Priority Queues ADT and Heaps

EECS3101 E: Design and Analysis of Algorithms Fall 2025

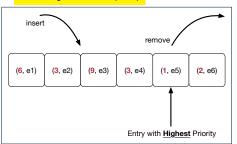
CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- The **Priority Queue** (**PQ**) ADT
- The *Heap* Data Structure (Properties & Operations)
- Time Complexities of *Heap*-Based *PQ*

• A **Priority Queue (PQ)** stores a collection of **entries**.



- Each entry is a pair: an element and its key.
- The key of each entry denotes its element's "priority".
- Keys in a Priority Queue (PQ) are not used for uniquely identifying an entry.
- In a <u>PQ</u>, the next entry to remove has the "highest" priority.
 - e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher priority to replace any cancelled seats.
 - e.g., A network router, faced with insufficient bandwidth, may only handle real-time tasks (e.g., streaming) with highest priorities.
 - e.g., When performing Dijkstra's shortest path algorithm on a weighted graph, the vertex with the minimum D value gets the highest priority to be visited next.

The Priority Queue (PQ) ADT


```
• min
                [ precondition: PQ is not empty ]
                [ postcondition: return entry with highest priority in PQ ]
• size
                [ precondition: none ]
                [ postcondition: return number of entries inserted to PQ ]
isEmpty
                [ precondition: none ]
                postcondition: return whether there is no entry in PQ 1
insert(k, v)
                [ precondition: PQ is not full ]
                [ postcondition: insert the input entry into PQ ]

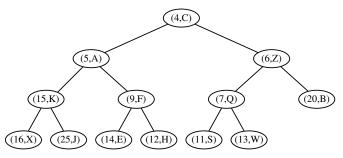
    removeMin

                [ precondition: PQ is not empty ]
                [ postcondition: remove and return a min entry in PQ ]
```

Heaps

A **heap** is a **binary tree** which:

1. Stores in each node an *entry* (i.e., *key* and *value*).

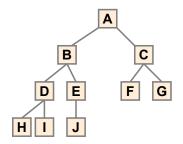


- 2. Satisfies a structural property of tree organization
- 3. Satisfies a *relational* property of stored keys

BT Terminology: Complete BTs

A binary tree with height h is considered as complete if:

- Nodes with $depth \le h 2$ has two children.
- Nodes with depth h − 1 may have zero, one, or two child nodes.
- Children of nodes with depth h 1 are filled from left to right.



Q1: *Minimum* # of nodes of a *complete* BT? $(2^h - 1) + 1 = 2^h$

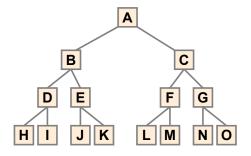
Q2: Maximum # of nodes of a complete BT? $2^{h+1} - 1$

BT Terminology: Full BTs

A binary tree with height h is considered as full if:

Each node with $depth \le h - 1$ has two child nodes.

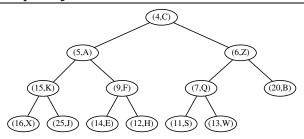
That is, <u>all *leaves*</u> are with the same *depth* h.



Q1: *Minimum* # of nodes of a complete BT? $2^{h+1} - 1$

Q2: *Maximum* # of nodes of a complete BT? 2^{h+1} –

Heap Property 1: Structural



A **heap** with **height h** satisfies the **Complete BT Property**:

- Nodes with depth ≤ h − 2 has two child nodes.
- Nodes with depth h 1 may have zero, one, or two child nodes.
- Nodes with depth h are filled from <u>left</u> to <u>right</u>.
- \mathbf{Q} . When the # of nodes is n, what is h?
- **Q**. # of nodes from Level 0 through Level h-1?
- **Q**. # of nodes at Level h?
- Q. Minimum # of nodes of a complete BT?
- Q. Maximum # of nodes of a complete BT?

 $\lfloor log_2 n \rfloor$

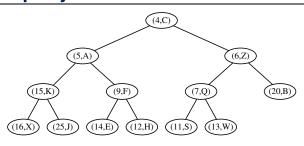
2^h – 1

 $n - (2^h - 1)$

2^h

 $2^{h+1} - 1$

Heap Property 2: Relational



Keys in a heap satisfy the Heap-Order Property:

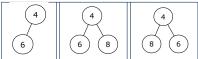
- Every node n (other than the root) is s.t. $key(n) \ge key(parent(n))$
 - \Rightarrow Keys in a root-to-leaf path are sorted in a non-descending order. e.g., Keys in entry path ((4, C), (5, A), (9, F), (14, E)) are sorted.
 - ⇒ The minimal key is stored in the root.

e.g., Root (4, C) stores the minimal key 4.

Keys of nodes from different subtrees are <u>not</u> constrained at all.
 e.g., For node (5, A), key of its LST's root (15) is <u>not minimal</u> for its RST.

- **Heaps: More Examples**
- The *smallest* heap is just an empty binary tree.
- The smallest non-empty heap is a one-node heap.
 e.g.,

<u>Two</u>-node and <u>Three</u>-node Heaps:



These are <u>not</u> <u>two</u>-node heaps:

Heap Operations

- There are three main operations for a heap:
 - **1. Extract the Entry with Minimal Key**: Return the stored entry of the *root*.

[*O*(1)]

- 2. Insert a New Entry:
 - A single *root-to-leaf path* is affected.

[*O(h)* or *O(log n)*]

Delete the Entry with Minimal Key: A single root-to-leaf path is affected.

- [*O(h)* or *O(log n)*]
- After performing each operation, both *relational* and *structural* properties must be maintained.

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with **height h**:

- **1.** Insert (k, v), possibly **temporarily** breaking the *relational property*.
 - **1.1** Create a new entry $\mathbf{e} = (k, v)$.
 - **1.2** Create a new *right-most* node *n* at *Level h*.
 - **1.3** Store entry **e** in node **n**.

After steps 1.1 and 1.2, the structural property is maintained.

- 2. Restore the heap-order property (HOP) using Up-Heap Bubbling:
 - **2.1** Let c = n.
 - **2.2** While **HOP** is not restored and *c* is not the root:
 - **2.2.1** Let **p** be **c**'s parent.
 - **2.2.2** If $key(p) \le key(c)$, then **HOP** is restored.

Else, swap nodes c and p.

["upwards" along *n*'s *ancestor path*]

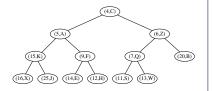
Running Time?

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take *O(1)*.
- Step 2.2 may be executed up to O(h) (or O(log n)) times.

O(log n)

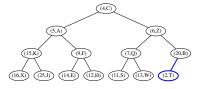
Updating a Heap: Insertion Example (1.1)

(0) A heap with height 3.

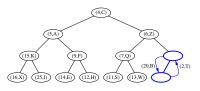


(1) Insert a new entry (2, *T*) as the *right-most* node at Level 3.

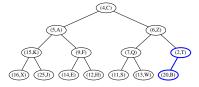
Perform *up-heap bubbling* from here.



(2) **HOP** violated \therefore 2 < 20 \therefore Swap.

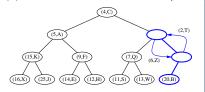


(3) After swap, entry (2, T) prompted up.

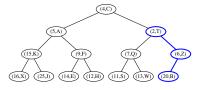


Updating a Heap: Insertion Example (1.2)

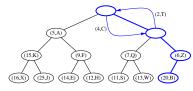
(4) **HOP** violated \therefore 2 < 6 \therefore Swap.



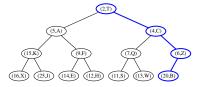
(5) After swap, entry (2, T) prompted up.



(6) **HOP** violated : 2 < 4 ∴ Swap.



(7) Entry (2, T) becomes root \therefore Done.



Updating a Heap: Deletion

To delete the **root** (with the **minimal** key) from a heap with **height h**:

- 1. Delete the root, possibly temporarily breaking HOP.
 - **1.1** Let the *right-most* node at *Level h* be *n*.
 - **1.2** Replace the **root**'s entry by **n**'s entry.
 - **1.3** Delete *n*.

After steps 1.1 - 1.3, the *structural property* is maintained.

- 2. Restore **HOP** using *Down-Heap Bubbling*:
 - **2.1** Let **p** be the **root**.
 - **2.2** While **HOP** is not restored and **p** is not external:
 - 2.2.1 IF p has no right child, let c be p's left child.
 - **Else**, let **c** be **p**'s child with a **smaller key value**.
 - **2.2.2** If $key(p) \le key(c)$, then HOP is restored.

Else, swap nodes **p** and **c**.

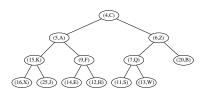
["downwards" along a root-to-leaf path]

Running Time?

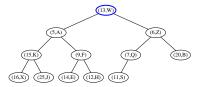
- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
- Step 2.2 may be executed up to O(h) (or O(log n)) times.

Updating a Heap: Deletion Example (1.1)

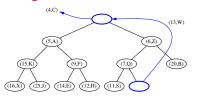
(0) Start with a heap with height 3.



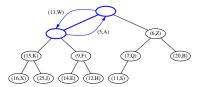
(2) (13, *W*) becomes the root. Perform *down-heap bubbling* from here.



(1) Replace root with (13, W) and delete **right-most** node from Level 3.



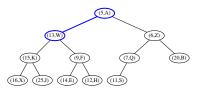
(3) Child with smaller key is (5, A). **HOP** violated :: 13 > 5 :: Swap.



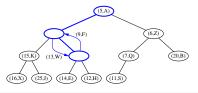
LASSONDE SCHOOL OF ENGINEERING

Updating a Heap: Deletion Example (1.2)

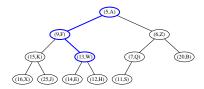
(4) After swap, entry (13, *W*) demoted down.



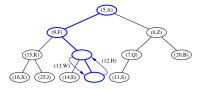
(5) Child with smaller key is (9, F). **HOP** violated :: 13 > 9 :: Swap.



(6) After swap, entry (13, *W*) demoted down.

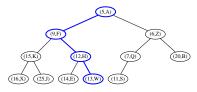


(7) Child with smaller key is (12, H). **HOP** violated $\because 13 > 12 \therefore$ Swap.



Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13, W) becomes an external node \therefore Done.



Heap-Based Implementation of a PQ

Heap Operation	RT
root	O(1)
insert then up-heap bubbling	O(log n)
delete then down-heap bubbling	O(log n)
	root insert then up-heap bubbling

Learning Outcomes of this Lecture

What is a Priority Queue?

The Priority Queue (PQ) ADT

Heaps

BT Terminology: Complete BTs

BT Terminology: Full BTs

Heap Property 1: Structural

Heap Property 2: Relational

Heaps: More Examples

Heap Operations

Updating a Heap: Insertion

20 of 21

Index (2)

Updating a Heap: Insertion Example (1.1)

Updating a Heap: Insertion Example (1.2)

Updating a Heap: Deletion

Updating a Heap: Deletion Example (1.1)

Updating a Heap: Deletion Example (1.2)

Updating a Heap: Deletion Example (1.3)

Heap-Based Implementation of a PQ