Priority Queues ADT and Heaps

EECS3101 E:
Design and Analysis of Algorithms
Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

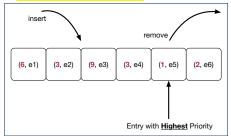
This module is designed to help you understand:

- The **Priority Queue** (**PQ**) ADT
- The *Heap* Data Structure (Properties & Operations)
- Time Complexities of Heap-Based PQ

2 of 21

What is a Priority Queue?

• A **Priority Queue** (**PQ**) stores a collection of **entries**.



- Each entry is a pair: an element and its key.
- The key of each entry denotes its element's "priority".
- Keys in a <u>Priority Queue (PQ)</u> are <u>not</u> used for uniquely identifying an entry.
- In a PQ, the next entry to remove has the "highest" priority.
 - e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher priority to replace any cancelled seats.
 - e.g., A network router, faced with insufficient bandwidth, may only handle real-time tasks (e.g., streaming) with highest priorities.
 - e.g., When performing Dijkstra's shortest path algorithm on a weighted graph, the vertex with the minimum D value gets the highest priority to be visited next.

3 of 21

The Priority Queue (PQ) ADT

• min

[precondition: PQ is not empty]
[postcondition: return entry with highest priority in PQ]

• size

[precondition: none]

[postcondition: return number of entries inserted to PQ]

isEmpty

[precondition: none]

[postcondition: return whether there is no entry in PQ]

• insert(k, v)

[precondition: PQ is not full]

[postcondition: insert the input entry into PQ]

removeMin

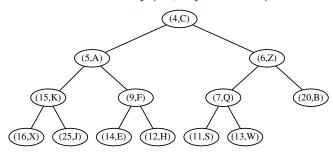
[precondition: PQ is not empty]

[postcondition: remove and return a min entry in PQ]

Heaps

A **heap** is a **binary tree** which:

1. Stores in each node an entry (i.e., key and value).



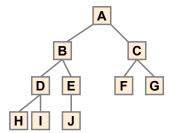
- 2. Satisfies a structural property of tree organization
- 3. Satisfies a *relational* property of stored keys

5 of 21

BT Terminology: Complete BTs

A binary tree with height h is considered as complete if:

- Nodes with $depth \le h 2$ has two children.
- Nodes with *depth* h 1 may have <u>zero</u>, <u>one</u>, or <u>two</u> child nodes.
- *Children* of nodes with *depth* h 1 are filled from <u>left to right</u>.



Q1: *Minimum* # of nodes of a *complete* BT? $(2^h - 1) + 1 = 2^h$

Q2: *Maximum* # of nodes of a *complete* BT? $2^{h+1} - \frac{1}{2^{h+1}}$

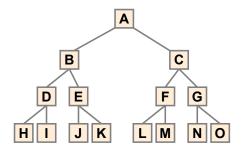
6 of 21

BT Terminology: Full BTs

A binary tree with height h is considered as full if:

Each node with **depth** $\leq h - 1$ has two child nodes.

That is, all *leaves* are with the same *depth h*.

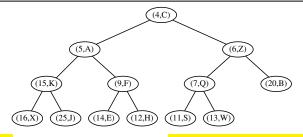


Q1: *Minimum* # of nodes of a complete BT? $2^{h+1} - 1$

Q2: *Maximum* # of nodes of a complete BT? $2^{h+1} - 1$

7 of 21

Heap Property 1: Structural



A **heap** with **height h** satisfies the **Complete BT Property**:

- Nodes with depth ≤ h − 2 has two child nodes.
- Nodes with depth h 1 may have zero, one, or two child nodes.
- Nodes with depth h are filled from left to right.

Q. When the # of nodes is *n*, what is *h*?

 \mathbf{Q} . # of nodes from Level 0 through Level h-1?

Q. # of nodes at Level h?

Q. Minimum # of nodes of a complete BT?

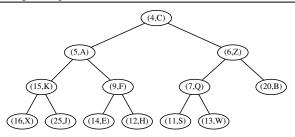
Q. Maximum # of nodes of a complete BT?

 $\begin{array}{c} n-(2^h-1) \\ 2^h \end{array}$

log₂n

2h+1 - 1

Heap Property 2: Relational



Keys in a heap satisfy the Heap-Order Property:

- Every node n (other than the root) is s.t. $key(n) \ge key(parent(n))$
 - \Rightarrow Keys in a root-to-leaf path are sorted in a non-descending order. e.g., Keys in entry path ((4, C), (5, A), (9, F), (14, E)) are sorted.
 - ⇒ The *minimal key* is stored in the *root*.

e.g., Root (4, C) stores the minimal key 4.

Keys of nodes from different subtrees are <u>not</u> constrained at all.

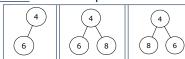
e.g., For node (5, A), key of its **LST**'s root (15) is not minimal for its **RST**.

9 of 21

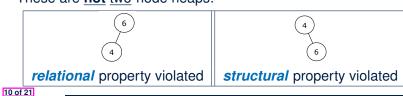
Heaps: More Examples

- The *smallest* heap is just an empty binary tree.
- The smallest non-empty heap is a one-node heap.
 e.g.,

<u>Two</u>-node and <u>Three</u>-node Heaps:



• These are **not** two-node heaps:



Heap Operations

• There are three main operations for a **heap**:

1. Extract the Entry with Minimal Key: Return the stored entry of the *root*.

[O(1)]

2. Insert a New Entry:

A single *root-to-leaf path* is affected. [O(h) or O(log n)]

3. Delete the Entry with Minimal Key:
A single *root-to-leaf path* is affected.

[O(h) or O(log n)]

After performing each operation,

both *relational* and *structural* properties must be maintained.

11 of 21

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with **height h**:

- **1.** Insert (k, v), possibly **temporarily** breaking the *relational property*.
- **1.1** Create a new entry $\mathbf{e} = (k, v)$.
- **1.2** Create a new *right-most* node *n* at *Level h*.
- **1.3** Store entry **e** in node **n**.

After steps 1.1 and 1.2, the structural property is maintained.

- 2. Restore the **heap-order property** (HOP) using Up-Heap Bubbling:
- **2.1** Let c = n.
- **2.2** While **HOP** is not restored and **c** is not the root:
 - **2.2.1** Let **p** be **c**'s parent.
 - **2.2.2** If $key(\mathbf{p}) \leq key(\mathbf{c})$, then **HOP** is restored.

Else, swap nodes c and p. ["upwards" along n's ancestor path]

Running Time?

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take O(1).
- Step 2.2 may be executed up to O(h) (or O(log n)) times.

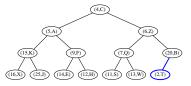
[O(log n)]

Updating a Heap: Insertion Example (1.1)

(0) A heap with height 3.

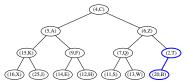
(1) Insert a new entry (2, *T*) as the *right-most* node at Level 3.

Perform *up-heap bubbling* from here.



(2) **HOP** violated : 2 < 20 : Swap.

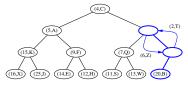
(3) After swap, entry (2, T) prompted up.



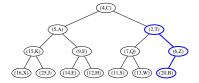
13 of 21

Updating a Heap: Insertion Example (1.2)

(4) **HOP** violated \therefore 2 < 6 \therefore Swap.



(5) After swap, entry (2, T) prompted up.



(6) **HOP** violated \therefore 2 < 4 \therefore Swap.

(7) Entry (2, T) becomes root ∴ Done.

14 of 21

Updating a Heap: Deletion

To delete the **root** (with the **minimal** key) from a heap with **height h**:

- 1. Delete the root, possibly temporarily breaking HOP.
- **1.1** Let the *right-most* node at *Level h* be *n*.
- **1.2** Replace the **root**'s entry by **n**'s entry.
- **1.3** Delete *n*.

After steps 1.1 - 1.3, the **structural property** is maintained.

- 2. Restore **HOP** using *Down-Heap Bubbling*:
 - 2.1 Let p be the root.
 - **2.2** While **HOP** is not restored and **p** is not external:
 - 2.2.1 IF p has no right child, let c be p's left child.

 Else, let c be p's child with a smaller key value.
 - **2.2.2** If $key(p) \le key(c)$, then **HOP** is restored.

Else, swap nodes **p** and **c**. ["downwards" along a **root-to-leaf path**]

Running Time?

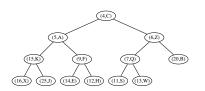
- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take *O(1)*.
- Step 2.2 may be executed up to O(h) (or O(log n)) times.

15 of 21

[O(log n)]

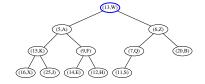
Updating a Heap: Deletion Example (1.1)

(0) Start with a heap with height 3.



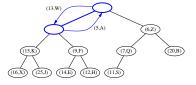
(1) Replace root with (13, *W*) and delete *right-most* node from Level 3.

(2) (13, *W*) becomes the root. Perform down-heap bubbling from here.



(3) Child with smaller key is (5, A).

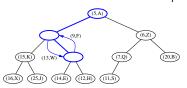
HOP violated $\because 13 > 5 \therefore$ Swap.



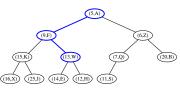
Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13, *W*) demoted down.

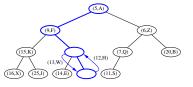
(5) Child with smaller key is (9, F). **HOP** violated $\because 13 > 9 \therefore$ Swap.



(6) After swap, entry (13, W) demoted down.



(7) Child with smaller key is (12, H). **HOP** violated $\because 13 > 12 \therefore$ Swap.



17 of 21

Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13, W) becomes an external node \therefore Done.

Heap-Based Implementation of a PQ

PQ Method	Heap Operation	RT
min	root	O(1)
insert	insert then up-heap bubbling	O(log n)
removeMin	delete then down-heap bubbling	O(log n)

19 of 21

Index (1)

Learning Outcomes of this Lecture

What is a Priority Queue?

The Priority Queue (PQ) ADT

Heaps

BT Terminology: Complete BTs

BT Terminology: Full BTs

Heap Property 1: Structural

Heap Property 2: Relational

Heaps: More Examples

Heap Operations

Updating a Heap: Insertion

Index (2)

Updating a Heap: Insertion Example (1.1)

Updating a Heap: Insertion Example (1.2)

Updating a Heap: Deletion

Updating a Heap: Deletion Example (1.1)

Updating a Heap: Deletion Example (1.2)

Updating a Heap: Deletion Example (1.3)

Heap-Based Implementation of a PQ