Graphs

EECS3101 E:
Design and Analysis of Algorithms
YORKJ I 2025
UNIVER
UNIV S

SITE .
Ty CHEN-WFI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Outcomes of this Lecture

This module is designed to help you understand:
e Vocabulary of the Graph ADT

Properties of Graphs
Algorithms on Graphs

o Traversals: Depth-First Search vs. Breadth-First Search
Topological Sort

o Minimum Spanning Trees (MST)

o Dijkstra’s Shortest Path Algorithm

Proving Properties of Graphs

o

Implementing Graphs in Java

Graphs: Definition LASSONDE

A graph G= (V,E) represents relations that exist between

pairs of objects.
E
vertex = @7

city \
computer edge =
Web-page ©/ road ®
task cable

hyperlink
transition state

o A set V of objects: vertices (nodes)
o A set E of connections between objects: edges (arcs)
e Each edge (from E) is an ordered pair of vertices (from V).
o eg., G=({AB,C,D,E F},{(AB),(AC),(AE)(CD)),(DE)(BF)})

I

Directed vs. Undirected Edges

e An edge (u, v) connects two vertices u and v in the graph.
e Edge (u,v) is directed if it indicates the direction of travel.

O—W

o Vertex u is the origin.
o Vertex v is the destination.
° (u,v)#(v,u)

e Edge (u,v) is undirected if it does not indicate a direction.

O—®

° (u,v)=(v,u)
* 1 undirected edge (u, v) = 2 directed edges (u, v) and (v, u).

» Directions of edges represent dependency, order, or flow.

I

Self vs. Parallel Edges LASSONDE

* An edge (u, u), either directed or undirected, is called a

self-edge (or a self-loop). E

¢ Edges that have the same two end vertices are parallel edges
or multiple edges.

e.g., In a flight network graph, there are more than one airlines
flying between two Seoul and Vancouver.
* A simple graph has no self-loops and parallel edges.

I

Ve I‘ticeS LASSONDE

Given an edge (u,v):

e \ertices u and v are its two End vertices (Endpoints).
The two end vertices u and v is said to be adjacent.
Edge (u, v) is incident on the two end vertices u and v.
When edge (u, v) is directed:

o uis origin and v is destination

o Edge (u, V) is an outgoing edge of the origin u
o Edge (u,v) is an incoming edge of the destination u

The degree of a vertex v is the number of edges incident on v.

Exercise (1) LASSONDE

e End vertices of edge m? [A, B]
e QOutgoing edges of vertex A? [m, o]
 Incoming edges of vertex A? [q]
e Edges incident on vertex A? [m, o, q]
e Degree of vertex A? [3]

I

Directed vs. Undirected Graphs LASSONDE

¢ In a directed graph, all edges are directed.
e.g., dependency graphs (inheritance relationships, method
calls, efc.)

* In an undirected graph, all edges are undirected.
e.g., Subway map of Young-University Line

e In a mixed graph, some edges directed; some undirected.

e.g., A city map has street intersections as vertices and streets
as edges: each street may be one-way (a directed edge) or
both-way (an undirected edge).

_

Directed Graph Example (1): A Flight Netwo[Ksoxo:

aaaaaaaaa

nnnnnnnnnnnnnnnnnnnn

ss

n or a2

ASSONDE

Brondesbury
Park

Kensal Green

+
Brondesbury Finchley Road Camden Town

_Swiss Cottage CEGED
Queen'sPark Kilburn South . Crescent:
High Road Hampstead _St. John's Wood King's Cross
= = T St. Pancras
ilburn Park =Paddington Edgware Road Marylebone = | - Greal Ponland Euston @..—..’5'
) =
Maida Vale Oy Street
Warwick .
Avenue ¥
Edgware Warren Street E:ff:,:
Royal Oak Road

Westbourne Park

Ladbroke Grove

\ Latimer Road

Regent's Park Russell

Square
Goodge
Street

k- Bayswater
Bond
Street |

Marble Arch
Chancery|Lane
East White Shepherd's Notting F Tottenham Ty
Acton City Hill Gate Court Road FBank
N, Lancaster ‘Covent Garden
North Holland Queensway Gate N St. Paul's
Acton Wood L: Park Green Park Leicester Square
poSiane Hyde Park Corner,
. 'ccadl“y == Cannon Street
Shepherd's ax k- High Street Kensington
T Bush Market Kensington Mansion House
i Olympia 2Ch ion Hou
5 Goldhawk Road Knightsbridge. Crons
| Barons Gloucester “ == Blackfriars
Hammersmith® Court Road St. James's
) — £ < Park Temple
1 Stamford Ravenscourt West Earl's South Sloane Westminster | Embankment <
nf Brool Park Kensington Court Kensington ~ Square i\

= Moorgate]

Caledoniar
Road &

Barnsbury

Old Stre

Monumer

Undirected Graph Example (2): Co-authors

Goldwasser

Goodrich Tamassia

Vitter Preparata

2 oraz

Basic Properties of Graphs (1) LASSONDE

e Given a simple, undirected graph G = (V, E) with |E| = m:

> degree(v)=2-m
veV

o Intuition: Each edge (u, v) contributes to degrees of both u and v.
o Formal Proof: Mathematical inductoin on |V/|.

e Prove that the claim still holds on graphs that are not simple.

Basic Properties of Graphs (2)

et ae o

e Given a simple, directed graph G = (V, E) with |E| = m:

> in-degree(v)= 2 out-degree(Vv)
v

veV Ve

o Intuition: Each directed edge (u, v) contributes to the

out—degree of origin u and the in-degree of destination v.

o Formal Proof: Mathematical inductoin on |V/|.

» Prove that the claim still holds on graphs that are not simple.

04 oraz

Basic Properties of Graphs (3)

e Given a simple, undirected graph G=(V,E), |V|=n, |E| = m:

(E)
\—7
><

© D)
e Intuition: Say V = {vy,vo,..., vy}
o Maximum value of m is obtained when each vertex is connected
to all other n— 1 vertices: n-(n-1)
o Since G is undirected, for each pair of vertices v; and v;, we have
double-counted (v, v;) and (v}, v;): 221
o Gis a complete graph when m = @

I

Paths and Cycles (1) s

Given agraph G=(V,E):
e A path of G is a sequence of alternating vertices and edges,
which starts and ends at vertices:
(vi,e1,va,€0,...,Vp_1,6n-1,Vn) VieV,1<i<neeE 1<j<n
* A cycle of Gis a path of G with the same vertex appearing
more than once.

* A simple path of G is a path of G with distinct vertices.

* A simple cycle of G is a cycle of G with distinct vertices
(except the beginning and end vertices that form the cycle).

e Given two vertices u and v in G, vertex v is reachable from
vertex u if there exists a path of G such that its start vertex is
u and end vertex is v.
o Vertex v may be reachable from vertex u via more than one paths.
o Any of the reachable paths from u to v contains a cycle

= An infinite number of reachable paths from u to v.

Paths and Cycles (2) S

Path=(F,s,D,t,E,p,F,n,B) Cycle=(E,p,F,n,B,m,A 0,EtD,s,F,p,E)
Simple Path = (C, q, A, o, E) Simple Cycle = (E, t,D, 1, C, q, A, o, E)

Vertex F is reachable from vertex A via:

e (AAm,B,n,F)

e (Ao, E,p,F)

e (Ao, E t,D,s,F)

L orazd

Subgraphs vs. Spanning Subgraphs LASSONDE

Given a graph G=(V,E):
» A subgraph of G is another graph G’ = (V’, E’) such that

and that E'c E.

e.g., Gi=({AB,C,D,E,F},{m,q,r})
n® o ®
@)
T Yo—+—"0

r

e A spanning subgraph of G is another graph G' = (V' E’) s.t.

[V’= V]and that E’c E.

e-g'a GZ = ({Aa B7 C7 Da E? F}?{mapa S, tv r})

m (B ®
"s

o

8 ot a2

Connected Graph vs. Connected Componer%

Given a graph G=(V,E):

e G is connected: there is a path between any two vertices of G.
e.g., Spanning subgraph G, extended with the edge n, o, or q

e G’s connected components: G’s maximal connected
subgraphs.
A CC is maximal in that it cannot be expanded any further.
e.g., How many connected components does the following

graph have? : E E E

Forests vs. Trees LASSONDE

e A forest is an undirected graph without cycles.

@e

Any two vertices are connected via at most one path.
o A forest may or may not be connected.

(3vi,v2 e {vi, o} € V A —connected(vs, v2)) = ~connected(Forest G)
e A tree is a connected forest.
Acyclic & Connected ‘:

o

Any two vertices are connected via exactly one path.
o e.g., Add either edge (E, F) or (E, D) to the above forest.

Spanning Trees LASSONDE

* A spanning tree of graph G: a spanning subgraph that is
also a free
o = A spanning tree of G is a connected spanning subgraph of
G that contains no cycles.
o = sconnected(G) = —~(3G’ ¢ G’ is a spanning tree of G)

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

vl oraz

Exercise (2) LASSONDE

Given a graph

Which one of the following is a spanning tree?

o

(@) (b) (c)

e (a): spanning subgraph containing a cycle (.. not a tree).

e (b): free but not spanning.

I

Basic Properties of Graphs (4)
Given G = (V, G) an undirected graph with |V|=n, |E| = m:
m=n-1 ifGis aspanning tree
m<n-1 ifGisaforest
m>n-1 ifGisconnected

m>n if G contains a cycle

o Prove the spanning tree case via mathematical induction on n :

e BaseCases: n=1=m=0,n=2=m=1,n=3=>m=2

¢ Inductive Cases: Assume that a spanning tree has n vertices and
n-1 edges.

e When adding a new vertex v’ into the existing graph, we may only
expand the existing spanning tree by connecting v’ to exactly one of
the existing vertices; otherwise there will be a cycle.

¢ This makes the new spanning tree contains n+ 1 vertices and n edges.

o When G is a forest, it may be unconnected = m<n-1
o When G is connected, it may contain cycles = m>n

v3ioraz

I

Graph Traversals: Definition LASSONDE

Given a graph G = (V, E):
e A traversal of G is a systematic procedure for examining all its
vertices V and edges E.

» A traversal of G is considered efficient if its running time is
linear on |V| and/or |E|. [e.g., O(|V|+|E])]

A ot Az

I

Graph Traversals: Applications LASSONDE

Fundamental questions about graphs involve reachability.
Given a graph G = (V, E) (directed or undirected):

Given a vertex u, find all other vertices in G reachable from u.

e Given a vertex u and a vertex v:

o compute a path from u to v, or report that there is no such a path.
o compute a path from u to v that involves the minimum number of
edges, or report that there is no such a path.

Determine whether or not G is connected.

Given that G is connected, compute a spanning tree of G.
Compute the connected components of G.

Identify a cycle in G, or report that G is acyclic.

o otz

I

Depth-First Search (DFS) AL

e A Depth-First Search (DFS) of graph G = (V, E),

starting from some vertex v € V, proceeds along a path from v.

o The path is constructed by following an incident edge.

o The path is extended as far as possible, until all incident edges
lead to vertices that have already been visited.

o Once the path originated from v cannot be extended further,
backtrack to the latest vertex whose incident edges lead to
some unvisited vertices.

e DFS resembles the preorder traversal in trees.

e Use a LIFO stack to keep track of the nodes to be visited.

I

DFS: Marking Vertices and Edges

Before the DFS starts:

¢ All vertices are unvisited.

» All edges are unexplored/unmarked.

Over the course of a DFS, we mark vertices and edges:

e A vertex v is marked visited when it is first encountered.

e Then, we iterate through each of v’s incident edges, say e:

o If edge e is already marked, then skip it.
o Otherwise, mark edge e as:
o A discovery edge if it leads to an unvisited vertex
o A back edge if it leads to a visited vertex (i.e., an ancestor vertex)

v orad

DFS: lllustration (1.1)

et ae o

unexplored edge
discovery edge
back edge

unexplored vertex

visited vertex

(1)
(Al
e
@)
O ©

(4)

(2)
Al

B | D (B
©

DFS: lllustration (1.2)
(6) (7)

edge AC visited first edge AD visited first edge AE visited first

DFS: lllustration (2)

DFS: Properties LASSONDE

1. Running Time?
o Every vertex is set as visited at most once.
o Each edge is set as either DISCOVERY or BACK at most once.
= O(m+n)

2. For a DFS starting from vertex v in a graph G = (V, E):
2.1 |visited nodes| = |V| = G is connected
2.2 |visited nodes| < |V| = G has > 1 connected components
2.3 There are no back edges = G is acyclic
3. For a DFS starting from vertex v in an undirected graph G:
3.1 The traversal visits all nodes in the connected component
containing u.
3.2 Discovery edges form a spanning tree (with |V| -1 edges) of the
connected component containing u.

4. If a graph G is not connected, then it takes multiple runs of

DFS to identify all G’s connected components.

I

Graph Questions: Adapting DFS LASSONDE

e Given a (directed or undirected) graph G= (V, E):
o Find a path between vertex u and vertex v.
Start a DFS from v and stop as soon as v is encountered.
o Is vertex v reachable from vertex u?
No if a DFS starting from u never encounters v.
o Find all connected components of G.
e Continuously apply DFS’s until the entire set V is visited.
e Each DFS produces a subgraph representing a new CC.
o Given that G is connected, find a spanning tree of it.
G is connected. = G's only CC is its spanning tree.
e Given an undirected graph G = (V, E):
o Is G connected?
o Start a DFS from an arbitrary vertex, and count # of visited nodes.
o When the traversal completes, compare the counter value against | V/.
o Is G acyclic?
o Start a DFS from an arbitrary vertex.
e Return no (i.e., a cycle exists) as soon as a back edge is found.

37 otz

Graphs in Java: DL Node and List

For each graph, maintain two doubly-linked lists for vertices and edges.

public class DLNode<E> { /x*
private E element;
private DLNode<E> prev; private DLNode<E> next;
public DLNode (E e, DLNode<E> p, DLNode<E> n) { ...}

s for prev and next x/

/* setters : gett

public class DoublyLinkedList<E> {
private int size;
private DLNode<E> header; private DLNode<E> trailer;
public void remove (DLNode<E> node) {
DLNode<E> pred = node.getPrev();
DLNode<E> succ = node.getSucc();
pred.setNext (succ); succ.setPrev(pred);
node. setNext (null); node.setPrev(null);
size —-—;

}

33014

I

Graphs in Java: Vertex and Edge

\n,

public class Vertex<V> {
private V element;
publlc Vertex(v element) { this.element = element; }

/* setter and getter for ele

public class Edge<E, V> {
private E element;
private Vertex<V> origin;
private Vertex<V> dest;

public Edge(E element) { this.element = element; }
/+ setters and getters for element, origin, and de:s N/
}

I

Graphs in Java: Interface (1) LASSONDE

\n,

publlc interface Graph<V E> {

of

- A F NF Fha
r of edges of the

publlc 1nt numEdges () ;

vertex v. #*/

edges leav
public int outDegree(Vertex<V> v);
>r of edges for wh vertex v is the destination. =/

public 1nt 1nDegree(Vertex<V> v);

public int degree(Vertex<V> v);

35 otz

I

Graphs in Java: Interface (2) LASSONDE

/
* /

rtex v 1s the des

publlc Iterable<Edge<E V>> incomingEdges (Vertex<V> v);

ac "cm ent. */

/* The edge from u to v, or n

public Edge<E > getEdge(Vertex<V> u, Vertex<V> v);

if they are not

3b otz

\n,

#
et ae o

Graphs in Java: Interface (3)

rtex,

/ I S
public Vertex<V> insertVertex(V element)

Vertex<V> v, E element);

public Edge<E, V> insertEdge(Vertex<V> u,

all

moves a vertex ar

public void removeVertex (Vertex<V> v);

I

Graphs in Java: Edge List (1)

Each vertex or edge stores a reference to its position in the
respective vertex or edge list.
= O(1) deletion of the vertex or edge from the list.

public class EdgeListVertex<V> extends Vertex<V> ({
public DLNode<Vertex<V>> vertextListPosition;

/+ setter and getter for vertexListPosition #*/

public class EdgeListEdge<E, V> extends Edge<E, V> ({
public DLNbde<Edge<E V>> edgelListPosition;
/+ setter and getter for edgeListPosition #*/

}

38 or a2

I

Graphs in Java: Edge List (2) LASSONDE

\n,

public class EdgeListGraph<V, E> implements Graph<V, E> {
private DoublyLinkedList<EdgeListVertex<V>> vertices;
private DoublyLinkedList<EdgeListEdge<E, V>> edges;
private boolean isDirected;

initialize an empty s
publlc EdgeLlstGraph(boolean 1sD1rected) {
vertices = new DoublyLinkedList<>();
edges = new DoublyLinkedList<>();
this.isDirected = isDirected;

39 ot 42

Graphs in Java: Edge List (3)

Index (1)
I_earnlng Outcomes of this Lecture|
Erapfis: Dellnlhoil

iIrected vs. unadirecte e

elT vS. Paralie ge

Verfices

irected vs. Undirected Grap

irected Graph Example (1): ight Networ
irected Graph Example (2): Class Inheritanc
ndirected Graph Example (1): Condon Tu
ndirected Graph Example (2): Co-authorshi

Index (2) :Agsgurgig“s

asic Froperties or Grapns

asic Froperties or Grapns

asic Properties of Graphs
[Paths and Cycles (1)
[Paths and Cycles (2)
[pubgraphs vs. Spanning Subgraphs
onnected Graph vs. Connected Componen

asic Properties of Graphs

Index (3) :Agsgurgig“s

rap raversais: perinitio

[Graph Traversals: Applications|
Depth-First Search (DFS)
DFS: Marking Verfices and Edges|
[DFS: Tiustration (1.1)
[DFS: Tustration (1.2)
[DFS: Tiustration (2)
DFS: Properties

raph Quesfions: Adapting
[Graphs'in Java: DL Node and Lisfi

[Graphs'in Java: Verfex and Edge|

Index (4)
[Graphsin Java: Inferface (1)
[Graphs in Java: Inferface (2}
[Graphs in Java: Inferface (3)
[Graphs in Java: Edge List (1)

rapns in Java: e LIS

rapns in Java: e LIS

A2 ATAZ

	Learning Outcomes of this Lecture
	Graphs: Definition
	Directed vs. Undirected Edges
	Self vs. Parallel Edges
	Vertices
	Exercise (1)
	Directed vs. Undirected Graphs
	Directed Graph Example (1): A Flight Network
	Directed Graph Example (2): Class Inheritance
	Undirected Graph Example (1): London Tube
	Undirected Graph Example (2): Co-authorship
	Basic Properties of Graphs (1)
	Basic Properties of Graphs (2)
	Basic Properties of Graphs (3)
	Paths and Cycles (1)
	Paths and Cycles (2)
	Subgraphs vs. Spanning Subgraphs
	Connected Graph vs. Connected Components
	Forests vs. Trees
	Spanning Trees
	Exercise (2)
	Basic Properties of Graphs (4)
	Graph Traversals: Definition
	Graph Traversals: Applications
	Depth-First Search (DFS)
	DFS: Marking Vertices and Edges
	DFS: Illustration (1.1)
	DFS: Illustration (1.2)
	DFS: Illustration (2)
	DFS: Properties
	Graph Questions: Adapting DFS
	Graphs in Java: DL Node and List
	Graphs in Java: Vertex and Edge
	Graphs in Java: Interface (1)
	Graphs in Java: Interface (2)
	Graphs in Java: Interface (3)
	Graphs in Java: Edge List (1)
	Graphs in Java: Edge List (2)
	Graphs in Java: Edge List (3)

