
Introduction

MEB: Prologue, Chapter 1

EECS3342 E: System
Specification and Refinement

Fall 2025

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you understand:
● What a safety-critical system is
● Code of Ethics for Professional Engineers
● What a Formal Method Is
● Verification vs. Validation

● Model-Based System Development

2 of 13

What is a Safety-Critical System (SCS)?

● A safety-critical system (SCS) is a system whose failure or
malfunction has one (or more) of the following consequences:○ death or serious injury to people○ loss or severe damage to equipment/property○ harm to the environment

● Based on the above definition, do you know of any systems that
are safety-critical?

3 of 13

Professional Engineers: Code of Ethics

○ Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.○ It is the duty of a practitioner to act at all times with,
1. fairness and loyalty to the practitioner’s associates, employers,

clients, subordinates and employees;
2. fidelity (i.e., dedication, faithfulness) to public needs;
3. devotion to high ideals of personal honour and professional integrity;
4. knowledge of developments in the area of professional engineering

relevant to any services that are undertaken; and
5. competence in the performance of any professional engineering

services that are undertaken.○ Consequence of misconduct?
● suspension or termination of professional licenses● civil law suits

Source: PEO’s Code of Ethics
4 of 13

Developing Safety-Critical Systems

Industrial standards in various domains list acceptance criteria

for mission- or safety-critical systems that practitioners need to
comply with: e.g.,

Aviation Domain: RTCA DO-178C “Software Considerations in

Airborne Systems and Equipment Certification”
Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers

in Safety Systems of Nuclear Power Generating Stations”
Two important criteria are:
1. System requirements are precise and complete
2. System implementation conforms to the requirements
But how do we accomplish these criteria?

5 of 13

Safety-Critical vs. Mission-Critical?

● Critical :
A task whose successful completion ensures the success of a
larger, more complex operation.
e.g., Success of a pacemaker⇒ Regulated heartbeats of a patient● Safety :
Being free from danger/injury to or loss of human lives.● Mission:
An operation or task assigned by a higher authority.

Q. Formally relate being safety-critical and mission-critical.
A.○ safety-critical⇒ mission-critical○ mission-critical �⇒ safety-critical● Relevant industrial standard: RTCA DO-178C (replacing
RTCA DO-178B in 2012) “Software Considerations in Airborne

Systems and Equipment Certification”
Source: Article from OpenSystems

6 of 13

Using Formal Methods for Certification

● A formal method (FM) is a mathematically rigorous

technique for the specification, development, and verification of
software and hardware systems.● DO-333 “Formal methods supplement to DO-178C and

DO-278A” advocates the use of formal methods:
The use of formal methods is motivated by the expectation

that, as in other engineering disciplines, performing appropriate

mathematical analyses can contribute to establishing the

correctness and robustness of a design.● FMs, because of their mathematical basis, are capable of:○ Unambiguously describing software system requirements.
○ Enabling precise communication between engineers.○ Providing verification (towards certification) evidence of:● A formal representation of the system being healthy .
● A formal representation of the system satisfying safety properties .

7 of 13

Verification: Building the Product Right?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

○ Implementation built via reusable programming components.○ Goal : Implementation Satisfies Intended Requirements○ To verify this, we formalize them as a system model and a set of
(e.g., safety) properties, using the specification language of a
theorem prover (EECS3342) or a model checker (EECS4315).○ Two Verification Issues:
1. Library components may not behave as intended .
2. Successful checks/proofs ensure that we built the product right , with

respect to the informal requirements. But...
8 of 13

Validation: Building the Right Product?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

○ Successful checks/proofs �⇒We built the right product .○ The target of our checks/proofs may not be valid:
The requirements may be ambiguous, incomplete, or contradictory .○ Solution: Precise Documentation [EECS4312]

9 of 13

Catching Defects – When?

● To minimize development costs , minimize software defects.● Software Development Cycle:
Requirements → Design → Implementation → Release
Q. Design or Implementation Phase?
Catch defects as early as possible .

∵ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.● Discovering defects after release costs up to 30 times more
than catching them in the design phase.● Choice of a design language , amendable to formal

verification, is therefore critical for your project.
Source: IBM Report

10 of 13

Model-Based System Development

● Modelling and formal reasoning should be performed before

implementing/coding a system.○ A system’s model is its abstraction , filtering irrelevant details.
A system model means as much to a software engineer as a
blueprint means to an architect.○ A system may have a list of models, “sorted” by accuracy:�m0,m1, . . . , mi , mj , . . . ,mn�

● The list starts by the most abstract model with least details.● A more abstract model mi is said to be refined by its subsequent,
more concrete model mj .

● The list ends with the most concrete/refined model with most details.○ It is far easier to reason about:
● a system’s abstract models (rather than its full implementation)
● refinement steps between subsequent models

● The final product is correct by construction .
11 of 13

Learning through Case Studies

● We will study example models of programs/codes, as well as
proofs on them, drawn from various application domains:○ REACTIVE Systems [sensors vs. actuators]○ DISTRIBUTED Systems [(geographically) distributed parties]

● What you learn in this course will allow you to explore example
in other application domains:○ SEQUENTIAL Programs [single thread of control]○ CONCURRENT Programs [interleaving processes]

● The Rodin Platform will be used to:○ Construct system models using the Even-B notation.○ Prove properties and refinements using classical logic

(propositional and predicate calculus) and set theory .

12 of 13

Index (1)

Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

Safety-Critical vs. Mission-Critical?

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Catching Defects – When?

Model-Based System Development

Learning through Case Studies

13 of 13

