
Priority Queues ADT and Heaps

EECS3101 E:
Design and Analysis of Algorithms

Fall 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you understand:
● The Priority Queue (PQ) ADT
● The Heap Data Structure (Properties & Operations)
● Time Complexities of Heap-Based PQ

2 of 21

What is a Priority Queue?
● A Priority Queue (PQ) stores a collection of entries.

(6, e1) (3, e2) (9, e3) (3, e4) (1, e5) (2, e6)

Entry with Highest Priority

insert

remove

○ Each entry is a pair: an
element and its key .

○ The key of each entry denotes
its element ’s “priority”.

○ Keys in a Priority Queue (PQ)
are not used for uniquely
identifying an entry.

● In a PQ, the next entry to remove has the “highest” priority.
○ e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher

priority to replace any cancelled seats.
○ e.g., A network router, faced with insufficient bandwidth, may only handle real-time

tasks (e.g., streaming) with highest priorities.
○ e.g., When performing Dijkstra’s shortest path algorithm on a weighted graph, the

vertex with the minimum D value gets the highest priority to be visited next.
3 of 21

The Priority Queue (PQ) ADT
● min

[precondition: PQ is not empty]
[postcondition: return entry with highest priority in PQ]

● size
[precondition: none]
[postcondition: return number of entries inserted to PQ]

● isEmpty
[precondition: none]
[postcondition: return whether there is no entry in PQ]

● insert(k, v)
[precondition: PQ is not full]
[postcondition: insert the input entry into PQ]

● removeMin
[precondition: PQ is not empty]
[postcondition: remove and return a min entry in PQ]

4 of 21

Heaps

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

2. Satisfies a structural property of tree organization
3. Satisfies a relational property of stored keys

5 of 21

BT Terminology: Complete BTs
A binary tree with height h is considered as complete if:
● Nodes with depth ≤ h − 2 has two children.
● Nodes with depth h − 1 may have zero, one, or two child nodes.
● Children of nodes with depth h − 1 are filled from left to right.

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? (2h −1)+1 = 2h

Q2: Maximum # of nodes of a complete BT? 2h+1 − 1
6 of 21

BT Terminology: Full BTs
A binary tree with height h is considered as full if:

Each node with depth ≤ h − 1 has two child nodes.
That is, all leaves are with the same depth h.

9

Tree ADT (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes,
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere
between a full binary tree of height h and a full

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? 2h+1 − 1
Q2: Maximum # of nodes of a complete BT? 2h+1 − 1

7 of 21

Heap Property 1: Structural

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

A heap with height h satisfies the Complete BT Property :
○ Nodes with depth ≤ h − 2 has two child nodes.
○ Nodes with depth h - 1 may have zero, one, or two child nodes.
○ Nodes with depth h are filled from left to right.

Q. When the # of nodes is n, what is h? ⌊log2n⌋
Q. # of nodes from Level 0 through Level h − 1? 2h

− 1
Q. # of nodes at Level h? n − (2h

− 1)
Q. Minimum # of nodes of a complete BT? 2h

Q. Maximum # of nodes of a complete BT? 2h+1
− 1

8 of 21

Heap Property 2: Relational

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

Keys in a heap satisfy the Heap-Order Property :
○ Every node n (other than the root) is s.t. key(n) ≥ key(parent(n))
⇒ Keys in a root-to-leaf path are sorted in a non-descending order.

e.g., Keys in entry path ⟨(4,C), (5,A), (9,F), (14,E)⟩ are sorted.
⇒ The minimal key is stored in the root .

e.g., Root (4,C) stores the minimal key 4.
○ Keys of nodes from different subtrees are not constrained at all.

e.g., For node (5,A), key of its LST ’s root (15) is not minimal for its RST .
9 of 21

Heaps: More Examples
● The smallest heap is just an empty binary tree.
● The smallest non-empty heap is a one-node heap.

e.g.,

4

● Two-node and Three-node Heaps:
4

6

4

6 8

4

8 6

● These are not two-node heaps:

6

4

4

6

relational property violated structural property violated
10 of 21

Heap Operations

● There are three main operations for a heap :
1. Extract the Entry with Minimal Key:

Return the stored entry of the root . [O(1)]
2. Insert a New Entry:

A single root-to-leaf path is affected. [O(h) or O(log n)]
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected. [O(h) or O(log n)]

● After performing each operation,
both relational and structural properties must be maintained.

11 of 21

Updating a Heap: Insertion
To insert a new entry (k ,v) into a heap with height h:
1. Insert (k , v), possibly temporarily breaking the relational property .

1.1 Create a new entry e = (k , v).
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.

After steps 1.1 and 1.2, the structural property is maintained.

2. Restore the heap-order property (HOP) using Up-Heap Bubbling :

2.1 Let c = n.
2.2 While HOP is not restored and c is not the root:

2.2.1 Let p be c’s parent.
2.2.2 If key(p) ≤ key(c), then HOP is restored.

Else, swap nodes c and p. [“upwards” along n’s ancestor path]

Running Time?
○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
○ Step 2.2 may be executed up to O(h) (or O(log n)) times.

[O(log n)]
12 of 21

Updating a Heap: Insertion Example (1.1)
(0) A heap with height 3. (1) Insert a new entry (2,T)

as the right-most node at Level 3.
Perform up-heap bubbling from here.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

(2) HOP violated ∵ 2 < 20 ∴ Swap. (3) After swap, entry (2,T) prompted up.

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)

13 of 21

Updating a Heap: Insertion Example (1.2)

(4) HOP violated ∵ 2 < 6 ∴ Swap. (5) After swap, entry (2,T) prompted up.

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

(6) HOP violated ∵ 2 < 4 ∴ Swap. (7) Entry (2,T) becomes root ∴ Done.

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

14 of 21

Updating a Heap: Deletion
To delete the root (with the minimal key) from a heap with height h:
1. Delete the root, possibly temporarily breaking HOP.

1.1 Let the right-most node at Level h be n.
1.2 Replace the root’s entry by n’s entry.
1.3 Delete n.

After steps 1.1 – 1.3, the structural property is maintained.

2. Restore HOP using Down-Heap Bubbling :

2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:

2.2.1 IF p has no right child, let c be p’s left child .
Else, let c be p’s child with a smaller key value.

2.2.2 If key(p) ≤ key(c), then HOP is restored.
Else, swap nodes p and c. [“downwards” along a root-to-leaf path]

Running Time?
○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
○ Step 2.2 may be executed up to O(h) (or O(log n)) times.

[O(log n)]
15 of 21

Updating a Heap: Deletion Example (1.1)
(0) Start with a heap with height 3. (1) Replace root with (13,W) and delete

right-most node from Level 3.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)
(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

(2) (13,W) becomes the root. Perform (3) Child with smaller key is (5,A).
down-heap bubbling from here. HOP violated ∵ 13 > 5 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z)

16 of 21

Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13,W) (5) Child with smaller key is (9,F).
demoted down. HOP violated ∵ 13 > 9 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

(6) After swap, entry (13,W) (7) Child with smaller key is (12,H).
demoted down. HOP violated ∵ 13 > 12 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)

17 of 21

Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13,W) becomes an external node ∴ Done.

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)

18 of 21

Heap-Based Implementation of a PQ

PQ Method Heap Operation RT
min root O(1)

insert insert then up-heap bubbling O(log n)
removeMin delete then down-heap bubbling O(log n)

19 of 21

Index (1)

Learning Outcomes of this Lecture

What is a Priority Queue?

The Priority Queue (PQ) ADT

Heaps

BT Terminology: Complete BTs

BT Terminology: Full BTs

Heap Property 1: Structural

Heap Property 2: Relational

Heaps: More Examples

Heap Operations

Updating a Heap: Insertion
20 of 21

Index (2)
Updating a Heap: Insertion Example (1.1)

Updating a Heap: Insertion Example (1.2)

Updating a Heap: Deletion

Updating a Heap: Deletion Example (1.1)

Updating a Heap: Deletion Example (1.2)

Updating a Heap: Deletion Example (1.3)

Heap-Based Implementation of a PQ

21 of 21

	Learning Outcomes of this Lecture
	What is a Priority Queue?
	The Priority Queue (PQ) ADT
	Heaps
	BT Terminology: Complete BTs
	BT Terminology: Full BTs
	Heap Property 1: Structural
	Heap Property 2: Relational
	Heaps: More Examples
	Heap Operations
	Updating a Heap: Insertion
	Updating a Heap: Insertion Example (1.1)
	Updating a Heap: Insertion Example (1.2)
	Updating a Heap: Deletion
	Updating a Heap: Deletion Example (1.1)
	Updating a Heap: Deletion Example (1.2)
	Updating a Heap: Deletion Example (1.3)
	Heap-Based Implementation of a PQ

