Graphs

EECS3101 E: Design and Analysis of Algorithms Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- Vocabulary of the Graph ADT
- Properties of Graphs
- Algorithms on Graphs
 - Traversals: Depth-First Search vs. Breadth-First Search
 - Topological Sort
 - Minimum Spanning Trees (MST)
 - Dijkstra's Shortest Path Algorithm
- Proving Properties of Graphs
- Implementing Graphs in Java

Graphs: Definition

A *graph* G = (V, E) represents *relations* that exist between **pairs** of objects.

- ∘ A set *V* of *objects*: *vertices* (*nodes*)
- ∘ A set E of *connections* between objects: *edges* (*arcs*)
 - Each *edge* (from *E*) is an <u>ordered pair</u> of *vertices* (from *V*).
- \circ e.g., $G = (\{A, B, C, D, E, F\}, \{(A, B), (A, C), (A, E), (C, D), (D, E), (B, F)\})$

Directed vs. Undirected Edges

- An edge (u, v) connects two vertices u and v in the graph.
- *Edge* (*u*, *v*) is *directed* if it indicates the direction of travel.

- Vertex u is the origin.
- Vertex v is the destination.
- \circ $(u, v) \neq (v, u)$
- *Edge* (u, v) is *undirected* if it does not indicate a direction.

- $\circ (u,v) = (v,u)$
- 1 <u>undirected</u> edge $(u, v) \equiv 2$ <u>directed</u> edges (u, v) and (v, u).
- Directions of edges represent dependency, order, or flow.

Self vs. Parallel Edges

 An edge (u, u), either <u>directed</u> or <u>undirected</u>, is called a self-edge (or a self-loop).

 Edges that have the same two end vertices are parallel edges or multiple edges.

e.g., In a flight network graph, there are more than one airlines flying between two Seoul and Vancouver.

• A simple graph has no self-loops and parallel edges.

Vertices

Given an **edge** (u, v):

- Vertices *u* and *v* are its two *End vertices* (*Endpoints*).
- The two end vertices *u* and *v* is said to be *adjacent*.
- Edge (u, v) is **incident on** the two end vertices u and v.
- When edge (u, v) is <u>directed</u>:
 - u is origin and v is destination
 - Edge (u, v) is an *outgoing edge* of the origin u
 - \circ Edge (u, v) is an *incoming edge* of the destination u
- The *degree* of a vertex *v* is the number of edges *incident on v*.

Exercise (1)

•	End vertices of edge m?	
_	Outaging adags of vortex	^

Outgoing edges of vertex A?

Incoming edges of vertex A?

• Edges *incident* on vertex *A*?

• Degree of vertex A?

[A, B]

[m, o]

[*q*]

[m, o, q]

[3]

7 of 44

- In a directed graph, all edges are directed.
 e.g., dependency graphs (inheritance relationships, method calls, etc.)
- In an undirected graph, all edges are undirected.
 e.g., Subway map of Young-University Line
- In a mixed graph, some edges directed; some undirected.
 e.g., A city map has street intersections as vertices and streets as edges: each street may be one-way (a directed edge) or both-way (an undirected edge).

Directed Graph Example (1): A Flight Networksonde

Directed Graph Example (2): Class Inheritance ONDE

Undirected Graph Example (1): London Tube ASSONDE

Undirected Graph Example (2): Co-authorshipsonde

Basic Properties of Graphs (1)

• Given a <u>simple</u>, <u>undirected</u> graph G = (V, E) with |E| = m:

$$\sum_{v \in V} \text{degree}(v) = 2 \cdot m$$

- *Intuition*: Each edge (u, v) contributes to degrees of both u and v.
- Formal Proof: Mathematical inductoin on |V|.
- Prove that the claim still holds on graphs that are <u>not simple</u>.

Basic Properties of Graphs (2)

• Given a **simple**, **directed** graph G = (V, E) with |E| = m:

$$\sum_{v \in V} \text{ in-degree}(v) = \sum_{v \in V} \text{ out-degree}(v)$$

- Intuition: Each directed edge (u, v) contributes to the out-degree of origin u and the in-degree of destination v.
- Formal Proof: Mathematical inductoin on |V|.
- Prove that the claim still holds on graphs that are **not simple**.

Basic Properties of Graphs (3)

• Given a <u>simple</u>, <u>undirected</u> graph G = (V, E), |V| = n, |E| = m:

$$m \leq \frac{n \cdot (n-1)}{2}$$

- **Intuition**: Say $V = \{v_1, v_2, ..., v_n\}$
 - *Maximum* value of m is obtained when <u>each</u> vertex is connected to <u>all other</u> n-1 vertices: $n \cdot (n-1)$
 - Since *G* is <u>undirected</u>, for each pair of vertices v_i and v_j , we have <u>double-counted</u> (v_i, v_j) and (v_j, v_i) : $\frac{n \cdot (n-1)}{2}$
- *G* is a *complete graph* when $m = \frac{n \cdot (n-1)}{2}$

Paths and Cycles (1)

Given a graph G = (V, E):

• A *path* of *G* is a sequence of <u>alternating</u> vertices and edges, which **starts** and **ends** at vertices:

$$\langle v_1, e_1, v_2, e_2, \dots, v_{n-1}, e_{n-1}, v_n \rangle$$
 $v_i \in V, 1 \le i \le n, e_j \in E, 1 \le j < n$

- A cycle of G is a path of G with the <u>same</u> vertex appearing more than once.
- A simple path of G is a path of G with distinct vertices.
- A simple cycle of G is a cycle of G with <u>distinct</u> vertices (except the <u>beginning</u> and <u>end</u> vertices that form the cycle).
- Given two vertices u and v in G, vertex v is reachable from vertex u if there exists a path of G such that its start vertex is u and end vertex is v.
 - Vertex *v* may be reachable from vertex *u* via more than one paths.
 - Any of the *reachable paths* from u to v contains a cycle
 - \Rightarrow An **infinite** number of reachable paths from u to v.

Paths and Cycles (2)

 $\begin{aligned} & \text{Path} = (\text{F}, \, \text{s}, \, \text{D}, \, \text{t}, \, \text{E}, \, \text{p}, \, \text{F}, \, \text{n}, \, \text{B}) & \text{Cycle} = (\text{E}, \, \text{p}, \, \text{F}, \, \text{n}, \, \text{B}, \, \text{m}, \, \text{A}, \, \text{o}, \, \text{E}, \, \text{t}, \, \text{D}, \, \text{s}, \, \text{F}, \, \text{p}, \, \text{E}) \\ & \text{Simple Path} = (\text{C}, \, \text{q}, \, \text{A}, \, \text{o}, \, \text{E}) & \text{Simple Cycle} = (\text{E}, \, \text{t}, \, \text{D}, \, \text{r}, \, \text{C}, \, \text{q}, \, \text{A}, \, \text{o}, \, \text{E}) \end{aligned}$

Vertex *F* is *reachable* from vertex *A* via:

- (*A*, *m*, *B*, *n*, *F*)
- (*A*, *o*, *E*, *p*, *F*)
- (A, o, E, t, D, s, F)

. .

17 of 44

Subgraphs vs. Spanning Subgraphs

Given a graph G = (V, E):

A subgraph of G is another graph G' = (V', E') such that
 V'⊆ V and that E'⊆ E.

e.g.,
$$G_1 = (\{A, B, C, D, E, F\}, \{m, q, r\})$$

• A **spanning subgraph** of G is another graph G' = (V', E') s.t.

$$V' = V$$
 and that $E' \subseteq E$.

e.g.,
$$G_2 = (\{A, B, C, D, E, F\}, \{m, p, s, t, r\})$$

Connected Graph vs. Connected Components on the Connected Connecte

Given a graph G = (V, E):

- G is *connected*: there is a *path* between any two vertices of G.
 e.g., Spanning subgraph G₂ extended with the edge n, o, or q
- G's connected components: G's maximal connected subgraphs.

A *CC* is <u>maximal</u> in that it <u>cannot</u> be expanded any further. e.g., How many *connected components* does the following

graph have?

Answer: 3

Forests vs. Trees

A forest is an undirected graph without cycles.

• **Acyclic** :

Any two *vertices* are connected via <u>at most one</u> *path*.

A forest may or may <u>not</u> be connected.

$$(\exists v_1, v_2 \bullet \{v_1, v_2\} \subseteq V \land \neg \texttt{connected}(v_1, v_2)) \Rightarrow \neg \texttt{connected}(\textit{\textbf{Forest G}})$$

- A tree is a connected forest.
 - Acyclic & Connected :

Any two vertices are connected via exactly one path.

• e.g., Add either edge (E, F) or (E, D) to the above forest.

Spanning Trees

- A spanning tree of graph G: a spanning subgraph that is also a tree
 - → A spanning tree of G is a connected spanning subgraph of G that contains no cycles.
 - $\circ \Rightarrow \neg \text{connected}(G) \Rightarrow \neg (\exists G' \bullet G' \text{ is a spanning tree of } G)$

Exercise (2)

Given a graph

Which one of the following is a *spanning tree*?

- (a): spanning subgraph containing a cycle (∴ not a tree).
- (b): tree but not spanning.

22 of 44

Basic Properties of Graphs (4)

Given G = (V, G) an **undirected** graph with |V| = n, |E| = m:

$$\begin{cases} m = n - 1 & \text{if G is a spanning tree} \\ m \le n - 1 & \text{if G is a forest} \\ m \ge n - 1 & \text{if G is connected} \\ m \ge n & \text{if G contains a cycle} \end{cases}$$

- Prove the spanning tree case via mathematical induction on n:
 - Base Cases: $n = 1 \Rightarrow m = 0$, $n = 2 \Rightarrow m = 1$, $n = 3 \Rightarrow m = 2$
 - Inductive Cases: Assume that a spanning tree has n vertices and n-1 edges.
 - When adding a new vertex v' into the existing graph, we may only
 expand the <u>existing spanning tree</u> by connecting v' to <u>exactly one</u> of
 the existing vertices; otherwise there will be a <u>cycle</u>.
 - This makes the new spanning tree contains n + 1 vertices and n edges.
- ∘ When G is a *forest*, it may be <u>unconnected</u> \Rightarrow m < n 1
- When G is **connected**, it may contain **cycles** $\Rightarrow m \ge n$

Given a graph G = (V, E):

- A traversal of G is a <u>systematic</u> procedure for examining <u>all</u> its vertices V and edges E.
- A *traversal* of G is considered *efficient* if its *running time* is *linear* on |V| and/or |E|. [e.g., O(|V| + |E|)]

Graph Traversals: Applications

Fundamental questions about graphs involve *reachability*. Given a graph G = (V, E) (directed or undirected):

- Given a vertex **u**, find **all** other vertices in G *reachable* from **u**.
- Given a vertex **u** and a vertex **v**:
 - compute a path from u to v, or report that there is no such a path.
 - compute a *path* from u to v that involves the *minimum* number of edges, or report that there is <u>no</u> such a path.
- Determine whether or not G is *connected*.
- Given that G is connected, compute a spanning tree of G.
- Compute the *connected components* of G.
- Identify a cycle in G, or report that G is acyclic.

LASSONDE SCHOOL OF ENGINEERING

Depth-First Search (DFS)

- A Depth-First Search (DFS) of graph G = (V, E), starting from some vertex v ∈ V, proceeds along a path from v.
 - The path is constructed by following <u>an</u> incident edge.
 - The path is extended <u>as far as possible</u>, until <u>all</u> <u>incident edges</u> lead to vertices that have already been <u>visited</u>.
 - Once the path originated from v cannot be extended further, backtrack to the latest vertex whose incident edges lead to some unvisited vertices.

- DFS resembles the *preorder traversal* in trees.
- Use a LIFO stack to keep track of the nodes to be visited.

DFS: Marking Vertices and Edges

Before the **DFS** starts:

- All vertices are unvisited.
- All edges are unexplored/unmarked.

Over the course of a **DFS**, we **mark** vertices and edges:

- A vertex *v* is marked *visited* when it is **first** encountered.
- Then, we iterate through <u>each</u> of *v*'s **incident edges**, say *e*:
 - If edge e is already marked, then skip it.
 - Otherwise, mark edge e as:
 - A discovery edge if it leads to an unvisited vertex
 - A back edge if it leads to a visited vertex (i.e., an ancestor vertex)

DFS: Illustration (1.1)

28 of 44

DFS: Illustration (1.2)

29 of 44

Other solutions (different incident edges on vertex A to get started):

DFS: Illustration (2)

30 of 44

DFS: Properties

- 1. Running Time?
 - Every vertex is set as visited at most once.
 - Each edge is set as either DISCOVERY or BACK at most once.
 - $\Rightarrow O(m+n)$
- **2.** For a **DFS** starting from vertex u in a graph G = (V, E):
 - **2.1** |*visited nodes*| = $|V| \Rightarrow G$ is *connected*
 - **2.2** |*visited nodes*| < |V| \Rightarrow G has > 1 *connected components*
 - **2.3** There are **no back edges** \Rightarrow G is **acyclic**
- **3.** For a *DFS* starting from vertex *u* in an <u>undirected</u> graph G:
 - **3.1** The traversal visits <u>all</u> nodes in the *connected component* containing *u*.
 - **3.2** Discovery edges form a spanning tree (with |V| 1 edges) of the connected component containing u.
- If a graph G is <u>not</u> connected, then it takes <u>multiple</u> runs of *DFS* to identify <u>all</u> G's connected components.

LASSONDE SCHOOL OF ENGINEERIN

Graph Questions: Adapting DFS

- Given a (directed) or undirected) graph G = (V, E):
 - Find a *path* between vertex *u* and vertex *v*.
 Start a DFS from *u* and stop as soon as *v* is encountered.
 - Is vertex v reachable from vertex u?
 No if a DFS starting from u never encounters v.
 - Find all *connected components* of *G*.
 - Continuously apply DFS's until the entire set V is visited.
 - Each DFS produces a subgraph representing a new CC.
 - Given that G is connected, find a spanning tree of it.
 G is connected. ⇒ G's only CC is its spanning tree.
- Given an <u>undirected</u> graph G = (V, E):
 - Is G connected?
 - Start a DFS from an <u>arbitrary</u> vertex, and count # of visited nodes.
 - When the traversal completes, compare the counter value against |V|.
 - Is G acyclic?
 - Start a DFS from an <u>arbitrary</u> vertex.
 - Return <u>no</u> (i.e., a cycle exists) as soon as a back edge is found.

Graphs in Java: DL Node and List

For each graph, maintain two doubly-linked lists for vertices and edges.

```
public class DLNode<E> { /* Doubly-Linked Node */
   private E element;
   private DLNode<E> prev; private DLNode<E> next;
   public DLNode(E e, DLNode<E> p, DLNode<E> n) { ... }
   /* setters and getters for prev and next */
}
```

```
public class DoublyLinkedList<E> {
   private int size;
   private DLNode<E> header; private DLNode<E> trailer;
   public void remove (DLNode<E> node) {
      DLNode<E> pred = node.getPrev();
      DLNode<E> succ = node.getSucc();
      pred.setNext(succ); succ.setPrev(pred);
      node.setNext(null); node.setPrev(null);
      size --;
   }
}
```


Graphs in Java: Vertex and Edge

```
public class Vertex<V> {
   private V element;
   public Vertex(V element) { this.element = element; }
   /* setter and getter for element */
}
```

```
public class Edge<E, V> {
   private E element;
   private Vertex<V> origin;
   private Vertex<V> dest;
   public Edge(E element) { this.element = element; }
   /* setters and getters for element, origin, and destination */
}
```


Graphs in Java: Interface (1)

```
public interface Graph<V, E> {
 /* Number of vertices of the graph */
 public int numVertices();
 /* Number of edges of the graph */
 public int numEdges();
 /* Vertices of the graph */
 public Iterable<Vertex<V>> vertices();
 /** Edges of the graph */
 public Iterable<Edge<E, V>> edges();
 /* Number of edges leaving vertex v. */
 public int outDegree(Vertex<V> v);
 /* Number of edges for which vertex v is the destination. */
 public int inDegree(Vertex<V> v);
 public int degree(Vertex<V> v);
```


Graphs in Java: Interface (2)

```
/* Edges for which vertex v is the origin. */
public Iterable<Edge<E, V>> outgoingEdges(Vertex<V> v);

/* Edges for which vertex v is the destination. */
public Iterable<Edge<E, V>> incomingEdges(Vertex<V> v);

/* The edge from u to v, or null if they are not adjacent. */
public Edge<E, V> getEdge(Vertex<V> u, Vertex<V> v);
```


Graphs in Java: Interface (3)

```
/* Inserts a new vertex, storing given element. */
public Vertex<V> insertVertex(V element);
 /* Inserts a new edge between vertices u and v.
  * storing given element.
  */
 public Edge<E, V> insertEdge(Vertex<V> u, Vertex<V> v, E element);
 /* Removes a vertex and all its incident edges from the graph. */
public void removeVertex(Vertex<V> v);
/* Removes an edge from the graph. */
public void removeEdge(Edge<E, V> e);
} /* end Graph */
```


Graphs in Java: Edge List (1)

Each *vertex* or *edge* stores a *reference* to its *position* in the respective vertex or edge list.

 \Rightarrow O(1) **deletion** of the vertex or edge from the list.

```
public class EdgeListVertex<V> extends Vertex<V> {
   public DLNode<Vertex<V>> vertextListPosition;
   /* setter and getter for vertexListPosition */
}
```

```
public class EdgeListEdge<E, V> extends Edge<E, V> {
   public DLNode<Edge<E, V>> edgeListPosition;
   /* setter and getter for edgeListPosition */
}
```


Graphs in Java: Edge List (2)

```
public class EdgeListGraph<V, E> implements Graph<V, E> {
    private DoublyLinkedList<EdgeListVertex<V>> vertices;
    private DoublyLinkedList<EdgeListEdge<E, V>> edges;
    private boolean isDirected;

/* initialize an empty graph */
public EdgeListGraph(boolean isDirected) {
    vertices = new DoublyLinkedList<>();
    edges = new DoublyLinkedList<>();
    this.isDirected = isDirected;
}
...
}
```

Graphs in Java: Edge List (3)

Index (1)

Learning Outcomes of this Lecture

Graphs: Definition

Directed vs. Undirected Edges

Self vs. Parallel Edges

Vertices

Exercise (1)

Directed vs. Undirected Graphs

Directed Graph Example (1): A Flight Network

Directed Graph Example (2): Class Inheritance

Undirected Graph Example (1): London Tube

Undirected Graph Example (2): Co-authorship

Index (2)

Basic Properties of Graphs (1)

Basic Properties of Graphs (2)

Basic Properties of Graphs (3)

Paths and Cycles (1)

Paths and Cycles (2)

Subgraphs vs. Spanning Subgraphs

Connected Graph vs. Connected Components

Forests vs. Trees

Spanning Trees

Exercise (2)

Basic Properties of Graphs (4)

Index (3)

Graph Traversals: Definition

Graph Traversals: Applications

Depth-First Search (DFS)

DFS: Marking Vertices and Edges

DFS: Illustration (1.1)

DFS: Illustration (1.2)

DFS: Illustration (2)

DFS: Properties

Graph Questions: Adapting DFS

Graphs in Java: DL Node and List

Graphs in Java: Vertex and Edge

Index (4)

Graphs in Java: Interface (1)

Graphs in Java: Interface (2)

Graphs in Java: Interface (3)

Graphs in Java: Edge List (1)

Graphs in Java: Edge List (2)

Graphs in Java: Edge List (3)