Priority Queues ADT and Heaps

EECS3101 E:
Design and Analysis of Algorithms
YORKJ I Pl 202
32:&52::15 CHEN-WEI WANG
Learning Outcomes of this Lecture LASSONDE

This module is designed to help you understand:

e The Priority Queue (PQ) ADT

e The Heap Data Structure (Properties & Operations)
e Time Complexities of Heap-Based PQ

What is a Priority Queue? LASSONDE

ooooooooooooooooo

e A Priority Queue (PQ) stores a collection of entries.

insert o Each entry is a pair: an
remove element and its key.

o The key of each entry denotes
6, e1) its element’s “priority”.

(3, e2) (9, e3) (3, ed) (1, e5) (2, e6)

are not used for uniquely
identifying an entry.

I o Keys in a Priority Queue (PQ)

Entry with Highest Priority

¢ In a PQ, the next entry to remove has the “highest” priority.
o e.g., Inthe stand-by queue of a fully-booked flight, frequent flyers get the higher
priority to replace any cancelled seats.
o e.g., A network router, faced with insufficient bandwidth, may only handle real-time
tasks (e.g., streaming) with highest priorities.
o e.g., When performing Dijkstra’s shortest path algorithm on a weighted graph, the

vertex with the minimum D value gets the highest priority to be visited next.

The Priority Queue (PQ) ADT o

ooooooooooooooooo

e min

[precondition: PQ is not empty]

[postcondition: return entry with highest priority in PQ]
* size

[precondition: none]

[postcondition: return number of entries inserted to PQ]
e isEmpty

[precondition: none]

[postcondition: return whether there is no entry in PQ]

insert(k, v)

[precondition: PQ is not full]

[postcondition: insert the input entry into PQ]
removelMin

[precondition: PQ is not empty]

[postcondition: remove and return a min entry in PQ]

I —
| —

Heaps LASSONDE BT Terminology: Full BTs LASSONDE

A binary tree with height h is considered as full if:
Each node with depth < h -1 has two child nodes.
That is, all leaves are with the same depth h.

A heap is a binary tree which:

1. Stores in each node an entry (i.e., key and value).

2. Satisfies a structural property of tree organization Q1: Minimum # of nodes of a complete BT? 211
3. Satisfies a relational property of stored keys Q2: Maximum # of nodes of a complete BT? oh+l _ 4

S——— 2 ms=a 00000

BT Terminology: Complete BTs LASSONDE Heap Property 1: Structural LASSONDE
A binary tree with height h is considered as complete if:

¢ Nodes with depth < h- 2 has two children.

¢ Nodes with depth h—1 may have zero, one, or two child nodes.
e Children of nodes with depth h -1 are filled from left to right.

Nodes with depth < h — 2 has two child nodes.
Nodes with depth h - 1 may have zero, one, or two child nodes.
o Nodes with depth h are filled from left to right.

A heap with height h satisfies the Complete BT Property :
]
o

Q. When the # of nodes is n, what is h? [logan)|
Q. # of nodes from Level 0 through Level h—17? 2h 1

h
. Mini n h_ _»oh Q. # of nodes at Level h? n-(2"-1)
Q1: Minimum # of nodes of a complete BT? (2"-1)+1=2 Q. Minimum # of nodes of a complete BT? o
Q2: Maximum # of nodes of a complete BT? 21 _1 Q. Maximum # of nodes of a complete BT? 2h+1 _

LASSONDE

ooooooooooooooooo

Heap Property 2: Relational

Keys in a heap satisfy the Heap-Order Property :
o Every node n (other than the root) is s.t. key(n) > key(parent(n))

= Keys in a root-to-leaf path are sorted in a non-descending order.

e.g., Keys in entry path ((4, C), (5,A), (9, F), (14,E)) are sorted.
= The minimal key is stored in the root.
e.g., Root (4, C) stores the minimal key 4.
o Keys of nodes from different subtrees are not constrained at all.
e.g., For node (5, A), key of its LST’s root (15) is not minimal for its RST.

LASSONDE

ooooooooooooooooo

Heaps: More Examples
e The smallest heap is just an empty binary tree.

e The smallest non-empty heap is a one-node heap.

e.g., @

¢ Two-node and Three-node Heaps:

These are not two-node heaps:

5

relational property violated || structural property violated
oot 21l

LASSONDE

ooooooooooooooooo

Heap Operations

e There are three main operations for a heap :

1. Extract the Entry with Minimal Key:
Return the stored entry of the root.
2. Insert a New Entry:
A single root-to-leaf path is affected.
3. Delete the Entry with Minimal Key:
A single root-to-leaf path is affected.

o After performing each operation,
both relational and structural properties must be maintained.

[O(1)]
[O(h) or O(log n)]

[O(h) or O(log n)

LASSONDE

ooooooooooooooooo

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with height h:
1. Insert (k, v), possibly temporarily breaking the relational property.
1.1 Create a new entry e = (k, v).
1.2 Create a new right-most node n at Level h.
1.3 Store entry e in node n.
After steps 1.1 and 1.2, the structural property is maintained.

2. Restore the heap-order property (HOP) using Up-Heap Bubbling :

21 Letc=n.
2.2 While HOP is not restored and c is not the root:
2.2.1 Let p be c’s parent.
2.2.2 If key(p) < key(c), then HOP is restored.
Else, swap nodes ¢ and p.

Running Time?
o All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
o Step 2.2 may be executed up to O(h) (or O(log n)) times.

[“upwards” along n’s ancestor path]

[Oflogn)]

Updating a Heap: Insertion Example (1.1)

LASSONDE

ooooooooooooooooo

(0) A heap with height 3. (1) Insert anew entry (2, T)

as the right-most node at Level 3.
Perform up-heap bubbling from here.

Updating a Heap: Insertion Example (1.2)

LASSONDE

ooooooooooooooooo

(4) HOP violated - 2 < 6 .. Swap. (5) After swap, entry (2, T) prompted up.

Updating a Heap: Deletion LASSONDE

ooooooooooooooooo

To delete the root (with the minimal key) from a heap with height h:
1. Delete the root, possibly temporarily breaking HOP.
1.1 Let the right-most node at Level h be n.
1.2 Replace the root’s entry by n’s entry.
1.3 Delete n.
After steps 1.1 — 1.3, the structural property is maintained.
2. Restore HOP using Down-Heap Bubbling :

2.1 Let p be the root.
2.2 While HOP is not restored and p is not external:
2.2.1 IF p has no right child, let ¢ be p’s left child.
Else, let ¢ be p’s child with a smaller key value.
2.2.2 If key(p) < key(c), then HOP is restored.
Else, swap nodes p and c. [“downwards” along a root-to-leaf path]

Running Time?
o All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
o Step 2.2 may be executed up to O(h) (or O(log n)) times.

[Oflogn)]

Updating a Heap: Deletion Example (1.1) |.assonce

ooooooooooooooooo

(0) Start with a heap with height 3. (1) Replace root with (13, W) and delete
right-most node from Level 3.

(2) (13, W) becomes the root. Perform | (3) Child with smaller key is (5, A).
down-heap bubbling from here. HOP violated -- 13 > 5 .. Swap.

@G
D) oz
G D @ @35
@ @D @ @D @

Updating a Heap: Deletion Example (1.2) |.ssonoe Heap-Based Implementation of a PQ LASSONDE
(4) After swap, entry (13, W) (5) Child with smaller key is (9, F).
demoted down. HOP violated - 13 > 9 .. Swap.
.
) G620
G D) D) D) PQ Method | Heap Operation RT
min root 0o(1)
@ @D @D @ insert insert then up-heap bubbling O(log n)
(6) After swap, entry (13, W) (7) Child with smaller key is (12, H). removeMin | delete then down-heap bubbling O(log n)
demoted down. HOP violated - 13 > 12 .". Swap.
@,

@, ez
@£ G G (@)
@D @D @ @D @

Updating a Heap: Deletion Example (1.3) |.assonce Index (1) s

oooooooooooooooooooooooooooooooooo

|[Learning Outcomes of this Lecture|

(What is a Priority Queue?|

(8) After swap, en(137 W) becomes an external node .. Done. The Priority Queue (PQ) ADT
s .
BT Terminology: Complete BTs|

G e G @

@ @D @D D @D BT Terminology: Full BTs

[Heap Property 1: Structural|

[Heap Property 2: Relationall

|[Heaps: More Examples|

[Heap Operations|

|Updating a Heap: Insertion|

Index (2)

LSSoNDE

(Updating a Heap:

Insertion Example (1.1)|

|Updating a Heap:

Insertion Example (1.2)|

|Updating a Heap:

Deletion|

|Updating a Heap:

Deletion Example (1.1)|

|Updating a Heap:

Deletion Example (1.2)|

|Updating a Heap:

Deletion Example (1.3)|

|Heap-Based Implementation of a PQ|

21 of 21

