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Learning Outcomes of this Lecture

This module is designed to help you understand:
● The Priority Queue ( PQ ) ADT
● The Heap Data Structure (Properties & Operations)
● Time Complexities of Heap-Based PQ
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What is a Priority Queue?
● A Priority Queue (PQ) stores a collection of entries.

(6, e1) (3, e2) (9, e3) (3, e4) (1, e5) (2, e6)

Entry with Highest Priority

insert

remove

○ Each entry is a pair: an
element and its key .

○ The key of each entry denotes
its element ’s “priority”.

○ Keys in a Priority Queue (PQ)
are not used for uniquely
identifying an entry.

● In a PQ, the next entry to remove has the “highest” priority.
○ e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher

priority to replace any cancelled seats.
○ e.g., A network router, faced with insufficient bandwidth, may only handle real-time

tasks (e.g., streaming) with highest priorities.
○ e.g., When performing Dijkstra’s shortest path algorithm on a weighted graph, the

vertex with the minimum D value gets the highest priority to be visited next.
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The Priority Queue (PQ) ADT
● min

[ precondition: PQ is not empty ]
[ postcondition: return entry with highest priority in PQ ]

● size
[ precondition: none ]
[ postcondition: return number of entries inserted to PQ ]

● isEmpty
[ precondition: none ]
[ postcondition: return whether there is no entry in PQ ]

● insert(k, v)
[ precondition: PQ is not full ]
[ postcondition: insert the input entry into PQ ]

● removeMin
[ precondition: PQ is not empty ]
[ postcondition: remove and return a min entry in PQ ]
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Heaps

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

2. Satisfies a structural property of tree organization
3. Satisfies a relational property of stored keys
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BT Terminology: Complete BTs
A binary tree with height h is considered as complete if:
● Nodes with depth ≤ h − 2 has two children.
● Nodes with depth h − 1 may have zero, one, or two child nodes.
● Children of nodes with depth h − 1 are filled from left to right.

9

Tree ADT   (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes, 
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere 
between a full binary tree of height h and a full 

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? (2h −1)+1 = 2h

Q2: Maximum # of nodes of a complete BT? 2h+1 − 1
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BT Terminology: Full BTs
A binary tree with height h is considered as full if:

Each node with depth ≤ h − 1 has two child nodes.
That is, all leaves are with the same depth h.

9

Tree ADT   (cont.)

Complete Binary TreeComplete Binary Tree – binary tree that is completely filled, with the
possible exception of the bottom level, which
is filled from left to right

A

B C

D E F G

H I J K L M N O

Full Binary TreeFull Binary Tree – completely filled binary tree, with no missing nodes, 
i.e. all leaves are at level h, and all other nodes have
two children

A

B C

D E F G

H I J

full binary treecomplete binary tree

(complete binary tree of height h is somewhere 
between a full binary tree of height h and a full 

binary tree of height (h-1))

Q1: Minimum # of nodes of a complete BT? 2h+1 − 1
Q2: Maximum # of nodes of a complete BT? 2h+1 − 1
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Heap Property 1: Structural

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

A heap with height h satisfies the Complete BT Property :
○ Nodes with depth ≤ h − 2 has two child nodes.
○ Nodes with depth h - 1 may have zero, one, or two child nodes.
○ Nodes with depth h are filled from left to right.

Q. When the # of nodes is n, what is h? ⌊log2n⌋
Q. # of nodes from Level 0 through Level h − 1? 2h

− 1
Q. # of nodes at Level h? n − (2h

− 1)
Q. Minimum # of nodes of a complete BT? 2h

Q. Maximum # of nodes of a complete BT? 2h+1
− 1
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Heap Property 2: Relational

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

Keys in a heap satisfy the Heap-Order Property :
○ Every node n (other than the root) is s.t. key(n) ≥ key(parent(n))
⇒ Keys in a root-to-leaf path are sorted in a non-descending order.

e.g., Keys in entry path ⟨(4,C), (5,A), (9,F), (14,E)⟩ are sorted.
⇒ The minimal key is stored in the root .

e.g., Root (4,C) stores the minimal key 4.
○ Keys of nodes from different subtrees are not constrained at all.

e.g., For node (5,A), key of its LST ’s root (15) is not minimal for its RST .
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Heaps: More Examples
● The smallest heap is just an empty binary tree.
● The smallest non-empty heap is a one-node heap.

e.g.,

4

● Two-node and Three-node Heaps:
4

6

4

6 8

4

8 6

● These are not two-node heaps:

6

4

4

6

relational property violated structural property violated
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Heap Operations

● There are three main operations for a heap :
1. Extract the Entry with Minimal Key:

Return the stored entry of the root . [ O(1) ]
2. Insert a New Entry:

A single root-to-leaf path is affected. [ O(h) or O(log n) ]
3. Delete the Entry with Minimal Key:

A single root-to-leaf path is affected. [ O(h) or O(log n) ]

● After performing each operation,
both relational and structural properties must be maintained.
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Updating a Heap: Insertion
To insert a new entry (k ,v) into a heap with height h:
1. Insert (k , v), possibly temporarily breaking the relational property .

1.1 Create a new entry e = (k , v).
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.

After steps 1.1 and 1.2, the structural property is maintained.

2. Restore the heap-order property (HOP) using Up-Heap Bubbling :

2.1 Let c = n.
2.2 While HOP is not restored and c is not the root:

2.2.1 Let p be c’s parent.
2.2.2 If key(p) ≤ key(c), then HOP is restored.

Else, swap nodes c and p. [ “upwards” along n’s ancestor path ]

Running Time?
○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
○ Step 2.2 may be executed up to O(h) (or O(log n)) times.

[ O(log n) ]
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Updating a Heap: Insertion Example (1.1)
(0) A heap with height 3. (1) Insert a new entry (2,T )

as the right-most node at Level 3.
Perform up-heap bubbling from here.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

(2) HOP violated ∵ 2 < 20 ∴ Swap. (3) After swap, entry (2,T ) prompted up.

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)
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Updating a Heap: Insertion Example (1.2)

(4) HOP violated ∵ 2 < 6 ∴ Swap. (5) After swap, entry (2,T ) prompted up.

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

(6) HOP violated ∵ 2 < 4 ∴ Swap. (7) Entry (2,T ) becomes root ∴ Done.

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)
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Updating a Heap: Deletion
To delete the root (with the minimal key) from a heap with height h:
1. Delete the root, possibly temporarily breaking HOP.

1.1 Let the right-most node at Level h be n.
1.2 Replace the root’s entry by n’s entry.
1.3 Delete n.

After steps 1.1 – 1.3, the structural property is maintained.

2. Restore HOP using Down-Heap Bubbling :

2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:

2.2.1 IF p has no right child, let c be p’s left child .
Else, let c be p’s child with a smaller key value.

2.2.2 If key(p) ≤ key(c), then HOP is restored.
Else, swap nodes p and c. [ “downwards” along a root-to-leaf path ]

Running Time?
○ All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
○ Step 2.2 may be executed up to O(h) (or O(log n)) times.

[ O(log n) ]
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Updating a Heap: Deletion Example (1.1)
(0) Start with a heap with height 3. (1) Replace root with (13,W) and delete

right-most node from Level 3.

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)
(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

(2) (13,W ) becomes the root. Perform (3) Child with smaller key is (5,A).
down-heap bubbling from here. HOP violated ∵ 13 > 5 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z)
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Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13,W) (5) Child with smaller key is (9,F).
demoted down. HOP violated ∵ 13 > 9 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

(6) After swap, entry (13,W) (7) Child with smaller key is (12,H).
demoted down. HOP violated ∵ 13 > 12 ∴ Swap.

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)
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Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13,W) becomes an external node ∴ Done.

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)
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Heap-Based Implementation of a PQ

PQ Method Heap Operation RT
min root O(1)

insert insert then up-heap bubbling O(log n)
removeMin delete then down-heap bubbling O(log n)
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