Review of Math
MEB: Chapter 9

EECS3342 E: System
Specification and Refinement

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Outcomes of this Lecture

This module is designed to help you review:
» Propositional Logic
¢ Predicate Logic

¢ Sets, Relations, and Functions

Propositional Logic (1)

e A proposition is a statement of claim that must be of either
frue or false, but not both.

¢ Basic logical operands are of type Boolean: frue and false.
* We use logical operators to construct compound statements.
o Unary logical operator: negation (-)

o Binary logical operators: conjunction (), disjunction (v),

e [-» |
true false
false true

implication (=), equivalence (=), and if-and-only-if (<).

| p | g [[prqglpvglp=qg|pPp<—=q|p=q]
true true true true true true true
true | false || false | true false false false
false | true || false | true true false false
false | false || false | false true true true

I

Propositional Logic: Implication (1) LASSONDE

o Writtenas p= q

[pronounced as “p implies q”]
o We call p the antecedent, assumption, or premise.
o We call g the consequence or conclusion.

Compare the truth of p = g to whether a contract is honoured:

o antecedent/assumption/premise p ~ promised terms [e.g., salary]
o consequence/conclusion g ~ obligations [e.g., duties]

When the promised terms are met, then the contract is:

o honoured if the obligations fulfilled. [(true = true) < true]
o breached if the obligations violated. [(true = false) <— false]

When the promised terms are not met, then:

o Fulfilling the obligation (q) or not (~q) does not breach the

contract.
. p | g [[p=4]
false | true frue
false | false frue

I

Propositional Logic: Implication (2) LASSONDE

There are alternative, equivalent ways to expressing p = q:

o qifp
qis trueif pis true

ponlyif g
If pis true, then for p = g to be true, it can only be that g is also frue.
Otherwise, if p is true but g is false, then (frue = false) = false.

Note. To prove p = q, prove p < q (pronounced: “p if and only if g”):

» pifqg [g=p]
e ponlyifq [p=q]

p is sufficient for g
For g to be frue, it is sufficient to have p being true.

g is necessary for p [similar to ponly if g]
If pis true, then it is necessarily the case that g is also true.
Otherwise, if pis true but q is false, then (frue = false) = false.

g unless —-p [Whenis p = g true?]
If g is true, then p = q true regardless of p.

If q is false, then p = g cannot be frue unless p is false.

[e]

[e]

o

o

I

Propositional Logic: Implication (3) LASSONDE

Given an implication p = g, we may construct its:
e Inverse: -p = -q [negate antecedent and consequence |
e Converse: g =p [swap antecedent and consequence |

e Contrapositive: -q = -p [inverse of converse]

I

Propositional Logic (2) LASSONDE

Axiom: Definition of =

_ p=qg=-pvqg
Theorem: |dentity of =

true=p=p
Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(prq) = -pv-q
-(pvaq) = -pr-q
e Axiom: Double Negation
p=-(-p)

Theorem: Contrapositive
p = q = —\q = —|p

Predicate Logic (1) v

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

¢ Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
¢ We use the following symbols for common numerical ranges:
o Z: the set of integers [-o00,...,=1,0,1,... +00]
o N: the set of natural numbers [0,1,...,+00]
e Variable(s) in a predicate may be quantified:
o Universal quantification :
All values that a variable may take satisfy certain property.
e.g., Given that i is a natural number, i is always non-negative.
o Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.

I

Predicate Logic (2.1): Universal Q. (V)

* A universal quantification has the form (VX e R = P)
o X is a comma-separated list of variable names
o R is a constraint on types/ranges of the listed variables
o Pis a property to be satisfied
e For all (combinations of) values of variables listed in X that
satisfies R, it is the case that P is satisfied.

oVieieN=i>0 [true]
oVieijeZ=1i>0 [false]
oVijjeienjel=i<jvi>j [false]

* Proof Strategies
1. How to prove (VX e R = P) true?
e Hint. When is R = P true? [true = true, false = _]
o Show that for all instances of x € X s.t. R(x), P(x) holds.
o Show that for all instances of x € X it is the case —R(x).
2. How to prove (VX e R = P) false?
¢ Hint. When is R = P false? [true = false]

o Give a witness/counterexample of x ¢ X s.t. R(x), -P(x) holds.

S
=

Predicate Logic (2.2): Existential Q. (3) L

e An existential quantification has the form (3X ¢ RAP)

o X is a comma-separated list of variable names
o R is a constraint on types/ranges of the listed variables

o Pis a property to be satisfied
e There exist (a combination of) values of variables listed in X

that satisfy both R and P.

o JjieieNAi>O0 [true]

o JdjieieZAi>0 [true]
[true]

o JijeieZAjeZA(i<jVi>])
e Proof Strategies
1. How to prove (3X e R A P) true?
e Hint. Whenis R A P true? [true A true]
e Give a witness of x € X s.t. R(x), P(x) holds.
2. How to prove (31X e R A P) false?
[true A false, false A _]

e Hint. When is R A P false?
o Show that for all instances of x € X s.t. R(x), -P(x) holds.

¢ Show that for all instances of x € X it is the case -R(x).
_

I

Predicate Logic (3): Exercises

Prove or disprove: Vx e (x€eZA1<x<10)= x>0.
All 10 integers between 1 and 10 are greater than 0.
Prove or disprove: Vx e (x€eZA1<x<10)=x>1.

Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

e Prove or disprove: 3x e (xeZA1<x<10)Aax>1.

Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

Prove or disprove that 3x e (x€ZA1<x<10)Ax>107?
All integers in the range between 1 and 10 are not greater than 10.

Lot

Predicate Logic (4): Switching Quantificatio

Conversions between Vv and 3:

(VX ° R=>P) = —|(E|Xo R/\—|P)
(IX ¢« RAP) < (VX ¢« R=-P)

I

Sets: Definitions and Membership

e A set is a collection of objects.

o Objects in a set are called its elements or members.

o Order in which elements are arranged does not matter.

o An element can appear at most once in the set.

We may define a set using:

o Set Enumeration: Explicitly list all members in a set.

e.g., {1,3,5,7,9}

o Set Comprehension: Implicitly specify the condition that all
members satisfy.
eg., {x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [frue]
eg.,4¢{x|x<1<10,x is an odd number} [frue]

The number of elements in a set is called its cardinality.

e.g.,19/=0,{x|x<1<10,x is an odd number}|=5

I

Set Relations LASSONDE

Given two sets Sy and S:
e S, is a subset of S, if every member of S; is a member of S,.

51cS — (VXOX€S1:>X682)

e Sy and S, are equal iff they are the subset of each other.

S51=5 «— S5,cSHAScS

e S is a proper subset of S, if it is a strictly smaller subset.
S1cS — S1cSA|51]<|852|

4 ot

I

Set Relations: Exercises
? ¢ S always holds [@and S]
? c S always fails [S]
? c S holds for some S and fails for some S [@]
S1=8=85¢857? [Yes]
S1cS =51 =57 [No]

15 ot

I

Set Operations

Given two sets Sy and S,:
e Union of S; and S5 is a set whose members are in either.

S1U82={X‘XES1\/XESQ}

e Intersection of S; and S, is a set whose members are in both.

SinSo={x|xeSiArxeS}

e Difference of S; and S, is a set whose members are in Sy but
not So.
S1 \82:{X|X€S1/\X¢82}

I

Power Sets LASSONDE

The power set of a set Sis a sef of all S’s subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0,1, 2, ..., |S|.

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

9,

{1}, {2}, {3},
{12}, {2,3}, {3,1},
{1,2,3}

Exercise: What is P({1,2,3,4,5}) \P({1,2,3})?

I

Set of Tu pleS LASSONDE

Given nsets Sy, S, ..., Sy, a cross/Cartesian product of
theses sets is a set of n-tuples.

Each n-tuple (eq, eo,...,€p) contains n elements, each of
which a member of the corresponding set.

SixSyx---xSy={(ey,6€2,...,6n) | €€ Sjanl1<i<n}

e.g., {a, b} x{2,4} x {$,&} is a set of triples:
{a,b} x{2,4} x {§, &}
{(e1,e2,€3) |e1e{ablnexec{2,4} neze{$ &} }

[(a2,%),(a,2,&),(a,4,%),(a,4,&),
) (b,2,%),(b,2,&),(b,4,$),(b,4,&)

8 ot

I

Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T.

e.g.,Say S={1,2,3} and T = {a, b}

o @ is the minimum relation (i.e., an empty relation).

° is the maximum relation (say ry) between S and T,
mapping from each member of S to each memberin T:

{(1,2),(1,b),(2,2),(2,0),(3,a),(3,0)}

o {(x,¥)] (x,¥) e Sx T arx+1}is arelation (say r.) that maps only
some members in S to every member in T:

{(2,a),(2,0),(3,a),(3,b)}

19 ot 47

I

Relations (2.1): Set of Possible Relations [sono:

e We use the power set operator to express the set of all
possible relations on S and T:

P(SxT)
Each member in P(S x T) is a relation.

* To declare a relation variable r, we use the colon (:) symbol to
mean set membership:

r:P(SxT)
e Or alternatively, we write:
r:S« T
where the set S < T is synonymous to the set P(Sx T)

Pl ot A

I

Relations (2.2): Exercise
Enumerate {a,b} < {1,2,3}.
e Hints:
o You may enumerate all relations in P({a, b} x {1,2,3}) via their
cardinalities: 0,1, ..., |[{a, b} x {1,2,3}.

o What's the maximum relation in P({a, b} x {1,2,3})?
{(a1),(a2),(a3),(b,1),(b,2),(b,3) }
e The answer is a set containing all of the following relations:

o Relation with cardinality 0: @
o How many relations with cardinality 1? [(Haor123)) -~ g]

o How many relations with cardinality 2? [(H{@2}<[1:28}) = &5 _ 15

o Relation with cardinality |{a, b} x {1,2,3}|:
{(a1),(a,2),(a3),(b,1),(b,2),(b,3) }

I

Relations (3.1): Domain, Range, Inverse [isonc:

Given a relation
r=1{(a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

o [domain of r|: set of first-elements from r
o Definition: dom(r)={d | (d,r')er}
o e.g., dom(r)={a,b,c,d,e,f}
o ASCII syntax: dom (r)

° : set of second-elements from r
o Definition: ran(r) = { r' | (d,r")er }
o e.g.,ran(r)={1,2,3,4,5,6}
o ASCII syntax: ran (r)

. : a relation like r with elements swapped
o Definition: r' = { (r',d) | (d,r)er}
° eg.,r'={(1,a),(2b),(3.0) (4a),(50b),(6.).(1,d).(2.€),(3.}
o ASCII syntax: r~

2 oral

I

Relations (3.2): Image LASSONDE

Given a relation
r={(a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (&, 2), (,3)}

’ relational image of r over set s

: sub-range of r mapped by s.
o Definition: r[s]={r' | (d,r')erndes}

o eg.,r[{ab}]={1,2,4,5}

o ASCIlI syntax: r[s]

v3ioral

I

Relations (3.3): Restrictions

Given a relation
r={(a, 1), (b, 2), (c, 3), (a, 4), (b,), (c, 6), (d, 1), (e, 2), (f, 3)}

° ’ domain restriction of r over set ds |: sub-relation of r with domain ds.
o Definition: ds<1r={ (d,r")| (d,r')erndeds}
o eg.,{ab}<ar={(a),(b,2),(a,4),(b,5)}
o ASCIl syntax: ds <| r

. ’ range restriction of r over set rs ‘: sub-relation of r with range rs.

o Definition: ri>rs={ (d,r")| (d,r')ernr'ers}
o eg.,re{1,2}={(a1),(b2),(d1),(e2)}
o ASCll syntax: r |> rs

rriwe Wi

I

Relations (3.4): Subtractions

Given a relation
r={(a, 1), (b, 2), (c, 3), (a, 4), (b,), (c, 6), (d, 1), (e, 2), (f, 3)}

° ’ domain subtraction of r over set ds ‘: sub-relation of r with domain not ds.
o Definition: ds<r={ (d,r") | (d,r')erand¢ds}
o eg.,{ab}<ar={(c,3),(c,6),(d,1),(e2),(f3)}
o ASCIlI syntax: ds <<| r

° ’ range subtraction of r over set rs ‘: sub-relation of r with range not rs.

o Definition: rers={ (d,r')| (d,r'yernr ¢rs}
o eg.,re{1,2} ={(c3),(a,4),(b,5),(c,6),(f,3)}
o ASCll syntax: r |>> rs

o ot

I

Relations (3.5): Overriding LASSONDE

Given a relation

r={(a1), (b, 2),(c,3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (£, 3)}
’ overriding of r with relation t‘: a relation which agrees with f within
dom(t), and agrees with r outside dom(t)

o Definition: r<t={ (d,r") | (d,r')etv ((d,r'")erand¢dom(t)) }
° eg.,

r<{(a?23),(c,4)}

= {(a3),(c;4)}u{(b,2),(h,5),(d,1),(e,2),(f,3)}

{(d,r")|(d,r")et} {(d,r")|(d,r")erndg¢dom(t)}

= {(a3),(c,4),(b,2),(b,5),(d,1),(e,2),(,3)}

o ASCll syntax: r <+ t

Vb ot 4

I

Relations (4): Exercises LASSONDE

1. Define r[s] in terms of other relational operations.
Answer: r[s] =ran(s<r)

e.g.,
? r[{a b}] =ran({(a, 1), (b,2), (a,4), (b,5)}) = {1,2,4,5}
—

s {a,b}<ar

2. Define r < t in terms of other relational operators.
Answer: r <t =tu (dom(t) <r)

e.g.,
r<{(a3),(c.4)}
[——

{(a,3), (072)} u{(b,2),(b,5),(d,1),(e,2),(f,3)}
¢ dom(t) <r

N———
{a,c}

= {(a3),(c;4),(b,2),(b,5),(d,1),(e2),(f,3)}

v otal

I

Functions (1): Functional Property Retoue

e Arelationronsets Sand T (i.e.,, r ¢ S<> T)is also a function

if it satisfies the functional property:
isFunctional (r)

<
Vs, ti,to e (SeSAteTAbeT)=((s,ti)ern(s,b)er=1t=b)
o Thatis, in a function, it is forbidden for a member of S to map to
more than one members of T.
o Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.
e e.g.,Say S={1,2,3} and T = {a, b}, which of the following
relations satisfy the above functional property?

o SxT [No]
Witness 1: (1, a), (1,b); Witness 2: (2, a), (2,b); Witness 3: (3, a), (3, b).

o (SxTN{(x,y) | (x,y)eSxTarx=1} [No]
Witness 1: (2, a), (2, b); Witness 2: (3, a), (3,b)

o {(1,a),(2,b)} [Yes]

I

Functions (2.1): Total vs. Partial LASSONDE

Givenarelationre S< T
e ris a partial function if it satisfies the functional property:

<= (isFunctional (r) Adom(r)c S)
Remark. r ¢ S » T means there may (or may not) be s ¢ S s.t.
r(s) is undefined (i.e., r[{s}] = @).
°ceg.,{{(2a),1,0)}{(2a),3,a),(1,b)} } <{1,2,3} » {a b}

o ASCll syntax: r : +->

e ris a total function if there is a mapping for each se¢ S:
<= (isFunctional (r) Adom(r) =S)
Remark. r ¢ S— T implies r ¢ S » T, but not vice versa. Why?
© e'g'l {(27 a)7 (3) a)7 (1’b)} € {1)273} - {a? b}

o eg., {(2,a),(1,b)} ¢{1,2,3} > {a, b}
o ASCll syntax: r : —-—>

VY ot A

Functions (2.2): LASSONDE

Relation Image vs. Function Application

® Recall: A function is a relation, but a relation is not necessarily a function.
® Say we have a partial function f ¢ {1,2,3} - {a, b}:
f= {(3, a)7 (17b)}

o With f wearing the relation hat, we can invoke relational images :

fli{3y] = {a
fi{13] = {b}
fl{2}] = o

Remark. = |f[{v}]| <1
o each member in dom(f) is mapped to at most one member in ran(f)
e each input set {v} is a singleton set

o With f wearing the function hat, we can invoke functional applications :

f3) = a
f1)y = b
f(2) is undefined

I

Functions (2.3): Modelling Decision LASSONDE

An organization has a system for keeping track of its employees as to where
they are on the premises (e.g., * ‘*Zone A, Floor 23’’). To achieve this,
each employee is issued with an active badge which, when scanned,
synchronizes their current positions to a central database.

Assume the following two sets:
o Employee denotes the set of all employees working for the organization.
o Location denotes the set of all valid locations in the organization.

1. Is it appropriate to model/formalize such a track functionality as a
relation (i.e., where_is ¢ Employee < Location)?
Answer. No — an employee cannot be at distinct locations simultaneously.
e.g., where_is[Alan] = { *‘Zone A, Floor 23’’,‘‘Zone C, Floor 46'’ }

2. How about a total function (i.e., where_is ¢ Employee — Location)?
Answer. No —in reality, not necessarily all employees show up.
e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.

3. How about a partial function (i.e., where_is ¢ Employee + Location)?
Answer. Yes — this addresses the inflexibility of the total function.

Came i

Functions (3.1): Injective Functions LASSONDE
Given a function f (either partial or total):
e fis injective/one-to-one/an injection if f does not map

more than one members of S to a single member of T.

isInjective (f)
—

Vsy,So,t @ (S1€SAS2eSAteT)= ((s1,t)efa(sp,t)ef= 5 =8p)

e If fis a partial injection, we write:
o e-g'! { ®7 {(1>a)}7{(27a),(37b)} } g {1’273} > {a7 b}
° eg.{(1,b),(2,a),(3,b)} ¢ {1,2,3} »» {a b} [total, not inj.]
o eg.,{(1,b),(3,b)}¢{1,2,3} » {a b} [partial, not inj.]
o ASCll syntax: £ : >+>

o If fis a total injection, we write:
o eg,{1,2,3} »{abl=02
o eg.,{(2,d),(1,a),(3,¢c)} €{1,2,3} » {a,b,c,d}

o eg.,{(2,d),(1,c)} ¢{1,2,3} » {a,b,c,d} [not total, inj.]
o eg., {(2,d),(1,¢),(8,d)} ¢{1,2,3} » {a,b,c,d} [total, not inj.]
o ASCll syntax: £ : >—>

Functions (3.2): Surjective Functions Retoue

Given a function f (either partial or total):
o fis surjective/onto/a surjection if f maps to all members of T.

isSurjective (f) <= ran(f)=T

e If fis a partial surjection, we write:
° eg.{{(1,b),(2,a)},{(1,b),(2,a),(3,b)} } < {1,2,3} » {a, b}
o eg., {(2,a),(1,a),(3,a) } ¢#{1,2,3} » {a, b} [total, not sur.]
o eg., {(2,b),(1,b)} ¢{1,2,3} » {a,b} [partial, not sur.]
o ASCll syntax: £ : +->>

e If fis a total surjection, we write:

° eg.{{(2,a),(1,b),(3,a)},{(2,b),(1,2),(3,b)} } < {1,2,3} > {a, b}

o eg.,{(24a),(3b)}¢{1,2,3} »{ab} [not total, sur.]
° eg., {(2,a),(3,a),(1,a)} ¢ {1,2,3} - {a,b} [total., not sur]
o ASCll syntax: £ : ——>>

I

Functions (3.3): Bijective Functions

Given a function f:

f is bijective/a bijection/one-to-one correspondence if f is
total, injective, and surjective.

°eg,{1,2,3}»{abl=90
o eg., {{(1,a),(2,b),(3,0)},{(2,a),(3,b),(1,¢)} } ={1,2,3} = {a, b, c}
°o eg.,{(20b),(3,c),4,a)}¢{1,2,3,4} » {a,b,c}

[not total, inj., sur.]
o eg., {(1,a),(2,b),(3,c),(4,a)} ¢ {1,2,3,4} = {a,b, c}

[total, not inj., sur.]
o eg.,{(1,a),(2,c)} ¢{1,2} » {a,b,c}

[total, inj., not sur.]

[e]

ASCIl syntax: £ : >->>

34 ot 47

g
et ae o

Functions (4.1): Exercises

I

Functions (4.2): Modelling Decisions

1.

Should an array a declared as “string[] a”be modelled/formalized as a
partial function (i.e., a € Z + String) or a total function (i.e., a < Z — String)?
Answer. a ¢ 7Z — String is not appropriate as:

o Indices are non-negative (i.e., a(i), where i < 0, is undefined).

o Each array size is finite: not all positive integers are valid indices.

2. What does it mean if an array is modelled/formalized
as a partial injection (i.e., a € Z »» String)?
Answer. It means that the array does not contain any duplicates.
3. Cananinteger array “int [1 a” be modelled/formalized
as a partial surjection (i.e., ac Z - 7,)?
Answer. Yes, if a stores all 2% integers (i.e., [-2°', 23! - 1]).
4. Canastring array “String([] a”be modelled/formalized
as a partial surjection (i.e., a<Z + String)?
Answer. No - # possible strings is co.
5. Can an integer array “int []” storing all 2% values be modelled/formalized
as a bijection (i.e., ac Z ~ 7)?
Answer. No, because it cannot be total (as discussed earlier).

I

Beyond this lecture ...

e For the where_is € Employee + Location model, what does it
mean when it is:

o Injective [where_is € Employee »» Location]
o Surjective [where_is € Employee + Location]
o Bijective [where_is € Employee »» Location |

* Review examples discussed in your earlier math courses on
logic and set theory.

30140

Index (1)

[earning Oufcomes of This Lecture
Propositional Logic (1)
Propositional Logic: Tmplication (1)
Propositional Logic: Tmplication (2]
Propositional Logic: Implication (3)
Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1); Universal 0. (V)
Predicate Logic (2.2): Existential O (J)
Predicate Logic (3); EXercises
Predicate Logic (4] Switching Quantificafions

G2 ot dd

Index (2)

ets: befinituons an embpersni

et Relations

[Set Operations|

Helations (1): Constructing a Relation]
elations (<.1): set o1 Fossible Relation
Relations (3.1); Domain, Range, Inverse
elations (s.<): Ima

Index (3)
[Relations (3.3): Restrictions
elations (v.4). suptraction
[Relations (3.5): Overriding
elations . EXercise
unctions . Functional Froper
unctions (2.1): lotal vs. rFartia

[Functions (2.2]: |
[Relation Tmage vs. Function Application|

FUI‘IC[IOI’IS 123; IVIoaelllng DeCISIOiI
[Functions (3.7): Tnjective Functions|
FUI‘IC[IOI‘IS 1325 Sur]echve Funchon§

afl ot 4%

Index (4) LASSONDE
[Functions {3.3): Bijective Functions]

[Functions {4.7): Exercises|
[Functions (4.2): Modelling Decisions|

[Beyond this Tecture .]

-
—

Al ot dd

	Learning Outcomes of this Lecture
	Propositional Logic (1)
	Propositional Logic: Implication (1)
	Propositional Logic: Implication (2)
	Propositional Logic: Implication (3)
	Propositional Logic (2)
	Predicate Logic (1)
	Predicate Logic (2.1): Universal Q. ()
	Predicate Logic (2.2): Existential Q. ()
	Predicate Logic (3): Exercises
	Predicate Logic (4): Switching Quantifications
	Sets: Definitions and Membership
	Set Relations
	Set Relations: Exercises
	Set Operations
	Power Sets
	Set of Tuples
	Relations (1): Constructing a Relation
	Relations (2.1): Set of Possible Relations
	Relations (2.2): Exercise
	Relations (3.1): Domain, Range, Inverse
	Relations (3.2): Image
	Relations (3.3): Restrictions
	Relations (3.4): Subtractions
	Relations (3.5): Overriding
	Relations (4): Exercises
	Functions (1): Functional Property
	Functions (2.1): Total vs. Partial
	Functions (2.2): Relation Image vs. Function Application
	Functions (2.3): Modelling Decision
	Functions (3.1): Injective Functions
	Functions (3.2): Surjective Functions
	Functions (3.3): Bijective Functions
	Functions (4.1): Exercises
	Functions (4.2): Modelling Decisions
	Beyond this lecture …

