Priority Queues ADT and Heaps

EECS3101 E:
Design and Analysis of Algorithms
YORK [} 2025
UNIVER
UNIV S

SITE .
Ty CHEN-WFI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Outcomes of this Lecture

This module is designed to help you understand:

e The Priority Queue (PQ) ADT

e The Heap Data Structure (Properties & Operations)
e Time Complexities of Heap-Based PQ

I

What is a Priority Queue?

e A Priority Queue (PQ) stores a collection of entries.

insert o Each entry is a pair: an
remove element and its key.

o The key of each entry denotes
(6,e1) | 3,2 | (9,e3) | (3, ed) | (1,85 | (2 €6) its element’s “priority”.
o Keys in a Priority Queue (PQ)
are not used for uniquely

Entry with Highest Priority identifying an entry.

e In a PQ, the next entry to remove has the “highest” priority.
o e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher
priority to replace any cancelled seats.
o e.g., A network router, faced with insufficient bandwidth, may only handle real-time
tasks (e.g., streaming) with highest priorities.
o e.g., When performing Dijkstra’s shortest path algorithm on a weighted graph, the

vertex with the minimum D value gets the highest priority to be visited next.

_

The Priority Queue (PQ) ADT LASSONDE

e min

[precondition: PQ is not empty]

[postcondition: return entry with highest priority in PQ]
* size

[precondition: none]

[postcondition: return number of entries inserted to PQ]

isEmpty

[precondition: none]

[postcondition: return whether there is no entry in PQ]
insert(k, v)

[precondition: PQ is not full]

[postcondition: insert the input entry into PQ]
removeMin

[precondition: PQ is not empty]

[postcondition: remove and return a min entry in PQ]

I

Heaps LASSONDE

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

2. Satisfies a structural property of tree organization
3. Satisfies a relational property of stored keys

BT Terminology: Complete BTs

et ae o

A binary tree with height his considered as complete if:
¢ Nodes with depth < h -2 has two children.

¢ Nodes with depth h-1 may have zero, one, or two child nodes.
e Children of nodes with depth h -1 are filled from left to right.

Q1: Minimum # of nodes of a complete BT? (20 —-1)+1 =2"

Q2: Maximum # of nodes of a complete BT? 21 1

BT Terminology: Full BTs LASSONDE

A binary tree with height his considered as full if:
Each node with depth < h- 1 has two child nodes.
That is, all leaves are with the same depth h.

Q1: Minimum # of nodes of a complete BT? 21 — 1

Q2: Maximum # of nodes of a complete BT? 21 — 1

Heap Property 1: Structural

A heap with height h satisfies the Complete BT Property :

o Nodes with depth < h — 2 has two child nodes.
o Nodes with depth h - 1 may have zero, one, or two child nodes.
o Nodes with depth h are filled from left to right.

Q. When the # of nodes is n, what is h? [logan|
Q. # of nodes from Level 0 through Level h—1? 2h 1
Q. # of nodes at Level h? n-(2"-1)
Q. Minimum # of nodes of a complete BT? 2h
Q. Maximum # of nodes of a complete BT? 2h+1 _ 4

H
=)
N

Heap Property 2: Relational

Keysina heap satisfy the Heap-Order Property :

o Every node n (other than the root) is s.t. key(n) > key(parent(n))
= Keys in a root-to-leaf path are sorted in a non-descending order.
e.g., Keys in entry path ((4, C), (5,A),(9,F), (14,E)) are sorted.
= The minimal key is stored in the root.
e.g., Root (4, C) stores the minimal key 4.
o Keys of nodes from different subtrees are not constrained at all.
e.g., For node (5, A), key of its LST’s root (15) is not minimal for its RST.

Heaps: More Examples LASSONDE

e The smallest heap is just an empty binary tree.
e The smallest non-empty heap is a one-node heap.

e.g., @

e Two-node and Three-node Heaps:

() ()
O IOION NONO,
¢ These are not two-node heaps:

O (2

relational property violated || structural property violated

I

Heap Operations

e There are three main operations for a heap :
1. Extract the Entry with Minimal Key:

Return the stored entry of the roof. [O(1)]
2. Insert a New Entry:

A single root-to-leaf path is affected. [O(h) or O(log n)]
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected. [O(h) or O(log n)]

o After performing each operation,
both relational and structural properties must be maintained.

1 o) A

I

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with height h:
1. Insert (k, v), possibly temporarily breaking the relational property.
1.1 Create a new entry e = (k, v).
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.
After steps 1.1 and 1.2, the structural property is maintained.

2. Restore the heap-order property (HOP) using Up-Heap Bubbling :

21 Letc=n.

2.2 While HOP is not restored and c is not the root:
2.2.1 Let p be c’s parent.
2.2.2 If key(p) < key(c), then HOP is restored.

Else, swap nodes ¢ and p. [“upwards” along n’s ancestor path]

Running Time?
o All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
o Step 2.2 may be executed up to O(h) (or O(log n)) times.

[O(logn)]

1WA A

I

Updating a Heap: Insertion Example (1.1) [sono:

(0) A heap with height 3. (1) Insert a new entry (2, T)
as the right-most node at Level 3.

Perform up-heap bubbling from here.

I

Updating a Heap: Insertion Example (1.2) |sono:

(4) HOP violated -.- 2 < 6 .. Swap. (5) After swap, entry (2, T) prompted up.

1V W) VA

I

Updating a Heap: Deletion

To delete the root (with the minimal key) from a heap with height h:
1. Delete the root, possibly temporarily breaking HOP.
1.1 Let the right-most node at Level h be n.
1.2 Replace the root’s entry by n’s entry.
1.3 Delete n.
After steps 1.1 — 1.3, the siructural property is maintained.

2. Restore HOP using Down-Heap Bubbling :

2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:
2.2.1 |IF p has no right child, let ¢ be p’s left child.
Else, let ¢ be p’s child with a smaller key value.
2.2.2 If key(p) < key(c), then HOP is restored.
Else, swap nodes p and c. [“downwards” along a root-to-leaf path]

Running Time?
o All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
o Step 2.2 may be executed up to O(h) (or O(log n)) times.

[O(logn) 1

1WA

Updating a Heap: Deletion Example (1.1) |isson:

(0) Start with a heap with height 3. (1) Replace root with (13, W) and delete
right-most node from Level 3.

(2) (13, W) becomes the root. Perform | (3) Child with smaller key is (5, A).
down-heap bubbling from here. HOP violated - 13 > 5 .. Swap.

-
Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13, W)
demoted down.

.
) D,
G @D @ @5
@ @D @ @ @

(5) Child with smaller key is (9, F).
HOP violated -.- 13 > 9 .. Swap.

(6) After swap, entry (13, W)
demoted down.

G
D, @Dy
GE) G G @5
@ @D @D @D @D

1WA A

(7) Child with smaller key is (12, H).
HOP violated -.- 13 > 12 .. Swap.

I

Updating a Heap: Deletion Example (1.3) |asson:

(8) After swap, entry (13, W) becomes an external node .. Done.
@D,

D, (62
@G @D CD @s)
@G @D @D G @D

15 o1 o

I

Heap-Based Implementation of a PQ
PQ Method | Heap Operation RT
min root 0O(1)
insert insert then up-heap bubbling O(log n)
removeMin | delete then down-heap bubbling O(log n)

19 o1 J

Index (1)

[Cearning Oufcomes of this Lecturd
[Whatis a Priority Queue?
[The Priorty Queue (PQ] ADT]
BT Terminology: Complete BTS|
BT Terminology: Full BT§

eap rFroperty 1: structura

eap Froperty <: helationa
[Heaps: WMore Examples|

Heap Operations
Dpaahng a Heap: Inserfion

211 Ne) A

Index (2)

[Opdating a Heap: Insertion Example (1.1)
[Updating a Heap: Inserfion Example (1.2}
[UOpdating a Heap: Delefion|

[Opdating a Heap: Delefion Example (1.1)
[Opdating a Heap: Delefion Example (1.2)

E§§a!m§ a Heap: Deletion Example (1.3)
[Heap-Based Tmplementation of a PQ

21 ot

	Learning Outcomes of this Lecture
	What is a Priority Queue?
	The Priority Queue (PQ) ADT
	Heaps
	BT Terminology: Complete BTs
	BT Terminology: Full BTs
	Heap Property 1: Structural
	Heap Property 2: Relational
	Heaps: More Examples
	Heap Operations
	Updating a Heap: Insertion
	Updating a Heap: Insertion Example (1.1)
	Updating a Heap: Insertion Example (1.2)
	Updating a Heap: Deletion
	Updating a Heap: Deletion Example (1.1)
	Updating a Heap: Deletion Example (1.2)
	Updating a Heap: Deletion Example (1.3)
	Heap-Based Implementation of a PQ

