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Learning Outcomes of this Lecture

This module is designed to help you review:
● Propositional Logic
● Predicate Logic
● Sets, Relations, and Functions
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Propositional Logic (1)

● A proposition is a statement of claim that must be of either
true or false, but not both.

● Basic logical operands are of type Boolean: true and false.
● We use logical operators to construct compound statements.

○ Unary logical operator: negation (¬)
p ¬p

true false
false true

○ Binary logical operators: conjunction (∧), disjunction (∨),
implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒ ).

p q p ∧ q p ∨ q p⇒ q p ⇐⇒ q p ≡ q
true true true true true true true
true false false true false false false
false true false true true false false
false false false false true true true
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Propositional Logic: Implication (1)
● Written as p⇒ q [ pronounced as “p implies q” ]

○ We call p the antecedent, assumption, or premise.
○ We call q the consequence or conclusion.

● Compare the truth of p⇒ q to whether a contract is honoured :
○ antecedent/assumption/premise p ≈ promised terms [ e.g., salary ]
○ consequence/conclusion q ≈ obligations [ e.g., duties ]

● When the promised terms are met, then the contract is:
○ honoured if the obligations fulfilled. [ (true⇒ true) ⇐⇒ true ]
○ breached if the obligations violated. [ (true⇒ false) ⇐⇒ false ]

● When the promised terms are not met, then:
○ Fulfilling the obligation (q) or not (¬q) does not breach the

contract.
p q p⇒ q

false true true
false false true
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Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing p⇒ q:
○ q if p

q is true if p is true
○ p only if q

If p is true, then for p⇒ q to be true, it can only be that q is also true.
Otherwise, if p is true but q is false, then (true⇒ false) ≡ false.

Note. To prove p ≡ q, prove p ⇐⇒ q (pronounced: “p if and only if q”):
● p if q [ q ⇒ p ]
● p only if q [ p⇒ q ]

○ p is sufficient for q
For q to be true, it is sufficient to have p being true.

○ q is necessary for p [ similar to p only if q ]
If p is true, then it is necessarily the case that q is also true.
Otherwise, if p is true but q is false, then (true⇒ false) ≡ false.

○ q unless ¬p [ When is p⇒ q true? ]
If q is true, then p⇒ q true regardless of p.
If q is false, then p⇒ q cannot be true unless p is false.
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Propositional Logic: Implication (3)

Given an implication p⇒ q, we may construct its:
● Inverse: ¬p⇒ ¬q [ negate antecedent and consequence ]
● Converse: q ⇒ p [ swap antecedent and consequence ]
● Contrapositive: ¬q ⇒ ¬p [inverse of converse]

6 of 41



Propositional Logic (2)
● Axiom: Definition of ⇒

p⇒ q ≡ ¬p ∨ q
● Theorem: Identity of ⇒

true⇒ p ≡ p
● Theorem: Zero of ⇒

false⇒ p ≡ true
● Axiom: De Morgan

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

● Axiom: Double Negation

p ≡ ¬ (¬ p)

● Theorem: Contrapositive

p⇒ q ≡ ¬q ⇒ ¬p
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Predicate Logic (1)

● A predicate is a universal or existential statement about
objects in some universe of disclosure.

● Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.

● We use the following symbols for common numerical ranges:
○ Z: the set of integers [ −∞, . . . ,−1,0,1, . . . ,+∞ ]
○ N: the set of natural numbers [ 0,1, . . . ,+∞ ]

● Variable(s) in a predicate may be quantified :
○ Universal quantification :

All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.

○ Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.
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Predicate Logic (2.1): Universal Q. (∀)
● A universal quantification has the form (∀X ● R ⇒ P)

○ X is a comma-separated list of variable names
○ R is a constraint on types/ranges of the listed variables
○ P is a property to be satisfied

● For all (combinations of) values of variables listed in X that
satisfies R, it is the case that P is satisfied.
○ ∀i ● i ∈ N⇒ i ≥ 0 [ true ]
○ ∀i ● i ∈ Z⇒ i ≥ 0 [ false ]
○ ∀i , j ● i ∈ Z ∧ j ∈ Z⇒ i < j ∨ i > j [ false ]

● Proof Strategies
1. How to prove (∀X ● R ⇒ P) true?

● Hint. When is R ⇒ P true? [ true⇒ true, false⇒ ]
● Show that for all instances of x ∈ X s.t. R(x), P(x) holds.
● Show that for all instances of x ∈ X it is the case ¬R(x).

2. How to prove (∀X ● R ⇒ P) false?
● Hint. When is R ⇒ P false? [ true⇒ false ]
● Give a witness/counterexample of x ∈ X s.t. R(x), ¬P(x) holds.
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Predicate Logic (2.2): Existential Q. (∃)
● An existential quantification has the form (∃X ● R ∧P)

○ X is a comma-separated list of variable names
○ R is a constraint on types/ranges of the listed variables
○ P is a property to be satisfied

● There exist (a combination of) values of variables listed in X
that satisfy both R and P.
○ ∃i ● i ∈ N ∧ i ≥ 0 [ true ]
○ ∃i ● i ∈ Z ∧ i ≥ 0 [ true ]
○ ∃i , j ● i ∈ Z ∧ j ∈ Z ∧ (i < j ∨ i > j) [ true ]

● Proof Strategies
1. How to prove (∃X ● R ∧P) true?

● Hint. When is R ∧ P true? [ true ∧ true ]
● Give a witness of x ∈ X s.t. R(x), P(x) holds.

2. How to prove (∃X ● R ∧P) false?
● Hint. When is R ∧ P false? [ true ∧ false, false ∧ ]
● Show that for all instances of x ∈ X s.t. R(x), ¬P(x) holds.
● Show that for all instances of x ∈ X it is the case ¬R(x).

10 of 41



Predicate Logic (3): Exercises

● Prove or disprove: ∀x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 0.
All 10 integers between 1 and 10 are greater than 0.

● Prove or disprove: ∀x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1.
Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

● Prove or disprove: ∃x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1.
Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

● Prove or disprove that ∃x ● (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
All integers in the range between 1 and 10 are not greater than 10.
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Predicate Logic (4): Switching Quantifications

Conversions between ∀ and ∃:

(∀X ● R ⇒ P) ⇐⇒ ¬(∃X ● R ∧ ¬P)

(∃X ● R ∧P) ⇐⇒ ¬(∀X ● R ⇒ ¬P)
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Sets: Definitions and Membership
● A set is a collection of objects.

○ Objects in a set are called its elements or members.
○ Order in which elements are arranged does not matter.
○ An element can appear at most once in the set.

● We may define a set using:
○ Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}
○ Set Comprehension: Implicitly specify the condition that all

members satisfy.
e.g., {x ∣ 1 ≤ x ≤ 10 ∧ x is an odd number}

● An empty set (denoted as {} or ∅) has no members.
● We may check if an element is a member of a set:

e.g., 5 ∈ {1,3,5,7,9} [ true ]
e.g., 4 /∈ {x ∣ x ≤ 1 ≤ 10,x is an odd number} [ true ]

● The number of elements in a set is called its cardinality .
e.g., ∣∅∣ = 0, ∣{x ∣ x ≤ 1 ≤ 10,x is an odd number}∣ = 5
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Set Relations

Given two sets S1 and S2:
● S1 is a subset of S2 if every member of S1 is a member of S2.

S1 ⊆ S2 ⇐⇒ (∀x ● x ∈ S1⇒ x ∈ S2)

● S1 and S2 are equal iff they are the subset of each other.

S1 = S2 ⇐⇒ S1 ⊆ S2 ∧S2 ⊆ S1

● S1 is a proper subset of S2 if it is a strictly smaller subset.

S1 ⊂ S2 ⇐⇒ S1 ⊆ S2 ∧ ∣S1∣ < ∣S2∣
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Set Relations: Exercises

? ⊆ S always holds [ ∅ and S ]
? ⊂ S always fails [ S ]
? ⊂ S holds for some S and fails for some S [ ∅ ]
S1 = S2 ⇒ S1 ⊆ S2? [ Yes ]
S1 ⊆ S2 ⇒ S1 = S2? [ No ]
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Set Operations

Given two sets S1 and S2:
● Union of S1 and S2 is a set whose members are in either.

S1 ∪S2 = {x ∣ x ∈ S1 ∨ x ∈ S2}

● Intersection of S1 and S2 is a set whose members are in both.

S1 ∩S2 = {x ∣ x ∈ S1 ∧ x ∈ S2}

● Difference of S1 and S2 is a set whose members are in S1 but
not S2.

S1 ∖S2 = {x ∣ x ∈ S1 ∧ x /∈ S2}
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Power Sets

The power set of a set S is a set of all S’s subsets.

P(S) = {s ∣ s ⊆ S}

The power set contains subsets of cardinalities 0, 1, 2, . . . , ∣S∣.
e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∅,
{1}, {2}, {3},
{1,2}, {2,3}, {3,1},
{1,2,3}

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Exercise: What is P({1,2,3,4,5}) ∖ P({1,2,3})?
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Set of Tuples

Given n sets S1, S2, . . . , Sn, a cross/Cartesian product of
theses sets is a set of n-tuples.
Each n-tuple (e1,e2, . . . ,en) contains n elements, each of
which a member of the corresponding set.

S1 ×S2 × ⋅ ⋅ ⋅ ×Sn = {(e1,e2, . . . ,en) ∣ ei ∈ Si ∧ 1 ≤ i ≤ n}

e.g., {a,b} × {2,4} × {$,&} is a set of triples:

{a,b} × {2,4} × {$,&}

= { (e1,e2,e3) ∣ e1 ∈ {a,b} ∧ e2 ∈ {2,4} ∧ e3 ∈ {$,&} }

= {
(a,2,$), (a,2,&), (a,4,$), (a,4,&),
(b,2,$), (b,2,&), (b,4,$), (b,4,&)

}
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Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T .
e.g., Say S = {1,2,3} and T = {a,b}
○ ∅ is the minimum relation (i.e., an empty relation).
○ S × T is the maximum relation (say r1) between S and T ,

mapping from each member of S to each member in T :

{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}

○ {(x ,y) ∣ (x ,y) ∈ S × T ∧ x ≠ 1} is a relation (say r2) that maps only
some members in S to every member in T :

{(2,a), (2,b), (3,a), (3,b)}
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Relations (2.1): Set of Possible Relations

● We use the power set operator to express the set of all
possible relations on S and T :

P(S × T )

Each member in P(S × T ) is a relation.

● To declare a relation variable r , we use the colon (:) symbol to
mean set membership:

r ∶ P(S × T )

● Or alternatively, we write:
r ∶ S↔ T

where the set S↔ T is synonymous to the set P(S × T )
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Relations (2.2): Exercise
Enumerate {a,b}↔ {1,2,3}.
● Hints:

○ You may enumerate all relations in P({a,b} × {1,2,3}) via their
cardinalities: 0, 1, . . . , ∣{a,b} × {1,2,3}∣.

○ What’s the maximum relation in P({a,b} × {1,2,3})?
{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) }

● The answer is a set containing all of the following relations:
○ Relation with cardinality 0: ∅
○ How many relations with cardinality 1? [ (∣{a,b}×{1,2,3}∣1 ) = 6 ]
○ How many relations with cardinality 2? [ (∣{a,b}×{1,2,3}∣2 ) = 6×5

2! = 15 ]

. . .

○ Relation with cardinality ∣{a,b} × {1,2,3}∣:
{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) }
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Relations (3.1): Domain, Range, Inverse

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain of r : set of first-elements from r
○ Definition: dom(r) = { d ∣ (d , r ′) ∈ r }
○ e.g., dom(r) = {a,b,c,d ,e, f}
○ ASCII syntax: dom(r)

● range of r : set of second-elements from r
○ Definition: ran(r) = { r ′ ∣ (d , r ′) ∈ r }
○ e.g., ran(r) = {1,2,3,4,5,6}
○ ASCII syntax: ran(r)

● inverse of r : a relation like r with elements swapped
○ Definition: r−1 = { (r ′,d) ∣ (d , r ′) ∈ r }
○ e.g., r−1 = {(1,a), (2,b), (3, c), (4,a), (5,b), (6, c), (1,d), (2,e), (3, f)}
○ ASCII syntax: r∼
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Relations (3.2): Image

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

relational image of r over set s : sub-range of r mapped by s.

○ Definition: r[s] = { r ′ ∣ (d , r ′) ∈ r ∧ d ∈ s }
○ e.g., r[{a,b}] = {1,2,4,5}
○ ASCII syntax: r[s]
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Relations (3.3): Restrictions

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain restriction of r over set ds : sub-relation of r with domain ds.
○ Definition: ds � r = { (d , r ′) ∣ (d , r ′) ∈ r ∧ d ∈ ds }
○ e.g., {a,b} � r = {(a,1), (b,2), (a,4), (b,5)}
○ ASCII syntax: ds <| r

● range restriction of r over set rs : sub-relation of r with range rs.

○ Definition: r � rs = { (d , r ′) ∣ (d , r ′) ∈ r ∧ r ′ ∈ rs }
○ e.g., r � {1,2} = {(a,1), (b,2), (d ,1), (e,2)}
○ ASCII syntax: r |> rs
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Relations (3.4): Subtractions

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

● domain subtraction of r over set ds : sub-relation of r with domain not ds.
○ Definition: ds �− r = { (d , r ′) ∣ (d , r ′) ∈ r ∧ d /∈ ds }
○ e.g., {a,b} �− r = {(c,3), (c,6), (d,1), (e,2), (f,3)}
○ ASCII syntax: ds <<| r

● range subtraction of r over set rs : sub-relation of r with range not rs.

○ Definition: r �− rs = { (d , r ′) ∣ (d , r ′) ∈ r ∧ r ′ /∈ rs }
○ e.g., r �− {1,2} = {(c,3), (a,4), (b,5), (c,6), (f ,3)}
○ ASCII syntax: r |>> rs
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Relations (3.5): Overriding

Given a relation
r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

overriding of r with relation t : a relation which agrees with t within
dom(t), and agrees with r outside dom(t)
○ Definition: r �− t = { (d , r ′) ∣ (d , r ′) ∈ t ∨ ((d , r ′) ∈ r ∧ d /∈ dom(t)) }
○ e.g.,

r �− {(a,3), (c,4)}

= {(a,3), (c,4)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{(d,r ′)∣(d,r ′)∈t}

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

{(d,r ′)∣(d,r ′)∈r∧d/∈dom(t)}

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}

○ ASCII syntax: r <+ t
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Relations (4): Exercises

1. Define r[s] in terms of other relational operations.
Answer: r[s] = ran(s � r)
e.g.,

r[{a,b}
´¹¹¹¹¹¸¹¹¹¹¹¶

s

] = ran({(a,1), (b,2), (a,4), (b,5)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

{a,b}�r

) = {1,2,4,5}

2. Define r �− t in terms of other relational operators.
Answer: r �− t = t ∪ (dom(t) �− r)
e.g.,

r �− {(a,3), (c,4)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t
= {(a,3), (c,4)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t

∪{(b,2), (b,5), (d ,1), (e,2), (f ,3)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dom(t)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
{a,c}

�− r

= {(a,3), (c,4), (b,2), (b,5), (d ,1), (e,2), (f ,3)}
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Functions (1): Functional Property
● A relation r on sets S and T (i.e., r ∈ S↔ T ) is also a function

if it satisfies the functional property :
isFunctional(r)
⇐⇒
∀s, t1, t2 ● (s ∈ S ∧ t1 ∈ T ∧ t2 ∈ T ) ⇒ ((s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2)

○ That is, in a function, it is forbidden for a member of S to map to
more than one members of T .

○ Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.

● e.g., Say S = {1,2,3} and T = {a,b}, which of the following
relations satisfy the above functional property?
○ S × T [ No ]

Witness 1: (1,a), (1,b); Witness 2: (2,a), (2,b); Witness 3: (3,a), (3,b).
○ (S × T ) ∖ {(x , y) ∣ (x , y) ∈ S × T ∧ x = 1} [ No ]

Witness 1: (2,a), (2,b); Witness 2: (3,a), (3,b)
○ {(1,a), (2,b), (3,a)} [ Yes ]
○ {(1,a), (2,b)} [ Yes ]
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Functions (2.1): Total vs. Partial

Given a relation r ∈ S↔ T
● r is a partial function if it satisfies the functional property :

r ∈ S ↛ T ⇐⇒ (isFunctional(r) ∧ dom(r) ⊆ S)

Remark. r ∈ S ↛ T means there may (or may not) be s ∈ S s.t.
r(s) is undefined (i.e., r[{s}] = ∅).
○ e.g., { {(2,a), (1,b)},{(2,a), (3,a), (1,b)} } ⊆ {1,2,3} ↛ {a,b}
○ ASCII syntax: r : +->

● r is a total function if there is a mapping for each s ∈ S:

r ∈ S→ T ⇐⇒ (isFunctional(r) ∧ dom(r) = S)

Remark. r ∈ S→ T implies r ∈ S ↛ T , but not vice versa. Why?
○ e.g., {(2,a), (3,a), (1,b)} ∈ {1,2,3}→ {a,b}
○ e.g., {(2,a), (1,b)} /∈ {1,2,3}→ {a,b}
○ ASCII syntax: r : -->
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Functions (2.2):
Relation Image vs. Function Application
● Recall: A function is a relation, but a relation is not necessarily a function.
● Say we have a partial function f ∈ {1,2,3} ↛ {a,b}:

f = {(3,a), (1,b)}

○ With f wearing the relation hat, we can invoke relational images :

f [{3}] = {a}
f [{1}] = {b}
f [{2}] = ∅

Remark. ⇒ ∣f [{v}]∣ ≤ 1 ∵
● each member in dom(f ) is mapped to at most one member in ran(f )
● each input set {v} is a singleton set

○ With f wearing the function hat, we can invoke functional applications :

f (3) = a
f (1) = b
f (2) is undefined
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Functions (2.3): Modelling Decision
An organization has a system for keeping track of its employees as to where
they are on the premises (e.g., ‘‘Zone A, Floor 23’’). To achieve this,
each employee is issued with an active badge which, when scanned,
synchronizes their current positions to a central database.

Assume the following two sets:
○ Employee denotes the set of all employees working for the organization.
○ Location denotes the set of all valid locations in the organization.

1. Is it appropriate to model/formalize such a track functionality as a
relation (i.e., where is ∈ Employee↔ Location)?
Answer. No – an employee cannot be at distinct locations simultaneously.
e.g., where is[Alan] = { ‘‘Zone A, Floor 23’’,‘‘Zone C, Floor 46’’ }

2. How about a total function (i.e., where is ∈ Employee→ Location)?
Answer. No – in reality, not necessarily all employees show up.
e.g., where is(Mark) should be undefined if Mark happens to be on vacation.

3. How about a partial function (i.e., where is ∈ Employee ↛ Location)?
Answer. Yes – this addresses the inflexibility of the total function.
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Functions (3.1): Injective Functions
Given a function f (either partial or total):
● f is injective/one-to-one/an injection if f does not map

more than one members of S to a single member of T .
isInjective(f)
⇐⇒
∀s1,s2, t ● (s1 ∈ S ∧ s2 ∈ S ∧ t ∈ T ) ⇒ ((s1, t) ∈ f ∧ (s2, t) ∈ f ⇒ s1 = s2)

● If f is a partial injection, we write: f ∈ S  T
○ e.g., { ∅,{(1,a)},{(2,a), (3,b)} } ⊆ {1,2,3}  {a,b}
○ e.g., {(1,b), (2,a), (3,b)} /∈ {1,2,3}  {a,b} [ total, not inj. ]
○ e.g., {(1,b), (3,b)} /∈ {1,2,3}  {a,b} [ partial, not inj. ]
○ ASCII syntax: f : >+>

● If f is a total injection, we write: f ∈ S ↣ T
○ e.g., {1,2,3} ↣ {a,b} = ∅
○ e.g., {(2,d), (1,a), (3, c)} ∈ {1,2,3} ↣ {a,b, c,d}
○ e.g., {(2,d), (1, c)} ∉ {1,2,3} ↣ {a,b, c,d} [ not total, inj. ]
○ e.g., {(2,d), (1, c), (3,d)} ∉ {1,2,3} ↣ {a,b, c,d} [ total, not inj. ]
○ ASCII syntax: f : >->
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Functions (3.2): Surjective Functions

Given a function f (either partial or total):
● f is surjective/onto/a surjection if f maps to all members of T .

isSurjective(f) ⇐⇒ ran(f ) = T

● If f is a partial surjection, we write: f ∈ S � T
○ e.g., { {(1,b), (2,a)},{(1,b), (2,a), (3,b)} } ⊆ {1,2,3} � {a,b}
○ e.g., {(2,a), (1,a), (3,a) } /∈ {1,2,3} � {a,b} [ total, not sur. ]
○ e.g., {(2,b), (1,b)} /∈ {1,2,3} � {a,b} [ partial, not sur. ]
○ ASCII syntax: f : +->>

● If f is a total surjection, we write: f ∈ S ↠ T
○ e.g., { {(2,a), (1,b), (3,a)},{(2,b), (1,a), (3,b)} } ⊆ {1,2,3} ↠ {a,b}
○ e.g., {(2,a), (3,b)} /∈ {1,2,3} ↠ {a,b} [ not total, sur. ]
○ e.g., {(2,a), (3,a), (1,a)} /∈ {1,2,3} ↠ {a,b} [ total., not sur ]
○ ASCII syntax: f : -->>
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Functions (3.3): Bijective Functions

Given a function f :
f is bijective/a bijection/one-to-one correspondence if f is
total , injective, and surjective.
○ e.g., {1,2,3} ↣↠ {a,b} = ∅
○ e.g., { {(1,a), (2,b), (3, c)},{(2,a), (3,b), (1, c)} } ⊆ {1,2,3} ↣↠ {a,b, c}
○ e.g., {(2,b), (3, c), (4,a)} /∈ {1,2,3,4} ↣↠ {a,b, c}

[ not total, inj., sur. ]
○ e.g., {(1,a), (2,b), (3, c), (4,a)} /∈ {1,2,3,4} ↣↠ {a,b, c}

[ total, not inj., sur. ]
○ e.g., {(1,a), (2,c)} /∈ {1,2} ↣↠ {a,b, c}

[ total, inj., not sur. ]
○ ASCII syntax: f : >->>

34 of 41



Functions (4.1): Exercises
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Functions (4.2): Modelling Decisions
1. Should an array a declared as “String[] a” be modelled/formalized as a

partial function (i.e., a ∈ Z↛ String) or a total function (i.e., a ∈ Z→ String)?
Answer. a ∈ Z→ String is not appropriate as:
○ Indices are non-negative (i.e., a(i), where i < 0, is undefined).
○ Each array size is finite: not all positive integers are valid indices.

2. What does it mean if an array is modelled/formalized
as a partial injection (i.e., a ∈ Z String)?
Answer. It means that the array does not contain any duplicates.

3. Can an integer array “int[] a” be modelled/formalized
as a partial surjection (i.e., a ∈ Z� Z)?
Answer. Yes, if a stores all 232 integers (i.e., [−231, 231 − 1]).

4. Can a string array “String[] a” be modelled/formalized
as a partial surjection (i.e., a ∈ Z� String)?
Answer. No ∵ # possible strings is ∞.

5. Can an integer array “int[]” storing all 232 values be modelled/formalized
as a bijection (i.e., a ∈ Z↣↠ Z)?

Answer. No, because it cannot be total (as discussed earlier).
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Beyond this lecture . . .

● For the where is ∈ Employee ↛ Location model, what does it
mean when it is:
○ Injective [ where is ∈ Employee  Location ]
○ Surjective [ where is ∈ Employee� Location ]
○ Bijective [ where is ∈ Employee ↣↠ Location ]

● Review examples discussed in your earlier math courses on
logic and set theory .
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