• Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
 - $\circ \mathbb{Z}$: the set of integers $[-\infty,\ldots,-1,0,1,\ldots,+\infty]$ • N: the set of natural numbers $[0, 1, ..., +\infty]$
- Variable(s) in a predicate may be quantified:
 - Universal quantification : **All** values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.
 - Existential quantification: **Some** value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

R of 41

LASSONDE

Predicate Logic (2.1): Universal Q. (∀)

- A universal quantification has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - *P* is a *property* to be satisfied
- For all (combinations of) values of variables listed in X that satisfies *R*, it is the case that *P* is satisfied.
 - $\circ \forall i \bullet i \in \mathbb{N} \Rightarrow i \geq 0$ [true] $\circ \forall i \bullet i \in \mathbb{Z} \Rightarrow i \geq 0$ [false] $\circ \forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$ [false]
- Proof Strategies
 - **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?
 - **Hint.** When is $R \Rightarrow P$ **true**? [true \Rightarrow true, false \Rightarrow _]
 - Show that for all instances of $x \in X$ s.t. R(x), P(x) holds.
 - Show that for all instances of $x \in X$ it is the case $\neg R(x)$.
 - **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ **false**?
 - **Hint.** When is $R \Rightarrow P$ **false**?

[$true \Rightarrow false$]

• Give a **witness/counterexample** of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

9 of 41

LASSONDE

Predicate Logic (2.2): Existential Q. (∃)

- An existential quantification has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - *R* is a *constraint on types/ranges* of the listed variables
 - P is a property to be satisfied
- There exist (a combination of) values of variables listed in X that satisfy both R and P.

```
\circ \exists i \bullet i \in \mathbb{N} \land i > 0
                                                                                                                                                     [ true ]
\circ \exists i \bullet i \in \mathbb{Z} \land i > 0
                                                                                                                                                     [true]
\circ \ \exists i,j \ \bullet \ i \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)
                                                                                                                                                    [true]
```

- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - **Hint.** When is *R* ∧ *P true*?

[true ∧ true]

- Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
- **2.** How to prove $(\exists X \bullet R \land P)$ *false*?
 - Hint. When is R ∧ P false?

- [$true \land false, false \land _$]
- Show that for all instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for all instances of $x \in X$ it is the case $\neg R(x)$.

10 of 41

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 1$. Integer 1 (a witness/counterexample) in the range between 1 and 10 is *not* greater than 1.
- Prove or disprove: $\exists x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \land x > 1$. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that $\exists x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \land x > 10$? All integers in the range between 1 and 10 are *not* greater than 10.

Predicate Logic (4): Switching Quantification Sonde

Conversions between ∀ and ∃:

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P)$$
$$(\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

12 of 41

Sets: Definitions and Membership

- A set is a collection of objects.
 - Objects in a set are called its *elements* or *members*.
 - o Order in which elements are arranged does not matter.
 - An element can appear at most once in the set.
- We may define a set using:
 - Set Enumeration: Explicitly list all members in a set. e.g., {1, 3, 5, 7, 9}
 - Set Comprehension: Implicitly specify the condition that all members satisfy.

e.g.,
$$\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$$

- An empty set (denoted as {} or Ø) has no members.
- We may check if an element is a *member* of a set:

e.g.,
$$5 \in \{1,3,5,7,9\}$$
 [true]
e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$ [true]

• The number of elements in a set is called its *cardinality*.

e.g.,
$$|\varnothing| = 0$$
, $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

Set Relations

Given two sets S_1 and S_2 :

• S_1 is a **subset** of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$$

• S_1 and S_2 are **equal** iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a **proper subset** of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

14 of 41

Set Relations: Exercises

$? \subseteq S$ always holds	$[\varnothing $ and $S $ $]$
? ⊂ S always fails	[8]
? $\subset S$ holds for some S and fails for some S	[Ø]
$S_1 = S_2 \Rightarrow S_1 \subseteq S_2$?	[Yes]
$S_1 \subseteq S_2 \Rightarrow S_1 = S_2$?	[No]

Set Operations

Given two sets S_1 and S_2 :

• *Union* of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• **Difference** of S_1 and S_2 is a set whose members are in S_1 but not S_2 .

$$S_1 \setminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

16 of 41

Power Sets

The *power set* of a set *S* is a *set* of all *S*'s *subsets*.

$$\mathbb{P}(S) = \{ s \mid s \subseteq S \}$$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set s has cardinality 0, 1, 2, or 3:

$$\left(\begin{array}{c}\varnothing,\\\{1\},\ \{2\},\ \{3\},\\\{1,2\},\ \{2,3\},\ \{3,1\},\\\{1,2,3\}\end{array}\right)$$

Exercise: What is $\mathbb{P}(\{1,2,3,4,5\}) \setminus \mathbb{P}(\{1,2,3\})$?

17 of 41

Set of Tuples

Given n sets S_1 , S_2 , ..., S_n , a *cross/Cartesian product* of theses sets is a set of n-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \leq i \leq n\}$$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples:

$$\{a,b\} \times \{2,4\} \times \{\$,\&\}$$

$$= \{ (e_1,e_2,e_3) \mid e_1 \in \{a,b\} \land e_2 \in \{2,4\} \land e_3 \in \{\$,\&\} \}$$

$$= \{ (a,2,\$), (a,2,\&), (a,4,\$), (a,4,\&), \}$$

$$(b,2,\$), (b,2,\&), (b,4,\$), (b,4,\&) \}$$

18 of 41

Relations (1): Constructing a Relation

A <u>relation</u> is a set of mappings, each being an **ordered pair** that maps a member of set S to a member of set T.

e.g., Say
$$S = \{1, 2, 3\}$$
 and $T = \{a, b\}$

- $\circ \ \underline{\varnothing} \ \text{is the } \ \textbf{\textit{minimum}} \ \text{relation}$ (i.e., an empty relation).
- $S \times T$ is the *maximum* relation (say r_1) between S and T, mapping from each member of S to each member in T:

$$\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

∘ $\{(x,y) \mid (x,y) \in S \times T \land x \neq 1\}$ is a relation (say r_2) that maps only some members in S to every member in T:

$$\{(2,a),(2,b),(3,a),(3,b)\}$$

Relations (2.1): Set of Possible Relations

• We use the *power set* operator to express the set of *all* possible relations on S and T:

$$\mathbb{P}(S \times T)$$

Each member in $\mathbb{P}(S \times T)$ is a relation.

• To declare a relation variable r, we use the colon (:) symbol to mean **set membership**:

$$r: \mathbb{P}(S \times T)$$

• Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

20 of 41

Relations (2.2): Exercise

Enumerate $\{a,b\} \leftrightarrow \{1,2,3\}$.

- Hints:
 - You may enumerate all relations in $\mathbb{P}(\{a,b\} \times \{1,2,3\})$ via their cardinalities: $0, 1, ..., |\{a, b\} \times \{1, 2, 3\}|$.
 - What's the *maximum* relation in $\mathbb{P}(\{a,b\} \times \{1,2,3\})$? $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$
- The answer is a set containing **all** of the following relations:
 - ∘ Relation with cardinality 0: Ø
 - $(|\{a,b\}\times\{1,2,3\}|)=6$ How many relations with cardinality 1?
 - How many relations with cardinality 2? $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{2}\right] = \frac{6\times5}{2!} = 15$

• Relation with cardinality $|\{a,b\} \times \{1,2,3\}|$: $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

21 of 41

Relations (3.1): Domain, Range, Inverse

Given a relation

```
r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}
```

- | domain of r |: set of first-elements from r
 - Definition: $dom(r) = \{ d \mid (d, r') \in r \}$
 - \circ e.g., dom $(r) = \{a, b, c, d, e, f\}$
 - ASCII syntax: dom(r)
- **range** of r: set of second-elements from r
 - Definition: $ran(r) = \{ r' \mid (d, r') \in r \}$
 - e.g., $ran(r) = \{1, 2, 3, 4, 5, 6\}$
 - ASCII syntax: ran(r)
- *inverse* of *r* : a relation like *r* with elements swapped
 - Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$
 - e.g., $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$
 - ASCII syntax: r~

22 of 41

Relations (3.2): Image

Given a relation

```
r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}
relational image of r over set s: sub-range of r mapped by s.
```

• Definition: $r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$

- e.g., $r[\{a,b\}] = \{1,2,4,5\}$
- ASCII syntax: r[s]

Relations (3.3): Restrictions

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- **domain restriction** of *r* over set *ds* : sub-relation of *r* with domain *ds*.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
 - e.g., $\{a,b\} \triangleleft r = \{(\mathbf{a},1), (\mathbf{b},2), (\mathbf{a},4), (\mathbf{b},5)\}$
 - ASCII syntax: ds <| r
- *range restriction* of *r* over set *rs* : sub-relation of *r* with range *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(a,1),(b,2),(d,1),(e,2)\}$
 - ASCII syntax: r |> rs

24 of 41

Relations (3.4): Subtractions

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

- **domain subtraction** of r over set ds: sub-relation of r with domain not ds.
 - Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \notin ds \}$
 - e.g., $\{a,b\} \leq r = \{(\mathbf{c},3), (\mathbf{c},6), (\mathbf{d},1), (\mathbf{e},2), (\mathbf{f},3)\}$
 - ASCII syntax: ds <<| r
- *range subtraction* of *r* over set *rs*: sub-relation of *r* with range not *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(c,3),(a,4),(b,5),(c,6),(f,3)\}$
 - ASCII syntax: r |>> rs

Relations (3.5): Overriding

Given a relation

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

overriding of r with relation t : a relation which agrees with t within $dom(t)$, and agrees with r outside $dom(t)$

 $\begin{array}{c} \circ \ \ \mathsf{Definition:} \ r \Leftrightarrow t = \{ \ (d,r') \ | \ (d,r') \in t \lor ((d,r') \in r \land d \not\in \mathsf{dom}(t)) \ \} \\ \circ \ \ \mathsf{e.g.}, \\ \\ r \Leftrightarrow \{(a,3),(c,4)\} \\ \\ = \ \ \underbrace{\{(a,3),(c,4)\} \cup \underbrace{\{(b,2),(b,5),(d,1),(e,2),(f,3)\}}_{\{(d,r')|(d,r') \in r \land d \not\in \mathsf{dom}(t)\}} } \\ \\ = \ \ \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\} \\ \end{array}$

26 of 41

27 of 41

Relations (4): Exercises

• ASCII syntax: r <+ t

1. Define r[s] in terms of other relational operations.

Answer:
$$r[s] = ran(s \triangleleft r)$$

e.g.,
$$r[\underbrace{\{a,b\}\}}_{s} = ran(\underbrace{\{(\mathbf{a},1),(\mathbf{b},2),(\mathbf{a},4),(\mathbf{b},5)\}}_{\{a,b\}\triangleleft r}) = \{1,2,4,5\}$$

2. Define $r \Leftrightarrow t$ in terms of other relational operators.

Answer:
$$r \Leftrightarrow t = t \cup (\text{dom}(t) \Leftrightarrow r)$$
e.g.,
$$r \Leftrightarrow \underbrace{\{(a,3),(c,4)\}}_{t} \cup \underbrace{\{(b,2),(b,5),(d,1),(e,2),(f,3)\}}_{\text{dom}(t) \Leftrightarrow r}$$

$$= \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\}$$

Functions (1): Functional Property

• A *relation* r on sets S and T (i.e., $r \in S \leftrightarrow T$) is also a *function* if it satisfies the *functional property*:

```
isFunctional (r)

⇔

\forall s.t_1.t_2 \bullet (s \in S \land t_1 \in T \land t_2 \in T) \Rightarrow ((s,t_1) \in r \land (s,t_2) \in r \Rightarrow t_1 = t_2)
```

- That is, in a *function*, it is <u>forbidden</u> for a member of S to map to more than one members of T.
- Equivalently, in a *function*, two <u>distinct</u> members of *T* <u>cannot</u> be mapped by the <u>same</u> member of *S*.
- e.g., Say S = {1,2,3} and T = {a,b}, which of the following relations satisfy the above functional property?

```
relations satisfy the above functional property?

\circ S \times T [No]

<u>Witness 1</u>: (1, a), (1, b); <u>Witness 2</u>: (2, a), (2, b); <u>Witness 3</u>: (3, a), (3, b).

\circ (S \times T) \setminus \{(x,y) \mid (x,y) \in S \times T \land x = 1\} [No]

<u>Witness 1</u>: (2, a), (2, b); <u>Witness 2</u>: (3, a), (3, b)

\circ \{(1,a), (2,b), (3,a)\} [Yes]

\circ \{(1,a), (2,b)\}
```

LASSONDE

Functions (2.1): Total vs. Partial

Given a **relation** $r \in S \leftrightarrow T$

r is a partial function if it satisfies the functional property:

$$r \in S \nrightarrow T \iff (isFunctional(r) \land dom(r) \subseteq S)$$

Remark. $r \in S \Rightarrow T$ means there **may (or may not) be** $s \in S$ s.t. r(s) is **undefined** (i.e., $r[\{s\}] = \emptyset$).

- ∘ e.g., $\{\{(\mathbf{2},a),(\mathbf{1},b)\},\{(\mathbf{2},a),(\mathbf{3},a),(\mathbf{1},b)\}\}$ ⊆ $\{1,2,3\}$ \nrightarrow $\{a,b\}$ ∘ ASCII syntax: r : +->
- r is a *total function* if there is a mapping for each $s \in S$:

$$r \in S \to T \iff (isFunctional(r) \land dom(r) = S)$$

<u>Remark.</u> $r \in S \rightarrow T$ implies $r \in S \nrightarrow T$, but <u>not</u> vice versa. Why?

- $\circ \text{ e.g., } \{(\mathbf{2},a), (\mathbf{3},a), (\mathbf{1},b)\} \in \{1,2,3\} \to \{a,b\}$
- ∘ e.g., $\{(\mathbf{2}, a), (\mathbf{1}, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$
- ASCII syntax: r : -->

29 of 41

Functions (2.2): Relation Image vs. Function Application

- Recall: A *function* is a *relation*, but a *relation* is not necessarily a *function*.
- Say we have a *partial function* $f \in \{1,2,3\} \rightarrow \{a,b\}$:

$$f = \{(\mathbf{3}, a), (\mathbf{1}, b)\}$$

• With f wearing the relation hat, we can invoke relational images:

$$f[{3}] = {a}$$

 $f[{1}] = {b}$
 $f[{2}] = \emptyset$

Remark. $\Rightarrow |f[\{v\}]| \le 1$:

- each member in dom(f) is mapped to at most one member in ran(f)
- each input set {v} is a **singleton** set
- With f wearing the function hat, we can invoke functional applications:

f(3) = a f(1) = b f(2) = a

f(2) is undefined

30 of 41

Functions (2.3): Modelling Decision

An organization has a system for keeping <u>track</u> of its employees as to where they are on the premises (e.g., `'Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- Employee denotes the **set** of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.
- Is it appropriate to model/formalize such a track functionality as a relation (i.e., where_is ∈ Employee ↔ Location)?
 Answer. No an employee cannot be at distinct locations simultaneously.
 e.g., where_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- How about a total function (i.e., where_is ∈ Employee → Location)?
 Answer. No in reality, not necessarily all employees show up.
 e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.
- How about a partial function (i.e., where is ∈ Employee → Location)?
 Answer. Yes this addresses the inflexibility of the total function.

R1 of 41

Functions (3.1): Injective Functions

Given a *function* f (either <u>partial</u> or <u>total</u>):

 f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T.
 isInjective(f)

```
\iff \forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)
• If f is a partial injection, we write: f \in S \Rightarrow T

∘ e.g., \{\emptyset, \{(1, \mathbf{a})\}, \{(2, \mathbf{a}), (3, \mathbf{b})\}\} \subseteq \{1, 2, 3\} \Rightarrow \{a, b\}
∘ e.g., \{(1, \mathbf{b}), (2, a), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\} [total, not inj.]
∘ e.g., \{(1, \mathbf{b}), (3, \mathbf{b})\} \notin \{1, 2, 3\} \Rightarrow \{a, b\} [partial, not inj.]
```

• ASCII syntax: f: >+>• If f is a *total injection*, we write: $f \in S \rightarrow T$

```
○ e.g., \{1, 2, 3\} \rightarrow \{a, b\} = \emptyset

○ e.g., \{(2, d), (1, a), (3, c)\} \in \{1, 2, 3\} \rightarrow \{a, b, c, d\}

○ e.g., \{(2, d), (1, c)\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}

○ e.g., \{(2, \mathbf{d}), (1, c), (3, \mathbf{d})\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}
```

• ASCII syntax: f : >->

[not total, inj.]

[total, not inj.]

Functions (3.2): Surjective Functions

Given a *function f* (either partial or total):

• *f* is *surjective*/*onto*/*a surjection* if *f* maps to all members of *T*.

```
isSurjective(f) \iff ran(f) = T
```

```
If f is a partial surjection, we write: f∈S → T
e.g., { {(1,b),(2,a)}, {(1,b),(2,a),(3,b)} } ⊆ {1,2,3} → {a,b}
e.g., {(2,a),(1,a),(3,a) } ∉ {1,2,3} → {a,b} [total, not sur.]
e.g., {(2,b),(1,b)} ∉ {1,2,3} → {a,b} [partial, not sur.]
ASCII syntax: f : +->>
If f is a total surjection, we write: f∈S → T
e.g., { {(2,a),(1,b),(3,a)}, {(2,b),(1,a),(3,b)} } ⊆ {1,2,3} → {a,b}
```

```
If f is a total surjection, we write: f \in S \twoheadrightarrow I \bigcirc e.g., \{\{(2,a),(1,b),(3,a)\},\{(2,b),(1,a),(3,b)\}\}\subseteq \{1,2,3\}\twoheadrightarrow \{a,b\} o e.g., \{(2,a),(3,b)\}\notin \{1,2,3\}\twoheadrightarrow \{a,b\} [not total, sur.] o e.g., \{(2,a),(3,a),(1,a)\}\notin \{1,2,3\}\twoheadrightarrow \{a,b\} [total., not sur] o ASCII syntax: f: -->>
```

33 of 41

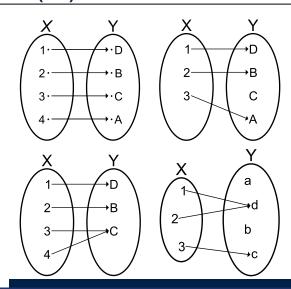
Functions (3.3): Bijective Functions

Given a function f:

f is **bijective**/a **bijection**/one-to-one correspondence if f is **total**, **injective**, and **surjective**.

R4 of 41

Functions (4.1): Exercises



Functions (4.2): Modelling Decisions

- **1.** Should an array a declared as "String[] a" be modelled/formalized as a partial function (i.e., $a \in \mathbb{Z} \rightarrow String$)? **Answer**. $a \in \mathbb{Z} \rightarrow String$ is not appropriate as:
 - Indices are <u>non-negative</u> (i.e., a(i), where i < 0, is **undefined**).
 - Each array size is finite: not all positive integers are valid indices.
- 2. What does it mean if an array is modelled/formalized as a partial injection (i.e., a ∈ ℤ → String)?

Answer. It means that the array does not contain any duplicates.

- 3. Can an integer array "int[] a" be modelled/formalized as a partial surjection (i.e., $a \in \mathbb{Z} \twoheadrightarrow \mathbb{Z}$)?

 Answer. Yes, if a stores all 2^{32} integers (i.e., $[-2^{31}, 2^{31} 1]$).
- 4. Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → String)?
 Answer. No : # possible strings is ∞.
- **5.** Can an integer array "int[]" storing all 2^{32} values be *modelled/formalized* as a *bijection* (i.e., $a \in \mathbb{Z} \rightarrow \mathbb{Z}$)?

<u>Answer</u>. No, because it <u>cannot</u> be *total* (as discussed earlier).

Beyond this lecture ...

- For the where_is ∈ Employee → Location model, what does it mean when it is:
 - Injective [where_is ∈ Employee → Location]
 Surjective [where_is ∈ Employee → Location]
 Bijective [where_is ∈ Employee → Location]
- Review examples discussed in your earlier math courses on *logic* and *set theory*.

LASSONI

Index (1)

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

R8 of 41

Index (2)

Sets: Definitions and Membership

Set Relations

Set Relations: Exercises

Set Operations

Power Sets

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image

Index (3)

Relations (3.3): Restrictions

Relations (3.4): Subtractions

Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions

40 of 41

Index (4)

41 of 41

Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...

Specifying & Refining a Bridge Controller

MEB: Chapter 2

EECS3342 E: System Specification and Refinement Fall 2025

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you understand:

- What a *Requirement Document (RD*) is
- What a *refinement* is
- Writing formal specifications
 - o (Static) contexts: constants, axioms, theorems
 - o (Dynamic) machines: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
 - refinements
 - system *properties*
- Applying *inference rules* of the *sequent calculus*

LASSONDE

Recall: Correct by Construction

- Directly reasoning about <u>source code</u> (written in a programming language) is too complicated to be feasible.
- Instead, given a requirements document, prior to implementation, we develop models through a series of refinement steps:
 - o Each model formalizes an external observer's perception of the system.
 - Models are "sorted" with *increasing levels of accuracy* w.r.t. the system.
 - The first model, though the most abstract, can <u>already</u> be proved satisfying some requirements.
 - Starting from the second model, each model is analyzed and proved correct relative to two criteria:
 - **1.** Some *requirements* (i.e., R-descriptions)
 - Proof Obligations (POs) related to the <u>preceding model</u> being refined by the <u>current model</u> (via "extra" state variables and events).
 - The <u>last model</u> (which is <u>correct by construction</u>) should be sufficiently close to be transformed into a working program (e.g., in C).

3 of 124

State Space of a Model

- A model's *state space* is the set of **all** configurations:
 - Each *configuration* assigns values to **constants** & **variables**, subject to:
 - axiom (e.g., typing constraints, assumptions)
 - *invariant* properties/theorems
 - Say an initial model of a bank system with two constants and a variable:

 $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String \Rightarrow \mathbb{Z}$ /* typing constraint */ $\forall id \bullet id \in dom(accounts) \Rightarrow -c \leq accounts(id) \leq L$ /* desired property */

- **Q**. What is the **state space** of this initial model?
- **A**. All valid combinations of *c*, *L*, and *accounts*.
- Configuration 1: $(c = 1,000, L = 500,000, b = \emptyset)$
- Configuration 2: (c = 2,375, L = 700,000, b = {("id1",500),("id2",1,250)}) ... [Challenge: Combinatorial Explosion]
- Model Concreteness ↑ ⇒ (State Space ↑ ∧ Verification Difficulty ↑)
- A model's *complexity* should be guided by those properties intended to be verified against that model.
 - ⇒ *Infeasible* to prove all desired properties on a model.
 - ⇒ *Feasible* to distribute desired properties over a list of *refinements*.

1 of 124

Roadmap of this Module

 We will walk through the development process of constructing models of a control system regulating cars on a bridge.

Such controllers exemplify a *reactive system*.

(with sensors and actuators)

- Always stay on top of the following roadmap:
 - 1. A Requirements Document (RD) of the bridge controller
- 2. A brief overview of the *refinement strategy*
- 3. An initial, the most abstract model
- 4. A subsequent *model* representing the 1st refinement
- 5. A subsequent *model* representing the 2nd refinement
- **6.** A subsequent *model* representing the *3rd refinement*

5 of 124

Requirements Document: Mainland, Island

Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.

Page Source: https://soldbyshane.com/area/toronto-islands/

Requirements Document: E-Descriptions

Each *E-Description* is an <u>atomic</u> <u>specification</u> of a <u>constraint</u> or an <u>assumption</u> of the system's working environment.

ENV1	ENV1 The system is equipped with two traffic lights with two colors: green and red.	
ENV2	The traffic lights control the entrance to the bridge at both ends of it.	
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.	
ENV4	The system is equipped with four sensors with two states: on or off.	
ENV5	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.	

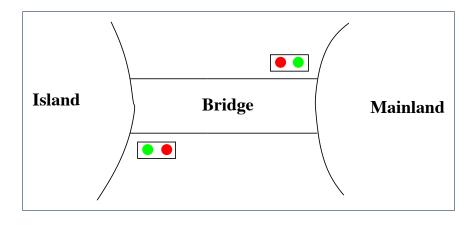
7 of 124

Requirements Document: R-Descriptions

Each *R-Description* is an <u>atomic</u> *specification* of an intended *functionality* or a desired *property* of the working system.

REQ1	REQ1 The system is controlling cars on a bridge connecting the mainland to an island.	
REQ2 The number of cars on bridge and island is limited.		
REQ3	The bridge is one-way or the other, not both at the same time.	

Requirements Document: Visual Summary of Equipment Pieces



9 of 124

Refinement Strategy

- Before diving into details of the *models*, we first clarify the adopted *design strategy of progressive refinements*.
 - **0.** The *initial model* (m_0) will address the intended functionality of a *limited* number of cars on the island and bridge.

[REQ2]

 A 1st refinement (m₁ which refines m₀) will address the intended functionality of the bridge being one-way.

[REQ1, REQ3]

 A 2nd refinement (m₂ which refines m₁) will address the environment constraints imposed by traffic lights.

[ENV1, ENV2, ENV3]

 A <u>final</u>, 3rd refinement (m₃ which refines m₂) will address the environment constraints imposed by <u>sensors</u> and the <u>architecture</u>: controller, environment, communication channels.

[ENV4, ENV5]

• Recall Correct by Construction:

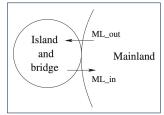
From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it *feasible* to conduct **analysis** and **proofs**.

Model m_0 : Abstraction

- In this most abstract perception of the bridge controller, we do not even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

REQ2

- Analogies:
 - Observe the system from the sky: island and bridge appear only as a compound.



"Zoom in" on the system as refinements are introduced.

11 of 124

Model m_0 : State Space

1. The *static* part is fixed and may be seen/imported.

A *constant d* denotes the <u>maximum</u> number of cars allowed to be on the *island-bridge compound* at any time.

(whereas cars on the mainland is unbounded)

constants: d axioms: $axm0.1: d \in \mathbb{N}$

Remark. Axioms are assumed true and may be used to prove theorems.

2. The *dynamic* part changes as the system *evolves*.

A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.

variables:ninvariants: $inv0_1: n \in \mathbb{N}$ $inv0_2: n \le d$

Remark. Invariants should be (subject to proofs):

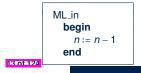
- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

12 of 124

Model m_0 : State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it <u>evolves</u> as
 actions of enabled events change values of variables, subject to invariants.
- At any given **state** (a valid **configuration** of constants/variables):
 - An event is said to be *enabled* if its guard evaluates to *true*.
 - An event is said to be *disabled* if its guard evaluates to *false*.
 - An <u>enabled</u> event makes a <u>state transition</u> if it occurs and its <u>actions</u> take effect.
- 1st event: A car exits mainland (and enters the island-bridge compound).

• 2nd event: A car enters mainland (and exits the island-bridge compound).



Correct Specification? Say d = 2.

Witness: Event Trace (init, ML_in)

Model m_0 : Actions vs. Before-After Predicates on December 1

- When an enabled event e occurs there are two notions of state:
 - o Before-/Pre-State: Configuration just before e's actions take effect
 - After-/Post-State: Configuration just <u>after</u> e's actions take effect
 <u>Remark</u>. When an <u>enabled</u> event occurs, its <u>action(s)</u> cause a <u>transition</u> from the
 <u>pre-state</u> to the <u>post-state</u>.
- As examples, consider *actions* of m_0 's two events:

- An event action "n:= n+1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The before-after predicate (BAP) "n' = n + 1" expresses that
 n' (the post-state value of n) is one more than n (the pre-state value of n).
- When we express proof obligations (POs) associated with events, we use BAP.

Design of Events: Invariant Preservation

· Our design of the two events

only specifies how the *variable* n should be updated.

Remember, invariants are conditions that should never be violated!

invariants: $inv0_1: n \in \mathbb{N}$ $inv0_2 : n \le d$

 By simulating the system as an ASM, we discover witnesses (i.e., event traces) of the *invariants* not being preserved all the time.

$$\exists s \bullet s \in \mathsf{STATE} \; \mathsf{SPACE} \Rightarrow \neg invariants(s)$$

 We formulate such a commitment to preserving invariants as a proof **obligation** (**PO**) rule (a.k.a. a **verification condition** (**VC**) rule).

15 of 124

Sequents: Syntax and Semantics

• We formulate each **PO/VC** rule as a (horizontal or vertical) **sequent**:

- The symbol ⊢ is called the *turnstile*.
- *H* is a set of predicates forming the *hypotheses/assumptions*.

[assumed as true]

• *G* is a set of predicates forming the *goal/conclusion*.

[claimed to be **provable** from H]

- Informally:
 - $H \vdash G$ is **true** if G can be proved by assuming H.

[i.e., We say "H entails G" or "H yields G"]

- \circ $H \vdash G$ is *false* if G cannot be proved by assuming H.
- Formally: $H \vdash G \iff (H \Rightarrow G)$
 - **Q**. What does it mean when *H* is empty (i.e., no hypotheses)?

A.
$$\vdash G \equiv true \vdash G$$
 [Why not $\vdash G \equiv false \vdash G$?

PO of Invariant Preservation: Sketch

• Here is a sketch of the PO/VC rule for *invariant preservation*:

Axioms **Invariants** Satisfied at **Pre-State** Guards of the Event

INV

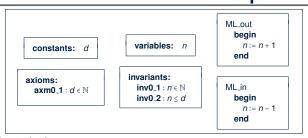
Invariants Satisfied at *Post-State*

• Informally, this is what the above PO/VC requires to prove: Assuming **all** axioms, invariants, and the event's guards hold at the *pre-state*, after the **state transition** is made by the event,

all invariants hold at the post-state.

17 of 124

PO of Invariant Preservation: Components



• c: list of constants

A(c): list of axioms

⟨axm0₋1⟩

• v and v': list of variables in pre- and post-states

 $\mathbf{v} \cong \langle n \rangle, \mathbf{v'} \cong \langle n' \rangle$ (inv0_1, inv0_2)

- *I(c, v)*: list of *invariants*
- G(c, v): the **event**'s list of guards

 $G(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle true \rangle$, $G(\langle d \rangle, \langle n \rangle)$ of $ML_in \cong \langle true \rangle$

• E(c, v): effect of the **event**'s actions i.t.o. what variable values **become**

 $E(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n+1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of $ML_out \cong \langle n-1 \rangle$

• v' = E(c, v): **before-after predicate** formalizing E's actions

BAP of *ML_out*: $\langle \mathbf{n}' \rangle = \langle \mathbf{n} + 1 \rangle$, BAP of *ML_in*: $\langle \mathbf{n}' \rangle = \langle \mathbf{n} - 1 \rangle$

Rule of Invariant Preservation: Sequents

 Based on the components (c, A(c), v, I(c, v), E(c, v)), we are able to formally state the PO/VC Rule of Invariant Preservation:

- Accordingly, how many *sequents* to be proved? [# events × # invariants]
- We have two **sequents** generated for **event** ML_out of model m_0 :

$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \le d$	ML_out/inv0_1/INV	$d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \le d$	ML_out/inv0_2/INV
		⊢	
$n+1\in\mathbb{N}$		$n+1 \leq d$	

Exercise. Write the **POs of invariant preservation** for event ML_in.

Before claiming that a model is correct, outstanding sequents associated with all POs must be proved/discharged.

19 of 124

Inference Rules: Syntax and Semantics

• An inference rule (IR) has the following form:

Formally: $A \Rightarrow C$ is an axiom.

Informally: To prove *C*, it is sufficient to prove *A* instead.

Informally: C is the case, assuming that A is the case.

- L is a name label for referencing the *inference rule* in proofs.
- A is a set of sequents known as antecedents of rule L.
- C is a single sequent known as consequent of rule L.
- Let's consider *inference rules (IRs)* with two different flavours:

- ∘ IR MON: To prove $H1, H2 \vdash G$, it suffices to prove $H1 \vdash G$ instead.
- ∘ IR **P2**: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$ is an *axiom*.

[proved automatically without further justifications]

20 of 124

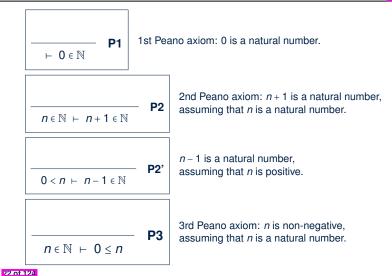
Proof of Sequent: Steps and Structure

• To prove the following sequent (related to *invariant preservation*):

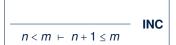
- 1. Apply a *inference rule*, which *transforms* some "outstanding" **sequent** to one or more other **sequents** to be proved instead.
- Keep applying inference rules until all transformed sequents are axioms that do not require any further justifications.
- Here is a *formal proof* of ML_out/inv0_1/INV, by applying IRs MON and P2:

21 of 124

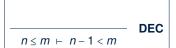
Example Inference Rules (1)



Example Inference Rules (2)



n+1 is less than or equal to m, assuming that n is strictly less than m.



n-1 is strictly less than m, assuming that n is less than or equal to m.

23 of 124

Example Inference Rules (3)

$$\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$$

To prove a goal under certain hypotheses, it suffices to prove it under less hypotheses.

$$\frac{H,P \vdash R \qquad H,Q \vdash R}{H,P \lor Q \vdash R} \quad \mathsf{OR_L}$$

<u>Proof by Cases</u>:
To prove a goal under a disjunctive assumption, it suffices to prove <u>independently</u>
the same goal, twice, under each disjunct.

$$\frac{H \vdash P}{H \vdash P \lor Q} \quad \mathsf{OR}_{\underline{}}\mathsf{R1}$$

To prove a disjunction, it suffices to prove the left disjunct.

$$\frac{H \vdash Q}{H \vdash P \lor Q} \quad \mathbf{OR_R2}$$

To prove a disjunction, it suffices to prove the right disjunct.

24 of 124

Revisiting Design of Events: ML_out

• Recall that we already proved **PO** ML_out/inv0_1/INV :

$$\begin{array}{c|c} d \in \mathbb{N} \\ n \in \mathbb{N} \\ n \leq d \\ \vdash \\ n+1 \in \mathbb{N} \end{array} \qquad \begin{array}{c|c} m \in \mathbb{N} \\ \vdash \\ n+1 \in \mathbb{N} \end{array} \qquad \begin{array}{c|c} \mathbf{P2} \\ \end{array}$$

- : ML_out/inv0_1/INV succeeds in being discharged.
- How about the other **PO** ML_out/inv0_2/INV for the same event?

:. ML_out/inv0_2/INV fails to be discharged.

25 of 124

Revisiting Design of Events: ML_in

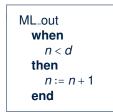
• How about the **PO** ML_in/inv0_1/INV for ML_in:

- ∴ ML_in/inv0_1/INV fails to be discharged.
- How about the other **PO** ML_in/inv0_2/INV for the same event?

:. ML_in/inv0_2/INV succeeds in being discharged.

Fixing the Design of Events

- Proofs of ML_out/inv0_2/INV and ML_in/inv0_1/INV fail due to the two events being enabled when they should not.
- Having this feedback, we add proper *guards* to *ML_out* and *ML_in*:



- Having changed both events, <u>updated</u> <u>sequents</u> will be generated for the PO/VC rule of <u>invariant preservation</u>.
- <u>All sequents</u> ({*ML_out*, *ML_in*} × {inv0_1, inv0_2}) now *provable*?

27 of 124

Revisiting Fixed Design of Events: *ML_out*

• How about the **PO** ML_out/**inv0_1**/INV for ML_out:

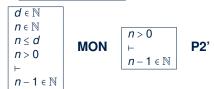
- :. ML_out/inv0_1/INV still succeeds in being discharged!
- How about the other **PO** ML_out/**inv0_2**/INV for the same event?

∴ *ML_out/inv0_2/INV* now <u>succeeds</u> in being discharged!

28 of 124

Revisiting Fixed Design of Events: *ML_in*

• How about the **PO** ML_in/inv0_1/INV for ML_in:



- :. ML_in/inv0_1/INV now succeeds in being discharged!
- How about the other **PO** ML_in/inv0_2/INV for the same event?

:. ML_in/inv0_2/INV still succeeds in being discharged!

29 of 124

Initializing the Abstract System m_0

- Discharging the <u>four</u> <u>sequents</u> proved that <u>both</u> <u>invariant</u> conditions are <u>preserved</u> between occurrences/interleavings of <u>events</u> ML_out and ML_in.
- But how are the *invariants established* in the first place?

Analogy. Proving P via *mathematical induction*, two cases to prove:

o $P(1), P(2), \dots$ [base cases \approx establishing inv.]

o $P(n) \Rightarrow P(n+1)$ [inductive cases \approx preserving inv.]

- Therefore, we specify how the **ASM** 's *initial state* looks like:
 - √ The IB compound, once initialized, has no cars.
 - ✓ Initialization always possible: guard is *true*.
 - √ There is no pre-state for init.
 - \therefore The <u>RHS</u> of := must <u>not</u> involve variables.
 - \therefore The <u>RHS</u> of := may <u>only</u> involve constants.
 - ✓ There is only the **post-state** for *init*.
 - \therefore Before-After Predicate: n' = 0

RD of 124

init

begin

end

n := 0

LASSONDE

PO of Invariant Establishment

- ✓ An *reactive system*, once *initialized*, should never terminate.
- ✓ Event init cannot "preserve" the invariants.
 - : State before its occurrence (pre-state) does not exist.
- ✓ Event *init* only required to *establish* invariants for the first time
- A new formal component is needed:
 - K(c): effect of *init*'s actions i.t.o. what variable values <u>become</u>

e.g.,
$$K(\langle d \rangle)$$
 of init $\widehat{=} \langle 0 \rangle$

• v' = K(c): **before-after predicate** formalizing *init*'s actions

e.g., BAP of *init*:
$$\langle n' \rangle = \langle 0 \rangle$$

Accordingly, PO of invariant establisment is formulated as a sequent:

R1 of 124

Discharging PO of Invariant Establishment

• How many *sequents* to be proved?

- [# invariants]
- We have two **sequents** generated for **event** init of model m_0 :

• Can we discharge the **PO** init/inv0_1/INV ?

• Can we discharge the **PO** init/inv0_2/INV ?

$$\begin{array}{c|c} d \in \mathbb{N} \\ \vdash \\ 0 \le d \end{array}$$
 P3
$$\begin{array}{c} \therefore init/inv0_2/INV \\ \underline{\text{succeeds}} \text{ in being discharged.} \end{array}$$

32 of 124

System Property: Deadlock Freedom

- So far we have proved that our initial model m₀ is s.t. <u>all</u> invariant conditions are:
 - Established when system is first initialized via init
 - Preserved whenevner there is a state transition

(via an enabled event: *ML_out* or *ML_in*)

- However, whenever <u>event occurrences</u> are <u>conditional</u> (i.e., <u>guards</u> stronger than <u>true</u>), there is a possibility of <u>deadlock</u>:
 - A state where guards of all events evaluate to false
 - When a *deadlock* happens, <u>none</u> of the *events* is *enabled*.
 - ⇒ The system is blocked and not reactive anymore!
- We express this *non-blocking* property as a new requirement:

REQ4	Once started, the system should work for ever.	

R3 of 124

PO of Deadlock Freedom (1)

- Recall some of the formal components we discussed:
 - o c: list of constants $\langle d \rangle$ o A(c): list of axioms $\langle axm0_1 \rangle$ o v and v': list of variables in pre- and post-states $v \cong \langle n \rangle, v' \cong \langle n' \rangle$ o I(c,v): list of invariants $\langle inv0_1, inv0_2 \rangle$ o G(c,v): the event's list of guards $G(\langle d \rangle, \langle n \rangle)$ of ML_in $\cong \langle n > 0 \rangle$
- A system is deadlock-free if at least one of its events is enabled:

To prove about deadlock freedom

- o An event's effect of state transition is **not** relevant.
- Instead, the evaluation of all events' guards at the pre-state is relevant.

R4 of 124

PO of Deadlock Freedom (2)

- Deadlock freedom is not necessarily a desired property.
 - \Rightarrow When it is (like m_0), then the generated **sequents** must be discharged.
- Applying the PO of **deadlock freedom** to the initial model m_0 :

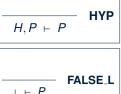
$$\begin{array}{c}
d \in \mathbb{N} \\
n \in \mathbb{N} \\
n \le d \\
\vdash \\
n < d \lor n > 0
\end{array}$$
DLF

Our bridge controller being **deadlock-free** means that cars can **always** enter (via ML_out) or leave (via ML_in) the island-bridge compound.

• Can we formally discharge this **PO** for our *initial model* m_0 ?

R5 of 124

Example Inference Rules (4)



A goal is proved if it can be assumed.

 $\perp \vdash P$

Assuming *false* (\perp), anything can be proved.

true (⊤) is proved, regardless of the assumption.

An expression being equal to itself is proved, regardless of the assumption.

36 of 124

Example Inference Rules (5)

$$\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ_LR}$$

To prove a goal $P(\mathbf{E})$ assuming $H(\mathbf{E})$, where both P and H depend on expression E, it suffices to prove $P(\mathbf{F})$ assuming $H(\mathbf{F})$, where both P and H depend on expresion F, given that **E** is equal to **F**.

$$\frac{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})}{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})} \quad \mathbf{EQ_RL}$$

To prove a goal P(F) assuming H(F), where both P and H depend on expression F, it suffices to prove $P(\mathbf{E})$ assuming $H(\mathbf{E})$, where both P and H depend on expresion E. given that **E** is equal to **F**.

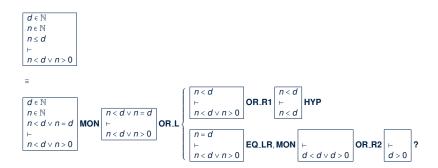
R7 of 124

Discharging PO of DLF: Exercise

R8 of 124

LASSONDE

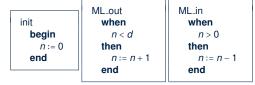
Discharging PO of DLF: First Attempt



R9 of 124

Why Did the DLF PO Fail to Discharge?

- In our first attempt, proof of the 2nd case failed: $\vdash d > 0$
- This *unprovable* sequent gave us a good hint:
 - For the model under consideration (m₀) to be deadlock-free,
 it is required that d > 0. [≥ 1 car allowed in the IB compound]
 - But current **specification** of m_0 **not** strong enough to entail this:
 - $\neg(d > 0) \equiv d \le 0$ is possible for the current model
 - Given **axm0**₋**1** : *d* ∈ N
 - \Rightarrow d = 0 is allowed by m_0 which causes a **deadlock**.
- Recall the init event and the two guarded events:



When d = 0, the disjunction of guards evaluates to *false*: $0 < 0 \lor 0 > 0$

⇒ As soon as the system is initialized, it *deadlocks immediately*

as no car can either enter or leave the IR compound!!

40 of 124

Fixing the Context of Initial Model

• Having understood the failed proof, we add a proper **axiom** to m_0 :

axioms: axm0_2: d > 0

• We have effectively elaborated on **REQ2**:

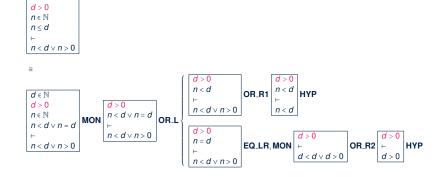
REQ2 The number of cars on bridge and island is limited but positive.

- Having changed the context, an <u>updated</u> sequent will be generated for the PO/VC rule of deadlock freedom.
- Is this new sequent now provable?

41 of 124

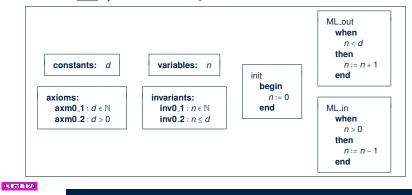
 $d \in \mathbb{N}$

Discharging PO of DLF: Second Attempt



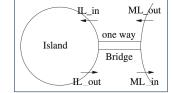
Initial Model: Summary

- The final version of our *initial model m*₀ is *provably correct* w.r.t.:
 - o Establishment of *Invariants*
 - o Preservation of *Invariants*
 - Deadlock Freedom
- Here is the final **specification** of m_0 :



Model m_1 : "More Concrete" Abstraction

- First *refinement* has a more *concrete* perception of the bridge controller:
 - We "zoom in" by observing the system from closer to the ground, so that the island-bridge compound is split into:
 - the island
 - the (one-way) bridge



- Nonetheless, traffic lights and sensors remain abstracted away!
- That is, we focus on these two *requirement*:

REQ1		The system is controlling cars on a bridge connecting the mainland to an island.
	REQ3	The bridge is one-way or the other, not both at the same time.

• We are **obliged to prove** this **added concreteness** is **consistent** with m_0 .

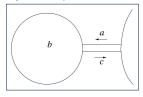
Model m_1 : Refined State Space

1. The **static** part is the same as m_0 's:

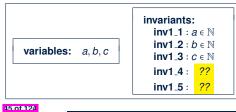
constants: d

axioms: $axm0_1 : d \in \mathbb{N}$ axm0 : 2 : d > 0

2. The **dynamic** part of the *concrete state* consists of three *variables*:



- a: number of cars on the bridge, heading to the island
- b: number of cars on the island
- c: number of cars on the bridge, heading to the mainland



- √ inv1_1, inv1_2, inv1_3 are typing constraints.
- √ inv1_4 links/glues the
 abstract and concrete states.
- ✓ inv1_5 specifies that the bridge is one-way.

Model m_1 : State Transitions via Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" **events** already existing in m_0 .
- Concrete/Refined version of event ML_out:

- Meaning of ML_out is refined:
 a car exits mainland (getting on the bridge).
- ML_out enabled only when:
 - the bridge's current traffic flows to the island
 - number of cars on both the bridge and the island is limited
- Concrete/Refined version of event ML_in:

- Meaning of ML_in is refined:
 a car enters mainland (getting off the bridge).
- o ML_in enabled only when:

there is some car on the bridge heading to the mainland.

Model m_1 : Actions vs. Before-After Predicates only

• Consider the **concrete/refined** version of **actions** of m_0 's two events:

 $\begin{tabular}{ll} ML_out \\ when \\ a+b < d \\ c=0 \\ then \\ a:=a+1 \\ end \\ \end{tabular}$

Before–after predicates

$$\begin{vmatrix} a' = a & \wedge & b' = b & \wedge \\ c' = c - 1 & \end{vmatrix}$$

$$\begin{vmatrix} a' = a + 1 & \wedge & b' = b \\ c' = c \end{vmatrix}$$

- An event's *actions* are a **specification**: "c becomes c 1 after the transition".
- The before-after predicate (BAP) "c' = c 1" expresses that
 c' (the post-state value of c) is one less than c (the pre-state value of c).
- Given that the *concrete state* consists of three variables:
 - An event's *actions* only specify those changing from *pre*-state to *post*-state.

[e.g.,
$$c' = c - 1$$
]

• Other unmentioned variables have their **post**-state values remain unchanged.

[e.g.,
$$a' = a \wedge b' = b$$

• When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*.

States & Invariants: Abstract vs. Concrete

- m_1 refines m_0 by introducing more *variables*:
 - Abstract State (of m_0 being refined):
 - Concrete State (of the refinement model m_1):

variables: n

variables: a, b, c

- Accordingly, invariants may involve different states:
 - Abstract Invariants

 (involving the abstract state only):

invariants: inv0_1 : $n \in \mathbb{N}$ inv0_2 : $n \le d$

Concrete Invariants

(involving at least the *concrete* state):

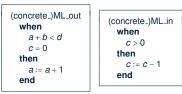
invariants: inv1_1: $a \in \mathbb{N}$ inv1_2: $b \in \mathbb{N}$ inv1_3: $c \in \mathbb{N}$ inv1_4: a + b + c = ninv1_5: $a = 0 \lor c = 0$

48 of 124

Events: Abstract vs. Concrete

- When an **event** exists in both models m_0 and m_1 , there are two versions of it:
 - The abstract version modifies the abstract state.

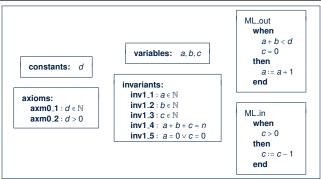
The concrete version modifies the concrete state.



 A <u>new event</u> may <u>only</u> exist in m₁ (the <u>concrete</u> model): we will deal with this kind of events later, separately from "redefined/overridden" events.

49 of 124

PO of Refinement: Components (1)



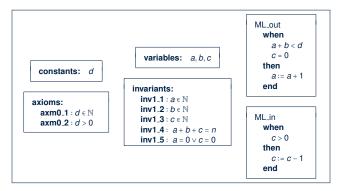
- c: list of constants (d)
- A(c): list of axioms
- v and v': abstract variables in pre- & post-states
- $\langle axm0_{-}1 \rangle$ $v \cong \langle n \rangle, v' \cong \langle n \rangle$
- w and w': concrete variables in pre- & post-states $w \cong (a, b, c), w' \cong (a', b', c')$
- I(c, v): list of abstract invariants

(inv0_1, inv0_2)

• J(c, v, w): list of **concrete invariants**

(inv1_1, inv1_2, inv1_3, inv1_4, inv1_5)

PO of Refinement: Components (2)



• G(c, v): list of guards of the abstract event

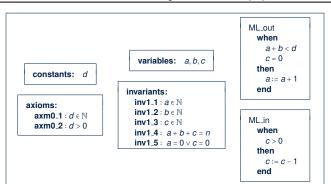
$$G(\langle d \rangle, \langle n \rangle)$$
 of $ML_out \cong \langle n < d \rangle$, $G(c, v)$ of $ML_in \cong \langle n > 0 \rangle$

• H(c, w): list of guards of the **concrete event**

$$H(\langle d \rangle, \langle a, b, c \rangle)$$
 of ML -out $\cong \langle a + b < d, c = 0 \rangle$, $H(c, w)$ of ML -in $\cong \langle c > 0 \rangle$

51 of 124

PO of Refinement: Components (3)



- E(c, v): effect of the **abstract event**'s actions i.t.o. what variable values **become**
 - $E(\langle d \rangle, \langle n \rangle)$ of ML_out $\widehat{=} \langle n+1 \rangle$, $E(\langle d \rangle, \langle n \rangle)$ of ML_in $\widehat{=} \langle n-1 \rangle$
- F(c, w): effect of the **concrete event**'s actions i.t.o. what variable values **become**

$$F(c, w)$$
 of $ML_out \cong \langle a+1, b, c \rangle$, $F(c, w)$ of $ML_in \cong \langle a, b, c-1 \rangle$

52 of 124

Sketching PO of Refinement

The PO/VC rule for a *proper refinement* consists of two parts:

1. Guard Strengthening

 A concrete transition <u>always</u> has an abstract counterpart.

 A concrete event is enabled only if abstract counterpart is enabled.

2. Invariant Preservation

- A concrete event performs a transition on concrete states.
- This concrete state transition must be consistent with how its abstract counterpart performs a corresponding abstract transition.

Note. *Guard strengthening* and *invariant preservation* are only <u>applicable</u> to events that might be *enabled* after the system is launched.

The special, non-guarded init event will be discussed separately later.

Refinement Rule: Guard Strengthening

 Based on the components, we are able to formally state the PO/VC Rule of Guard Strengthening for Refinement:

```
A(c)
I(c, v)
J(c, v, w)
H(c, w)
GRD

where G_i denotes a single guard condition of the abstract event
```

How many sequents to be proved?

- [# abstract guards]
- For ML_out, only one abstract guard, so one sequent is generated :

• Exercise. Write ML_in's PO of Guard Strengthening for Refinement.

PO Rule: Guard Strengthening of *ML_out*

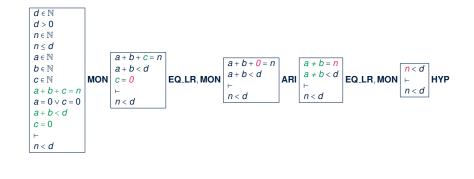
axm0₁ $d \in \mathbb{N}$ axm0₂ d > 0inv0_1 $n \in \mathbb{N}$ inv0₂ $n \leq d$ inv1₁ $a \in \mathbb{N}$ inv1_2 $b \in \mathbb{N}$ inv1_3 ML_out/GRD $c \in \mathbb{N}$ inv1 4 a+b+c=ninv1₅ $a = 0 \lor c = 0$ a + b < dConcrete guards of ML_out c = 0**Abstract** guards of **ML_out** { *n* < *d*

55 of 124

PO Rule: Guard Strengthening of ML_in

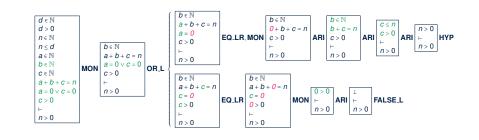
axm0₁ $d \in \mathbb{N}$ axm0₂ d > 0inv0_1 $n \in \mathbb{N}$ inv0_2 $n \leq d$ inv1₁ $a \in \mathbb{N}$ inv1_2 $b \in \mathbb{N}$ ML_in/GRD inv1_3 $c \in \mathbb{N}$ inv1_4 a+b+c=ninv1₅ $a = 0 \lor c = 0$ **Concrete** guards of ML_in c > 0**Abstract** guards of $ML_{in} \{ n > 0 \}$

Proving Refinement: ML_out/GRD



57 of 124

Proving Refinement: ML_in/GRD



58 of 124

Refinement Rule: Invariant Preservation

 Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:

```
 \begin{array}{c|c} A(c) \\ I(c, v) \\ J(c, v, w) \\ H(c, w) \\ \vdash \\ J_i(c, E(c, v), F(c, w)) \end{array} \underline{ \text{INV}} \quad \text{where } J_i \text{ denotes a } \underline{\text{single }} \text{ } \underline{\text{concrete invariant}}
```

- # sequents to be proved? [#concrete, old evts × #concrete invariants]
- Here are two (of the ten) sequents generated:

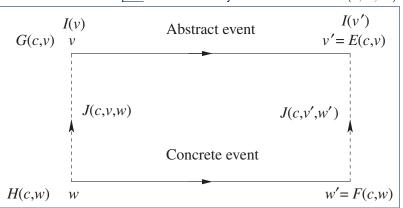
```
d > 0
n \in \mathbb{N}
                                                            n \in \mathbb{N}
n \le d
                                                            n < d
a \in \mathbb{N}
                                                            a \in \mathbb{N}
b \in \mathbb{N}
                                                            b \in \mathbb{N}
c \in \mathbb{N}
                                ML_out/inv1_4/INV
                                                                                     ML_in/inv1_5/INV
a+b+c=n
                                                            a+b+c=n
a = 0 \lor c = 0
                                                            a = 0 \lor c = 0
a + b < d
                                                            c > 0
c = 0
                                                            a=0\lor(c-1)=0
(a+1)+b+c=(n+1)
```

• Exercises. Specify and prove other eight POs of Invariant Preservation.

Visualizing Inv. Preservation in Refinement LASSONDE

Each **concrete** event (w to w') is **simulated by** an **abstract** event (v to v'):

- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')



60 of 124

INV PO of m_1 : ML_out/inv1_4/INV

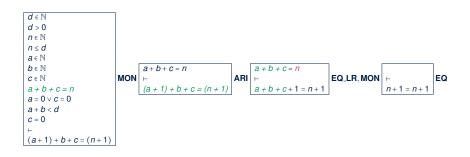

```
axm0_1
                                             d \in \mathbb{N}
                               axm0<sub>2</sub>
                                             d > 0
                                inv0_1
                                             n \in \mathbb{N}
                                inv0_2
                                             n < d
                                inv1_1
                                             a \in \mathbb{N}
                                inv1<sub>2</sub>
                                             b \in \mathbb{N}
                                inv1_3
                                                                            ML_out/inv1_4/INV
                                inv1_4
                                             a+b+c=n
                                inv1_5
                                             a = 0 \lor c = 0
                                             a+b < d
           Concrete guards of ML_out
                                             c = 0
            Concrete invariant inv1_4
                                            (a+1)+b+c=(n+1)
with ML_out's effect in the post-state
```

61 of 124

INV PO of m_1 : ML_in/inv1_5/INV

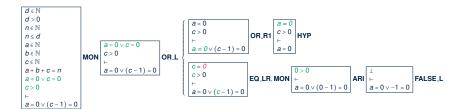

```
axm0_1
                                                 d \in \mathbb{N}
                                 axm0<sub>2</sub>
                                                 d > 0
                                  inv0_1
                                                 n \in \mathbb{N}
                                  inv0 2
                                                 n < d
                                   inv1<sub>-</sub>1
                                                 a \in \mathbb{N}
                                   inv1<sub>-2</sub>
                                                 b \in \mathbb{N}
                                                                             ML_in/inv1_5/INV
                                   inv1_3
                                                 c \in \mathbb{N}
                                   inv1_4
                                                 a+b+c=n
                                   inv1_5
                                                 a = 0 \lor c = 0
            Concrete guards of ML_in
                                                c > 0
           Concrete invariant inv1_5
                                                a = 0 \lor (c - 1) = 0
with ML_in's effect in the post-state
```

Proving Refinement: ML_out/inv1_4/INV



63 of 124

Proving Refinement: ML_in/inv1_5/INV



- Discharging the **twelve sequents** proved that:
 - concrete invariants preserved by ML_out & ML_in
 - o concrete quards of ML_out & ML_in entail their abstract counterparts
- What's left is the specification of how the **ASM** 's *initial state* looks like:
 - \checkmark No cars on bridge (heading either way) and island
 - ✓ Initialization always possible: guard is *true*.
 - √ There is no pre-state for init.
 - : The RHS of := must not involve variables.
 - .: The RHS of := may only involve constants.
 - ✓ There is only the **post-state** for *init*.
 - \therefore Before-After Predicate: $a' = 0 \land b' = 0 \land c' = 0$

65 of 124

init

begin

end

a := 0

b := 0

c := 0

PO of m₁ Concrete Invariant Establishment LASSONDE

INV

- Some (new) formal components are needed:
 - *K*(*c*): effect of *abstract init*'s actions:

e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0 \rangle$

• v' = K(c): **before-after predicate** formalizing **abstract** init's actions

e.g., BAP of *init*: $\langle n' \rangle = \langle 0 \rangle$

• *L*(*c*): effect of *concrete init*'s actions:

e.g., $K(\langle d \rangle)$ of init $\widehat{=} \langle 0, 0, 0 \rangle$

- w' = L(c): before-after predicate formalizing concrete init's actions
 e.g., BAP of init: (a', b', c') = (0, 0, 0)
- Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms \vdash Concrete Invariants Satisfied at Post-State A(c) \vdash $J_i(c, K(c), L(c))$

64 of 124

Discharging PO of m_1 Concrete Invariant Establishment

• How many *sequents* to be proved?

[# concrete invariants]

• Two (of the five) sequents generated for *concrete init* of m_1 :

$d \in \mathbb{N}$ $d > 0$ \vdash $0 + 0 + 0 = 0$	init/inv1_4/INV	⊢	init/inv1_5/INV
0 + 0 + 0 = 0		$0 = 0 \lor 0 = 0$	

• Can we discharge the **PO** init/inv1_4/INV ?

• Can we discharge the **PO** init/inv1_5/INV ?

Model m_1 : New, Concrete Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered *concrete/refined events* already existing in m_0 : $ML_out \& ML_in$
- New event IL_in:

67 of 124

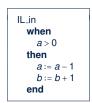
- o IL_in denotes a car entering the island (getting off the bridge).
- IL_in enabled only when:
 - The bridge's current traffic flows to the island.
 - Q. Limited number of cars on the bridge and the island?
 - A. Ensured when the earlier ML_out (of same car) occurred
- New event IL_out:

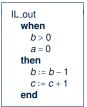
- o *IL_out* denotes a car exiting the island (getting on the bridge).
- o IL_out enabled only when:
 - . There is some car on the island.
 - · The bridge's current traffic flows to the mainland.

68 of 124

Model m_1 : BA Predicates of Multiple Actions LASSONDE

Consider **actions** of m_1 's two **new** events:





• What is the **BAP** of **ML_in**'s **actions**?

$$a' = a - 1 \land b' = b + 1 \land c' = c$$

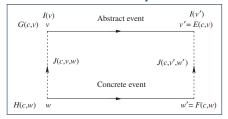
• What is the **BAP** of **ML** in's **actions**?

$$a' = a \wedge b' = b - 1 \wedge c' = c + 1$$

69 of 124

Visualizing Inv. Preservation in Refinement LASSONDE

Recall how a concrete event is simulated by its abstract counterpart:



- For each new event:
 - Strictly speaking, it does not have an abstract counterpart.
 - It is **simulated by** a special **abstract** event (transforming v to v'):

- skip is a "dummy" event: non-guarded and does nothing
- Q. BAP of the skip event?

A.
$$n' = n$$

Refinement Rule: Invariant Preservation

- The new events *IL_in* and *IL_out* do not exist in **m**₀, but:
 - They **exist** in **m**₁ and may impact upon the **concrete** state space.
 - They *preserve* the *concrete invariants*, just as *ML_out* & *ML_in* do.
- Recall the PO/VC Rule of Invariant Preservation for Refinement:

- How many **sequents** to be proved? [# new evts × # concrete invariants]
- Here are two (of the ten) sequents generated:

```
|d>0
                                                            d > 0
n \in \mathbb{N}
                                                            n \in \mathbb{N}
n \le d
                                                            n \le d
a \in \mathbb{N}
                                                             a \in \mathbb{N}
b \in \mathbb{N}
                                                            b \in \mathbb{N}
                                 IL_in/inv1_4/INV
                                                                                       IL_in/inv1_5/INV
                                                             c \in \mathbb{N}
                                                             a+b+c=n
                                                             a = 0 \lor c = 0
a > 0
                                                            a > 0
(a-1)+(b+1)+c=n
                                                           (a-1) = 0 \lor c = 0
```

• Exercises. Specify and prove other eight POs of Invariant Preservation.

71 of 124

72 of 124

INV PO of m₁: IL_in/inv1_4/INV


```
axm0_1
                                              d \in \mathbb{N}
                               axm0<sub>2</sub>
                                              d > 0
                                inv0_1
                                              n \in \mathbb{N}
                                inv0_2
                                              n \leq d
                                inv1_1
                                              a \in \mathbb{N}
                                inv1_2
                                              b \in \mathbb{N}
                                inv1_3
                                              c \in \mathbb{N}
                                inv1_4
                                              a+b+c=n
                                inv1_5
                                              a = 0 \lor c = 0
                      Guards of IL_in
                                              a > 0
          Concrete invariant inv1_4
                                            \{(a-1)+(b+1)+c=n\}
with IL_in's effect in the post-state
```

IL_in/inv1_4/INV

INV PO of m_1 : IL_in/inv1_5/INV


```
d \in \mathbb{N}
                              axm0<sub>1</sub>
                              axm0_2
                                             d > 0
                               inv0_1
                                             n \in \mathbb{N}
                               inv0_2
                                             n \le d
                               inv1_1
                                             a \in \mathbb{N}
                               inv1_2
                                             b \in \mathbb{N}
                                                                       IL_in/inv1_5/INV
                               inv1_3
                                             c \in \mathbb{N}
                               inv1_4
                                             a+b+c=n
                               inv1_5
                                             a = 0 \lor c = 0
                     Guards of IL_in
                                            a > 0
         Concrete invariant inv1_5
                                            (a-1)=0\lor c=0
with IL_in's effect in the post-state
```

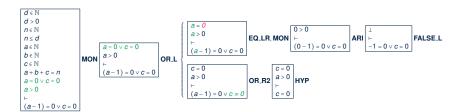
73 of 124

Proving Refinement: IL_in/inv1_4/INV


```
d \in \mathbb{N}
d > 0
n \in \mathbb{N}
n \le d
a \in \mathbb{N}
                                   a+b+c=n
                                                                      a+b+c=n
b \in \mathbb{N}
                           MON
                                                               ARI
                                                                                     HYP
c \in \mathbb{N}
                                                                     a+b+c=n
                                   (a-1)+(b+1)+c=n
a+b+c=n
a = 0 \lor c = 0
a > 0
(a-1)+(b+1)+c=n
```

LASSONDE

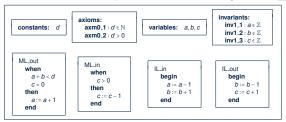
Proving Refinement: IL_in/inv1_5/INV



75 of 124

Livelock Caused by New Events Diverging

• An alternative m_1 (with inv1_4, inv1_5, and guards of new events removed):



Concrete invariants are under-specified: only typing constraints.

Exercises: Show that Invariant Preservation is provable, but Guard Strengthening is not.

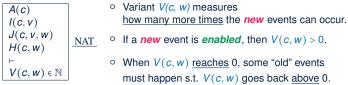
- Say this alternative m₁ is implemented as is:
 IL_in and IL_out always enabled and may occur indefinitely, preventing other "old" events (ML_out and ML_in) from ever happening:
 - $\langle \mathit{init}, \mathit{ML_out}, \mathit{IL_in}, \mathit{IL_out}, \mathit{IL_in}, \mathit{IL_out}, \ldots \rangle$ **Q**: What are the corresponding *abstract* transitions?
- We say that these two new events diverge, creating a livelock:
 - Different from a **deadlock**: always an event occurring (IL_in or IL_out).
 - But their *indefinite* occurrences contribute **nothing** useful.

76 of 124

PO of Convergence of New Events

The PO/VC rule for *non-divergence/livelock freedom* consists of two parts:

- Interleaving of new events characterized as an integer expr.: variant.
- \circ A variant V(c, w) may refer to constants and/or **concrete** variables.
- In the original m_1 , let's try **variants**: $2 \cdot a + b$
- 1. Variant Stays Non-Negative



2. A New Event Occurrence Decreases Variant

```
 \begin{array}{c|c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ V(c,F(c,w)) < V(c,w) \end{array} \begin{array}{c} \underline{\text{VAR}} \\ \end{array} \begin{array}{c} \circ \text{ If a } \textit{new} \text{ event is } \textit{enabled} \text{ and } \\ \text{occurs, the value of } V(c,w) \downarrow. \end{array}
```

PO of Convergence of New Events: NAT

• Recall: PO related to Variant Stays Non-Negative:

```
 \begin{array}{c|c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ V(c,w) \in \mathbb{N} \end{array}  \  \, \text{How many } \textbf{sequents} \text{ to be proved?}   [\# \textbf{new} \text{ events }]
```

• For the **new** event **IL_in**:

```
 d \in \mathbb{N} \qquad d > 0 
 n \in \mathbb{N} \qquad n \leq d 
 a \in \mathbb{N} \qquad b \in \mathbb{N} \qquad c \in \mathbb{N} 
 a + b + c = n \qquad a = 0 \lor c = 0 
 a > 0 
 \vdash 
 2 \cdot a + b \in \mathbb{N}
```

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.

PO of Convergence of New Events: VAR

Recall: PO related to A New Event Occurrence Decreases Variant

• For the **new** event **IL_in**:

```
 d \in \mathbb{N} \qquad d > 0 
 n \in \mathbb{N} \qquad n \leq d 
 a \in \mathbb{N} \qquad b \in \mathbb{N} \qquad c \in \mathbb{N} 
 a + b + c = n \qquad a = 0 \lor c = 0 
 a > 0 
 \vdash 
 2 \cdot (a - 1) + (b + 1) < 2 \cdot a + b 
 \underline{IL_{-in}/VAR}
```

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.

79 of 124

Convergence of New Events: Exercise

Given the original m_1 , what if the following *variant* expression is used:

variants : a + b

Are the formulated sequents still *provable*?

80 of 124

PO of Refinement: Deadlock Freedom

- Recall:
 - We proved that the initial model m_0 is deadlock free (see **DLF**).
 - We proved, according to guard strengthening, that if a concrete event is enabled, then its abstract counterpart is enabled.
- PO of relative deadlock freedom for a refinement model:

Another way to think of the above PO:

The **refinement** does **not** introduce, in the **concrete**, any "new" **deadlock** scenarios **not** existing in the **abstract** state.

R1 of 124

PO Rule: Relative Deadlock Freedom m_1


```
axm0<sub>-</sub>1
                                       d \in \mathbb{N}
                        axm0<sub>2</sub>
                                       d > 0
                         inv0_1
                                       n \in \mathbb{N}
                          inv0_2
                                       n \le d
                          inv1<sub>-</sub>1
                                       a \in \mathbb{N}
                          inv1_2
                                       b \in \mathbb{N}
                          inv1_3
                                       c \in \mathbb{N}
                          inv1_4
                                       a+b+c=n
                                                                                                         DLF
                          inv1_5
                                       a = 0 \lor c = 0
                                                        quards of ML_out in mo
                                             n < d
Disjunction of abstract guards
                                                        guards of ML_in in m_0
                                             n > 0
                                             a+b < d \land c = 0
                                                                      guards of ML_out in m1
                                                           c > 0
                                                                     guards of ML_in in m<sub>1</sub>
                                       V
Disjunction of concrete guards
                                                                     guards of IL_in in m<sub>1</sub>
                                                           a > 0
                                                  b > 0 \land a = 0
                                                                     quards of IL_out in m1
```

Example Inference Rules (6)

$$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q} \quad \mathsf{OR} \mathsf{R}$$

To prove a **disjunctive** goal,

it suffices to prove one of the disjuncts, with the the negation of the the other disjunct serving as an additional hypothesis.

$$\frac{H,P,Q \vdash R}{H,P \land Q \vdash R} \quad \textbf{AND_L}$$

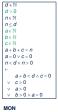
To prove a goal with a conjunctive hypothesis, it suffices to prove the same goal. with the the two conjuncts serving as two separate hypotheses.

$$\frac{H \vdash P \qquad H \vdash Q}{H \vdash P \land Q} \quad \textbf{AND_R}$$

To prove a goal with a conjunctive goal, it suffices to prove each conjunct as a separate goal.

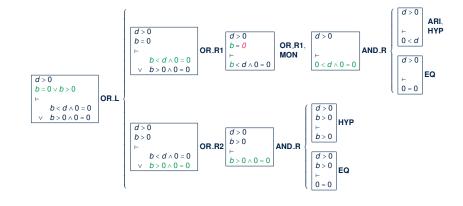
R3 of 124

Proving Refinement: DLF of m_1



R4 of 124

Proving Refinement: DLF of m_1 (continued) LASSONDE



85 of 124

First Refinement: Summary

- The final version of our *first refinement* m_1 is *provably correct* w.r.t.:
 - Establishment of Concrete Invariants

[init]

Preservation of Concrete Invariants

[old & new events]

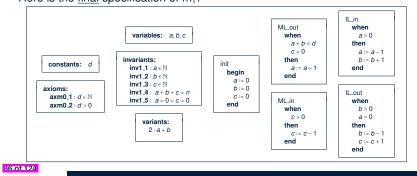
Strengthening of guards

[old events]

o Convergence (a.k.a. livelock freedom, non-divergence)

[new events]

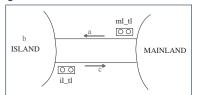
- Relative *Deadlock* Freedom
- Here is the final specification of m_1 :



Model m_2 : "More Concrete" Abstraction

- 2nd *refinement* has even more *concrete* perception of the bridge controller:
 - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:

 ml_tl : a traffic light for exiting the ML il_tl : a traffic light for exiting the IL abstract variables a, b, c from m_1 still used (instead of being replaced)



- Nonetheless, sensors remain *abstracted* away!
- That is, we focus on these three **environment constraints**:

ENV1	The system is equipped with two traffic lights with two colors: green and red.			
ENV2	The traffic lights control the entrance to the bridge at both ends of it.			
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.			

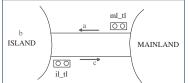
• We are **obliged to prove** this **added concreteness** is **consistent** with m_1 .

Model m_2 : Refined, Concrete State Space

1. The **static** part introduces the notion of traffic light colours:

sets: COLOR constants: red, green axioms: axm2_1 : COLOR = {green, red} axm2_2 : green ≠ red

2. The **dynamic** part shows the **superposition refinement** scheme:



- Abstract variables a, b, c from m₁ are still in use in m₂.
- Two new, concrete variables are introduced: ml_tl and il_tl
- <u>Constrast</u>: In m₁, abstract variable n is replaced by concrete variables a, b, c.
- ♦ inv2_1 & inv2_2: typing constraints
- inv2_3: being allowed to exit ML means cars within limit and no opposite traffic
- inv2_4: being allowed to exit IL means some car in IL and no opposite traffic

88 of 124

Model m_2 : Refining Old, Abstract Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it <u>evolves</u> as
 actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML_out:

- Recall the **abstract** guard of $ML_{-}out$ in m_1 : $(c = 0) \land (a + b < d)$
 - \Rightarrow Unrealistic as drivers should **not** know about a, b, c!
- ML_out is refined: a car exits the ML (to the bridge) only when:
 - the traffic light ml_tl allows
- Concrete/Refined version of event IL_out:

- Recall the **abstract** guard of $IL_{-}out$ in m_1 : $(a = 0) \land (b > 0)$
 - \Rightarrow Unrealistic as drivers should **not** know about a, b, c!
- *IL_out* is *refined*: a car exits the IL (to the bridge) only when:
 - the traffic light *il_tl* allows
- Q1. How about the other two "old" events IL_in and ML_in?
- A1. No need to **refine** as already **guarded** by ML_out and IL_out.
- **Q2**. What if the driver disobeys *ml_tl* or *il_tl*?

[A2. ENV3]

R9 of 124

Model m_2 : New, Concrete Events

- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered *events* already existing in m_1 :
 - ML_out & IL_out

[REFINED]

○ IL_in & ML_in

[UNCHANGED]

New event ML_tl_green:

- o *ML_tl_green* denotes the traffic light *ml_tl* turning green.
- ML_tl_green enabled only when:
 - the traffic light not already green
 - limited number of cars on the bridge and the island
 - No opposite traffic

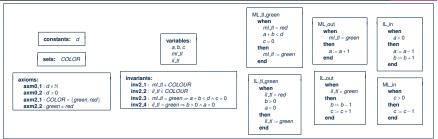
 $[\Rightarrow ML_out$'s **abstract** guard in m_1]

New event IL_tl_green:

- o *IL_tl_green* denotes the traffic light *il_tl* turning green.
- IL_tl_green enabled only when:
 - the traffic light not already green
 - some cars on the island (i.e., island not empty)
 - · No opposite traffic

[\Rightarrow *IL_out*'s **abstract** guard in m_1]

Invariant Preservation in Refinement m_2



Recall the PO/VC Rule of Invariant Preservation for Refinement:

- How many **sequents** to be proved? [#concrete evts \times #concrete invariants = 6 \times 4]
- We discuss two sequents: ML_out/inv2_4/INV and IL_out/inv2_3/INV

Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.

INV PO of m₂: ML_out/inv2_4/INV


```
axm0<sub>-</sub>1
                                                d \in \mathbb{N}
                                 axm0_2
                                                d > 0
                                                COLOUR = {green, red}
                                 axm2<sub>-</sub>1
                                  axm2_2
                                                green ≠ red
                                   inv0_1
                                                n \in \mathbb{N}
                                   inv0_2
                                                n < d
                                   inv1_1
                                                a \in \mathbb{N}
                                   inv1_2
                                                b \in \mathbb{N}
                                   inv1_3
                                                c \in \mathbb{N}
                                   inv1_4
                                                a+b+c=n
                                   inv1_5
                                                a = 0 \lor c = 0
                                   inv2_1
                                                ml_tl ∈ COLOUR
                                   inv2_2
                                                il_tl ∈ COLOUR
                                   inv2_3
                                                mI_{-}tI = green \Rightarrow a + b < d \land c = 0
                                   inv2_4
                                                iI_{t}I = green \Rightarrow b > 0 \land a = 0
           Concrete guards of ML_out
                                                ml_{-}tl = green
            Concrete invariant inv2_4
                                                iI_{-}tI = green \Rightarrow b > 0 \land (a+1) = 0
with ML_out's effect in the post-state
```

ML_out/inv2_4/INV

92 of 124

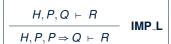
INV PO of m_2 : IL_out/inv2_3/INV


```
axm0<sub>-</sub>1
                                              \{d \in \mathbb{N}\}
                                 axm0_2
                                               d > 0
                                 axm2_1
                                                COLOUR = { green, red}
                                 axm2_2
                                                green ≠ red
                                  inv0_1
                                               n \in \mathbb{N}
                                  inv0_2
                                               n \le d
                                  inv1_1
                                               a \in \mathbb{N}
                                               b \in \mathbb{N}
                                  inv1 2
                                  inv1_3
                                               c \in \mathbb{N}
                                  inv1 4
                                               a+b+c=n
                                  inv15
                                               a = 0 \lor c = 0
                                               ml_tl ∈ COLOUR
                                  inv2_1
                                  inv2_2
                                               iI_{-}tI \in COLOUR
                                  inv2_3
                                               ml_{-}tl = areen \Rightarrow a + b < d \land c = 0
                                  inv2_4
                                               il_{-}tl = green \Rightarrow b > 0 \land a = 0
                                               il_tl = areen
             Concrete guards of IL_out
            Concrete invariant inv2.3
                                              \{ ml\_tl = green \Rightarrow a + (b-1) < d \land (c+1) = 0 \}
with ML_out's effect in the post-state
```

IL_out/inv2_3/INV

93 of 124

Example Inference Rules (7)



If a hypothesis *P* matches the <u>assumption</u> of another *implicative hypothesis P* ⇒ *Q*, then the <u>conclusion</u> *Q* of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

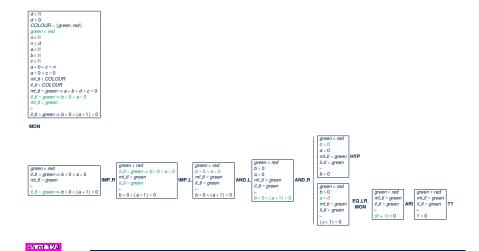
$$\frac{H,P \vdash Q}{H \vdash P \Rightarrow Q} \quad \mathbf{IMP_R}$$

To prove an *implicative goal* $P \Rightarrow Q$, it suffices to prove its conclusion Q, with its assumption P serving as a new <u>hypotheses</u>.

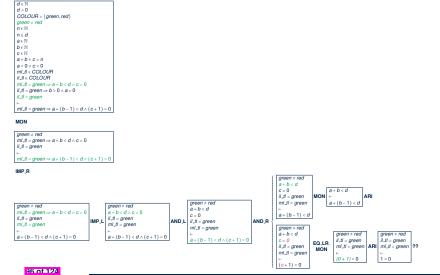
$$\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \textbf{NOT_L}$$

To prove a goal Q with a *negative hypothesis* $\neg P$, it suffices to prove the <u>negated</u> hypothesis $\neg (\neg P) \equiv P$ with the <u>negated</u> original goal $\neg Q$ serving as a new hypothesis.

Proving ML_out/inv2_4/INV: First Attempt



Proving IL_out/inv2_3/INV: First Attempt



Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV LASSONDE

 Our first attempts of proving ML_out/inv2_4/INV and IL_out/inv2_3/INV both failed the 2nd case (resulted from applying IR AND_R):

$$green \neq red \land il_tl = green \land ml_tl = green \vdash 1 = 0$$

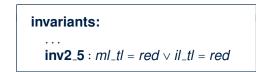
- This *unprovable* sequent gave us a good hint:
 - Goal 1 = 0 = false suggests that the safety requirements a = 0 (for inv2.4) and c = 0 (for inv2.3) contradict with the current m_2 .
 - Hyp. $il_tl = green = ml_tl$ suggests a **possible**, **dangerous state** of m_2 , where two cars heading <u>different</u> directions are on the one-way bridge:

(<u>init</u>	, ML_tl_green ,	ML_out ,	IL_in	, <u>IL_tl_green</u> ,	IL_out	, <u>ML_out</u>)
d = 2	d = 2	d = 2	d = 2	d = 2	d = 2	d = 2
a'=0	a'=0	a' = 1	a' = 0	a' = 0	a'=0	a' = 1
b'=0	b'=0	b' = 0	b' = 1	b' = 1	b' = 0	b' = 0
c'=0	c'=0	c'=0	c'=0	c'=0	c' = 1	c' = 1
$ml_{\perp}tl' = red$	ml_tl' = green	ml₋tl′ = green	ml_tl' = green	$ml_{\perp}tl' = green$	$ml_{\perp}tl' = green$	$ml_{\perp}tl' = green$
$iI_{-}tI' = red$	$il\ tl' = red$	$iI_{-}tI' = red$	$iI_{-}tI' = red$	il tl' = green	il_tl' = green	$iI_{-}tI' = green$

97 of 124

Fixing m_2 : Adding an Invariant

• Having understood the failed proofs, we add a proper *invariant* to m_2 :



• We have effectively resulted in an improved m_2 more faithful w.r.t. **REQ3**:

REQ3 The bridge is one-way or the other, not both at the same	time.
---	-------

- Having added this new invariant inv2_5:
 - Original 6 x 4 generated sequents to be <u>updated</u>: <u>inv2.5</u> a new hypothesis e.g., Are <u>ML_out/inv2_4/INV</u> and <u>IL_out/inv2_3/INV</u> now <u>provable</u>?
 - Additional 6 × 1 sequents to be generated due to this new invariant e.g., Are ML_tl_green/inv2_5/INV and IL_tl_green/inv2_5/INV provable?

LASSONDE

INV PO of m_2 : ML_out/inv2_4/INV – Updated LASSONDE

```
d \in \mathbb{N}
                                 axm0_1
                                 axm0_2
                                               d > 0
                                               COLOUR = \{green, red\}
                                 axm2_1
                                 axm2_2
                                               green ≠ red
                                  inv0_1
                                               n \in \mathbb{N}
                                  inv0_2
                                               n < d
                                  inv1<sub>-</sub>1
                                               a \in \mathbb{N}
                                  inv1_2
                                               b \in \mathbb{N}
                                  inv1_3
                                               c \in \mathbb{N}
                                  inv1_4
                                               a+b+c=n
                                  inv1_5
                                               a = 0 \lor c = 0
                                  inv2_1
                                               ml_tl ∈ COLOUR
                                  inv2_2
                                               il_tl ∈ COLOUR
                                  inv2_3
                                               mI_{-}tI = green \Rightarrow a + b < d \land c = 0
                                  inv2_4
                                               iI_{t}I = green \Rightarrow b > 0 \land a = 0
                                  inv2_5
                                               ml_{-}tl = red \lor il_{-}tl = red
           Concrete guards of ML_out
                                               ml_tl = green
            Concrete invariant inv2_4
                                               iI_{-}tI = green \Rightarrow b > 0 \land (a+1) = 0
with ML_out's effect in the post-state
```

ML_out/inv2_4/INV

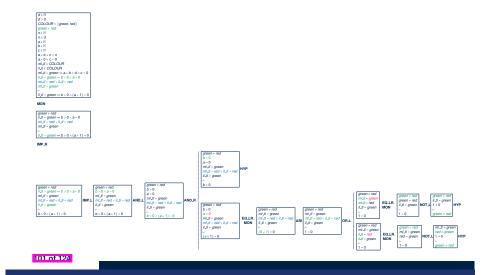
99 of 124

INV PO of m_2 : IL_out/inv2_3/INV – Updated

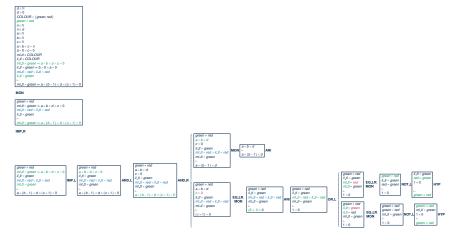

```
axm0<sub>-</sub>1
                                          \{d \in \mathbb{N}
                               axm0_2
                                            d > 0
                               axm2_1
                                             COLOUR = { green, red}
                               axm2_2
                                            green + red
                                inv0_1
                                           n \in \mathbb{N}
                                inv0_2
                                            n \le d
                                            a \in \mathbb{N}
                                inv1_1
                                            b \in \mathbb{N}
                                inv1_2
                                inv1_3
                                inv1_4
                                           a+b+c=n
                                                                                                  IL_out/inv2_3/INV
                                            a = 0 \lor c = 0
                                inv1_5
                                inv2_1
                                            ml_tl ∈ COLOUR
                                            il_tl ∈ COLOUR
                                inv2_2
                                inv2_3
                                            ml_tl = green \Rightarrow a + b < d \land c = 0
                                inv2_4
                                            iI_{-}tI = green \Rightarrow b > 0 \land a = 0
                                inv2_5
                                            ml_{-}tl = red \lor il_{-}tl = red
            Concrete guards of IL_out
            Concrete invariant inv2_3
                                           mI_{-}tI = green \Rightarrow a + (b-1) < d \land (c+1) = 0
with ML_out's effect in the post-state
```

100 of 124

Proving ML_out/inv2_4/INV: Second Attempt LASSONDE



Proving IL_out/inv2_3/INV: Second Attempt



Fixing m_2 : Adding Actions

• Recall that an *invariant* was added to m_2 :

```
invariants:
  inv2_5 : ml_tl = red \lor il_tl = red
```

Additional 6 x 1 sequents to be generated due to this new invariant:

```
e.g., ML_tl_green/inv2_5/INV
                                      [ for ML_tl_green to preserve inv2_5 ]
e.g., IL_tl_green/inv2_5/INV
                                       [ for IL_tI_green to preserve inv2_5 ]
```

• For the above **sequents** to be **provable**, we need to revise the two events:

```
ML_tl_green
                           IL_tl_green
  when
                              when
    ml_tl = red
                                il_tl = red
    a+b < d
                                b > 0
    c = 0
                                a = 0
  then
                              then
    ml_tl := qreen
                                il_tl := green
    il_{-}tl := red
                                ml_{-}tl := red
                              end
```

Exercise: Specify and prove ML_tl_green/inv2_5/INV & IL_tl_green/inv2_5/INV.

103 of 124

INV PO of m₂: ML_out/inv2_3/INV


```
axm0<sub>-</sub>1
                                              d \in \mathbb{N}
                                axm0_2
                                              d > 0
                                              COLOUR = {green, red}
                                axm2_1
                                axm2_2
                                              green ≠ red
                                 inv0_1
                                              n \in \mathbb{N}
                                 inv0_2
                                              n < d
                                 inv1_1
                                              a \in \mathbb{N}
                                 inv1_2
                                              b \in \mathbb{N}
                                 inv1_3
                                              c \in \mathbb{N}
                                 inv1_4
                                              a+b+c=n
                                                                                                ML out/inv2 3/INV
                                 inv1_5
                                              a = 0 \lor c = 0
                                              ml_tl ∈ COLOUR
                                 inv2_1
                                 inv2_2
                                              il_tl ∈ COLOUR
                                 inv2_3
                                              mI_{-}tI = green \Rightarrow a + b < d \land c = 0
                                 inv2_4
                                              iI_{-}tI = qreen \Rightarrow b > 0 \land a = 0
                                 inv2_5
                                              ml_{-}tl = red \lor il_{-}tl = red
           Concrete guards of ML_out
                                              ml_tl = green
            Concrete invariant inv2_3
                                              mI_{-}tI = green \Rightarrow (a+1) + b < d \land c = 0
with ML_out's effect in the post-state
```

104 of 124

Proving ML_out/inv2_3/INV: First Attempt

105 of 124

Failed: ML out/inv2 3/INV

• Our first attempt of proving ML_out/inv2_3/INV failed the 1st case (resulted from applying IR **AND_R**):

$$a + b < d \land c = 0 \land ml_t = green \vdash (a + 1) + b < d$$

• This *unprovable* sequent gave us a good hint:

```
• Goal (a+1) + b < d specifies the capacity requirement.
```

• Hypothesis $|c| = 0 \land ml_t = green$ assumes that it's safe to exit the ML.

```
• Hypothesis |a+b| < d is not strong enough to entail (a+1) + b < d.
      e.g., d = 3, b = 0, a = 0
                                                [(a+1)+b < d  evaluates to true]
      e.g., d = 3, b = 1, a = 0
                                                 [(a+1)+b < d  evaluates to true
      e.g., d = 3, b = 0, a = 1
                                                [(a+1)+b < d  evaluates to true]
      e.g., d = 3, b = 0, a = 2
                                                [(a+1)+b < d  evaluates to false ]
      e.g., d = 3, b = 1, a = 1
                                                [(a+1)+b < d  evaluates to false ]
      e.g., d = 3, b = 2, a = 0
                                                [(a+1)+b < d  evaluates to false ]
• Therefore, a + b < d (allowing one more car to exit ML) should be split:
      a+b+1\neq d
                                [ more later cars may exit ML, ml_tl remains green ]
```

106 of 124

a+b+1=d

[no more later cars may exit ML, *ml_tl* turns *red*]

Fixing m₂: Splitting ML_out and IL_out

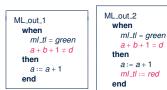
• Recall that *ML_out/inv2_3/INV* failed : two cases not handled separately:

[more later cars may exit ML, *ml_tl* remains *green*] $a + b + 1 \neq d$ a + b + 1 = d[no more later cars may exit ML, ml_tl turns red]

• Similarly, IL_out/inv2_4/INV would fail : two cases not handled separately:

[more later cars may exit IL, il_tl remains green] b - 1 = 0[no more later cars may exit IL, il_tl turns red]

Accordingly, we split ML_out and IL_out into two with corresponding guards.



when il_tl = areen b = 1then b := b - 1c := c + 1 $iI_{-}tI := red$ end

Exercise: Given the latest m_2 , how many sequents to prove for *invariant preservation*? **Exercise**: Specify and prove $ML_out_i/inv2_3/INV & IL_out_i/inv2_4/INV (where <math>i \in 1...2$). **Exercise**: Each split event (e.g., ML_out_1) refines its **abstract** counterpart (e.g., ML_out_1)?

107 of 124

m₂ Livelocks: New Events Diverging

- Recall that a system may *livelock* if the new events diverge.
- Current m_2 's two new events **ML_tl_green** and **IL_tl_green** may **diverge**:

_	
١	ML_tl_green
ı	when
ı	$ml_{-}tl = red$
l	a+b < d
l	c = 0
ı	then
ı	ml_tl := green
	$il_{-}tl := red$
ı	end

 ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML_out) from ever happening:

(init	, ML_tl_green	, ML_out_1	, <u>IL_in</u>	, IL_tI_green ,	ML_tl_green ,	IL_tl_green ,)
	d = 2	d = 2	d = 2	d = 2	d = 2	d = 2	d = 2
	a' = 0	a'=0	a' = 1	a' = 0	a'=0	a' = 0	a'=0
	b' = 0	b' = 0	b' = 0	b' = 1	b' = 1	b' = 1	b' = 1
	c'=0	c'=0	c' = 0	c'=0	c'=0	c'=0	c'=0
- 1	nl_tl = <mark>red</mark>	ml_tl' = green	$ml_{-}tl' = green$	ml_tl' = green	$ml_t t l' = red$	$mI_{\perp}tI' = green$	$ml_{-}tl' = red$
	il_tl = red	$iI_{-}tI' = red$	$il_{-}tl' = red$	$iI_{-}tI' = red$	il_tl' = green	$iI_{-}tI' = red$	il_tl' = green

- ⇒ Two traffic lights keep changing colors so rapidly that **no** drivers can ever pass!
- Solution: Allow color changes between traffic lights in a disciplined way. 108 of 124

Fixing m_2 : Regulating Traffic Light Changes LASSONDE

 $il_tl := red$

 $il\ tl = red$

ml_pass = 1

il tl := areen

 $ml \ tl := red$

 $il_pass := 0$

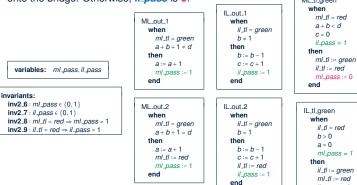
b > 0

a = 0

end

We introduce two variables/flags for regulating traffic light changes:

- o ml_pass is 1 if, since ml_tl was last turned green, at least one car exited the ML onto the bridge. Otherwise, *ml_pass* is 0.
- o *il_pass* is 1 if, since *il_tl* was last turned *green*, at least one car exited the IL onto the bridge. Otherwise, il_pass is 0.



109 of 124

Fixing m_2 : Measuring Traffic Light Changes LASSONDE

- · Recall:
 - Interleaving of new events charactered as an integer expression: variant.
 - A variant V(c, w) may refer to constants and/or *concrete* variables.
 - In the latest m_2 , let's try | variants : $ml_pass + il_pass$
- Accordingly, for the <u>new</u> event <u>ML_tl_green</u>:

```
d > 0
COLOUR = {green, red}
                                             green ≠ red
n \in \mathbb{N}
                                            n \leq d
a \in \mathbb{N}
                                            b \in \mathbb{N}
                                                                                   c \in \mathbb{N}
a+b+c=n
                                            a = 0 \lor c = 0
ml_tl ∈ COLOUR
                                            il_tl ∈ COLOUR
ml\_tl = green \Rightarrow a + b < d \land c = 0 il\_tl = green \Rightarrow b > 0 \land a = 0
                                                                                              ML_tl_green/VAR
ml_tl = red \lor il_tl = red
ml_pass \in \{0, 1\}
                                            il_pass ∈ {0, 1}
                                            il_{-}tl = red \Rightarrow il_{-}pass = 1
ml\_tl = red \Rightarrow ml\_pass = 1
ml_{-}tl = red
                                            a+b < d
                                                                                   c = 0
il_pass = 1
0 + il_pass < ml_pass + il_pass
```

Exercises: Prove ML_tl_green/VAR and Formulate/Prove IL_tl_green/NAT.

PO Rule: Relative Deadlock Freedom of *m*₂

```
axm0_1  { d \in \mathbb{N}
                      axm0_2
                                   d > 0
                                   COLOUR = {green, red}
                      aym2 1
                      aym2 2
                                   green ≠ red
                       inv0 1
                                   n \in \mathbb{N}
                       inv0_2
                                   n < d
                       inv1_1
                                   a \in \mathbb{N}
                                   b \in \mathbb{N}
                       inv1_2
                        inv1_3
                                   c \in \mathbb{N}
                       inv1_4
                                   a+b+c=n
                        inv1_5
                                   a = 0 \lor c = 0
                                   ml_tl ∈ COLOUR
                        inv2_1
                       inv2_2
                                   il_tl ∈ COLOUR
                                   mI_{t}I = green \Rightarrow a + b < d \land c = 0
                        inv2_3
                       inv2 4
                                   iI_{-}tI = green \Rightarrow b > 0 \land a = 0
                       inv2 5
                                   ml tl = red \lor il tl = red
                                                                                                                                  DLF
                       inv2_6
                                   ml_pass ∈ {0, 1}
                       inv2_7
                                   il_pass ∈ {0, 1}
                                   ml\_tl = red \Rightarrow ml\_pass = 1
                       inv2_8
                       inv2_9
                                   iI\_tI = red \Rightarrow iI\_pass = 1
                                        a+b < d \land c = 0
                                                               guards of ML_out in m1
                                                     c > 0
                                                               guards of ML_in in m1
Disjunction of abstract guards
                                                              guards of IL_in in m1
                                             b > 0 \land a = 0 guards of IL_out in m_1
                                         ml_t l = red \land a + b < d \land c = 0 \land il_pass = 1
                                                                                           guards of ML_tl_green in m2
                                                                                           guards of IL_tI_green in m2
                                             if tl = red \land h > 0 \land a = 0 \land ml \ pass = 1
                                                                                           quards of ML_out_1 in mo
                                                        ml_{-}tl = areen \land a + b + 1 \neq d
                                                         mI_{-}tI = areen \land a + b + 1 = d
                                                                                           quards of ML_out_2 in mo
Disjunction of concrete guards
                                                                 iI_{\perp}tI = areen \land b \neq 1
                                                                                           guards of /L_out_1 in mo
                                                                  iI_{-}tI = green \land b = 1
                                                                                           guards of /L_out_2 in m2
                                                                                c > 0
                                                                                           guards of ML_in in m2
                                                                                           guards of IL_in in m2
```

Proving Refinement: DLF of *m*₂

111 of 124


```
d > 0
COLOUR = {green, red}
      green ≠ red
n ∈ N
      c \in \mathbb{N}
a+b+c=n
      a = 0 \lor c = 0

ml\_tl \in COLOUR
     ml.tl \in COLOUH

il.tl \in COLOUH

ml.tl = green \Rightarrow a + b < d \land c = 0

il.tl = green \Rightarrow b > 0 \land a = 0

ml.tl = red \lor il.tl = red
      ml_pass ∈ {0,1}
       ml tl = red \Rightarrow ml nass = 1
     mi_ti = red ⇒ mi_pass = 1
    il_ti = red ⇒ ii_pass = 1
    a + b < d ∧ c = 0
    ∨ c > 0
    ∨ a > 0
    ∨ b > 0 ∧ a = 0
               ml.tl = red \land a + b < d \land c = 0 \land il.pass =
              iI_{-}tI = red \land b > 0 \land a = 0 \land rail_pass = 1
     b∈N
ml_tl = red
il_tl = red
                                                                                          ml_tl = red
il_tl = red
      ml_tl = red > ml_pass = 1
                                                                                                                                                                                                                                                                                                  EQ_LR. MON
          b < d \( ml_pass = 1 \) \( il_pass = 1 \) \( b > 0 \) \( ml_pass = 1 \) \( il_pass = 1 \)
112 of 124
```

Second Refinement: Summary

[init]

- The final version of our **second refinement** m_2 is **provably correct** w.r.t.:
 - Establishment of Concrete Invariants
 - Preservation of Concrete Invariants

o Strengthening of guards

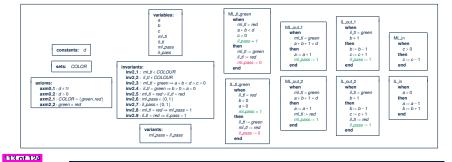
o Convergence (a.k.a. livelock freedom, non-divergence)

[old events]

[old & new events]

[new events]

- Relative *Deadlock* Freedom
- Here is the final specification of m_2 :



Index (1)

Learning Outcomes

Recall: Correct by Construction

State Space of a Model

Roadmap of this Module

Requirements Document: Mainland, Island

Requirements Document: E-Descriptions

Requirements Document: R-Descriptions

Requirements Document:

Visual Summary of Equipment Pieces

Refinement Strategy

Model m_0 : Abstraction

Index (2)

Model m_0 : State Space

Model m_0 : State Transitions via Events

Model m_0 : Actions vs. Before-After Predicates

Design of Events: Invariant Preservation

Sequents: Syntax and Semantics

PO of Invariant Preservation: Sketch

PO of Invariant Preservation: Components

Rule of Invariant Preservation: Sequents

Inference Rules: Syntax and Semantics

Proof of Sequent: Steps and Structure

Example Inference Rules (1)

115 of 124

Index (3)

Example Inference Rules (2)

Example Inference Rules (3)

Revisiting Design of Events: ML_out

Revisiting Design of Events: ML_in

Fixing the Design of Events

Revisiting Fixed Design of Events: ML_out

Revisiting Fixed Design of Events: ML_in

Initializing the Abstract System m₀

PO of Invariant Establishment

Discharging PO of Invariant Establishment

System Property: Deadlock Freedom

116 of 124

Index (4)

PO of Deadlock Freedom (1)

PO of Deadlock Freedom (2)

Example Inference Rules (4)

Example Inference Rules (5)

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

Why Did the DLF PO Fail to Discharge?

Fixing the Context of Initial Model

Discharging PO of DLF: Second Attempt

Initial Model: Summary

Model m₁: "More Concrete" Abstraction

117 of 124

Index (5)

Model m_1 : Refined State Space

Model m₁: State Transitions via Events

Model m₁: Actions vs. Before-After Predicates

States & Invariants: Abstract vs. Concrete

Events: Abstract vs. Concrete

PO of Refinement: Components (1)

PO of Refinement: Components (2)

PO of Refinement: Components (3)

Sketching PO of Refinement

Refinement Rule: Guard Strengthening

PO Rule: Guard Strengthening of ML_out

Index (6)

PO Rule: Guard Strengthening of ML_in

Proving Refinement: ML_out/GRD

Proving Refinement: ML_in/GRD

Refinement Rule: Invariant Preservation

Visualizing Inv. Preservation in Refinement

INV PO of m_1 : ML_out/inv1_4/INV

INV PO of m_1 : ML_in/inv1_5/INV

Proving Refinement: ML_out/inv1_4/INV

Proving Refinement: ML_in/inv1_5/INV

Initializing the Refined System m_1

PO of m₁ Concrete Invariant Establishment

119 of 124

LASSONDE

Index (7)

Discharging PO of m_1

Concrete Invariant Establishment

Model m₁: New, Concrete Events

Model m_1 : BA Predicates of Multiple Actions

Visualizing Inv. Preservation in Refinement

Refinement Rule: Invariant Preservation

INV PO of m₁: IL_in/inv1_4/INV

INV PO of m_1 : IL_in/inv1_5/INV

Proving Refinement: IL_in/inv1_4/INV

Proving Refinement: IL_in/inv1_5/INV

Livelock Caused by New Events Diverging

120 of 124

Index (8)

PO of Convergence of New Events

PO of Convergence of New Events: NAT

PO of Convergence of New Events: VAR

Convergence of New Events: Exercise

PO of Refinement: Deadlock Freedom

PO Rule: Relative Deadlock Freedom of m_1

Example Inference Rules (6)

Proving Refinement: DLF of m_1

Proving Refinement: DLF of m₁ (continued)

First Refinement: Summary

Model *m*₂: "More Concrete" Abstraction

121 of 124

Index (9)

Model m₂: Refined, Concrete State Space

Model m₂: Refining Old, Abstract Events

Model m_2 : New, Concrete Events

Invariant Preservation in Refinement m₂

INV PO of m_2 : ML_out/inv2_4/INV

INV PO of m_2 : IL_out/inv2_3/INV

Example Inference Rules (7)

Proving ML_out/inv2_4/INV: First Attempt

Proving IL_out/inv2_3/INV: First Attempt

Failed: ML_out/inv2_4/INV, IL_out/inv2_3/INV

Fixing m_2 : Adding an Invariant

Index (10)

INV PO of m_2 : ML_out/inv2_4/INV – Updated

INV PO of m_2 : IL_out/inv2_3/INV – Updated

Proving ML_out/inv2_4/INV: Second Attempt

Proving IL_out/inv2_3/INV: Second Attempt

Fixing m_2 : Adding Actions

INV PO of m₂: ML_out/inv2_3/INV

Proving ML_out/inv2_3/INV: First Attempt

Failed: ML out/inv2 3/INV

Fixing m₂: Splitting ML_out and IL_out

m₂ Livelocks: New Events Diverging

Fixing m_2 : Regulating Traffic Light Changes

123 of 124

124 of 124

Index (11)

Fixing m_2 : Measuring Traffic Light Changes PO Rule: Relative Deadlock Freedom of m_2

Proving Refinement: DLF of m₂

Second Refinement: Summary