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Learning Outcomes of this Lecture

This module is designed to help you understand:
e Vocabulary of the Graph ADT

Properties of Graphs
Algorithms on Graphs

o Traversals: Depth-First Search vs. Breadth-First Search
Topological Sort

o Minimum Spanning Trees (MST)

o Dijkstra’s Shortest Path Algorithm

Proving Properties of Graphs

o

Implementing Graphs in Java



Graphs: Definition LASSONDE

A graph G= (V,E) represents relations that exist between

pairs of objects.
E
vertex = @7

city \
computer edge =
Web-page ©/ road ®
task cable

hyperlink
transition state

o A set V of objects: vertices (nodes)
o A set E of connections between objects: edges (arcs)
e Each edge (from E) is an ordered pair of vertices (from V).
o eg., G=({AB,C,D,E F},{(AB),(AC),(AE)(CD)),(DE)(BF)})



I

Directed vs. Undirected Edges

e An edge (u, v) connects two vertices u and v in the graph.
e Edge (u,v) is directed if it indicates the direction of travel.

O—W

o Vertex u is the origin.
o Vertex v is the destination.
° (u,v)#(v,u)

e Edge (u,v) is undirected if it does not indicate a direction.

O—®

° (u,v)=(v,u)
* 1 undirected edge (u, v) = 2 directed edges (u, v) and (v, u).

» Directions of edges represent dependency, order, or flow.
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Self vs. Parallel Edges LASSONDE

* An edge (u, u), either directed or undirected, is called a

self-edge (or a self-loop). E

¢ Edges that have the same two end vertices are parallel edges
or multiple edges.

e.g., In a flight network graph, there are more than one airlines
flying between two Seoul and Vancouver.
* A simple graph has no self-loops and parallel edges.
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Ve I‘ticeS LASSONDE

Given an edge (u,v):

e \ertices u and v are its two End vertices (Endpoints).
The two end vertices u and v is said to be adjacent.
Edge (u, v) is incident on the two end vertices u and v.
When edge (u, v) is directed:

o uis origin and v is destination

o Edge (u, V) is an outgoing edge of the origin u
o Edge (u,v) is an incoming edge of the destination u

The degree of a vertex v is the number of edges incident on v.



Exercise (1) LASSONDE

e End vertices of edge m? [A, B]
e QOutgoing edges of vertex A? [m, o]
 Incoming edges of vertex A? [q]
e Edges incident on vertex A? [m, o, q]
e Degree of vertex A? [3]
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Directed vs. Undirected Graphs LASSONDE

¢ In a directed graph, all edges are directed.
e.g., dependency graphs (inheritance relationships, method
calls, efc.)

* In an undirected graph, all edges are undirected.
e.g., Subway map of Young-University Line

e In a mixed graph, some edges directed; some undirected.

e.g., A city map has street intersections as vertices and streets
as edges: each street may be one-way (a directed edge) or
both-way (an undirected edge).

_



Directed Graph Example (1): A Flight Netwo[Ksoxo:
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Undirected Graph Example (2): Co-authors

Goldwasser

Goodrich Tamassia

Vitter Preparata

2 oraz




Basic Properties of Graphs (1) LASSONDE

e Given a simple, undirected graph G = (V, E) with |E| = m:

> degree(v)=2-m
veV

o Intuition: Each edge (u, v) contributes to degrees of both u and v.
o Formal Proof: Mathematical inductoin on |V/|.

e Prove that the claim still holds on graphs that are not simple.




Basic Properties of Graphs (2)

et ae o

e Given a simple, directed graph G = (V, E) with |E| = m:

>  in-degree(v)= 2 out-degree(Vv)
v

veV Ve

o Intuition: Each directed edge (u, v) contributes to the

out—degree of origin u and the in-degree of destination v.

o Formal Proof: Mathematical inductoin on |V/|.

» Prove that the claim still holds on graphs that are not simple.

04 oraz



Basic Properties of Graphs (3)

e Given a simple, undirected graph G=(V,E), |V|=n, |E| = m:

(E)
\—7
><

© D)
e Intuition: Say V = {vy,vo,..., vy}
o Maximum value of m is obtained when each vertex is connected
to all other n— 1 vertices: n-(n-1)
o Since G is undirected, for each pair of vertices v; and v;, we have
double-counted (v, v;) and (v}, v;): 221
o Gis a complete graph when m = @
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Paths and Cycles (1) s

Given agraph G=(V,E):
e A path of G is a sequence of alternating vertices and edges,
which starts and ends at vertices:
(vi,e1,va,€0,...,Vp_1,6n-1,Vn) VieV,1<i<neeE 1<j<n
* A cycle of Gis a path of G with the same vertex appearing
more than once.

* A simple path of G is a path of G with distinct vertices.

* A simple cycle of G is a cycle of G with distinct vertices
(except the beginning and end vertices that form the cycle).

e Given two vertices u and v in G, vertex v is reachable from
vertex u if there exists a path of G such that its start vertex is
u and end vertex is v.
o Vertex v may be reachable from vertex u via more than one paths.
o Any of the reachable paths from u to v contains a cycle

= An infinite number of reachable paths from u to v.




Paths and Cycles (2) S

Path=(F,s,D,t,E,p,F,n,B) Cycle=(E,p,F,n,B,m,A 0,EtD,s,F,p,E)
Simple Path = (C, q, A, o, E) Simple Cycle = (E, t,D, 1, C, q, A, o, E)

Vertex F is reachable from vertex A via:

e (AAm,B,n,F)

e (Ao, E,p,F)

e (Ao, E t,D,s,F)

L orazd




Subgraphs vs. Spanning Subgraphs LASSONDE

Given a graph G=(V,E):
» A subgraph of G is another graph G’ = (V’, E’) such that

and that E'c E.

e.g., Gi=({AB,C,D,E,F},{m,q,r})
n® o ®
@)
T Yo—+—"0

r

e A spanning subgraph of G is another graph G' = (V' E’) s.t.

[V’= V]and that E’c E.

e-g'a GZ = ({Aa B7 C7 Da E? F}?{mapa S, tv r})

m (B ®
"s

o

8 ot a2




Connected Graph vs. Connected Componer%

Given a graph G=(V,E):

e G is connected: there is a path between any two vertices of G.
e.g., Spanning subgraph G, extended with the edge n, o, or q

e G’s connected components: G’s maximal connected
subgraphs.
A CC is maximal in that it cannot be expanded any further.
e.g., How many connected components does the following

graph have? : E E E




Forests vs. Trees LASSONDE

e A forest is an undirected graph without cycles.

@e

Any two vertices are connected via at most one path.
o A forest may or may not be connected.

(3vi,v2 e {vi, o} € V A —connected(vs, v2)) = ~connected(Forest G)
e A tree is a connected forest.
Acyclic & Connected ‘:

o

Any two vertices are connected via exactly one path.
o e.g., Add either edge (E, F) or (E, D) to the above forest.




Spanning Trees LASSONDE

* A spanning tree of graph G: a spanning subgraph that is
also a free
o = A spanning tree of G is a connected spanning subgraph of
G that contains no cycles.
o = sconnected(G) = —~(3G’ ¢ G’ is a spanning tree of G)

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

vl oraz



Exercise (2) LASSONDE

Given a graph

Which one of the following is a spanning tree?

o

(@) (b) (c)

e (a): spanning subgraph containing a cycle (.. not a tree).

e (b): free but not spanning.
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Basic Properties of Graphs (4)
Given G = (V, G) an undirected graph with |V|=n, |E| = m:
m=n-1 ifGis aspanning tree
m<n-1 ifGisaforest
m>n-1 ifGisconnected

m>n if G contains a cycle

o Prove the spanning tree case via mathematical induction on n :

e BaseCases: n=1=m=0,n=2=m=1,n=3=>m=2

¢ Inductive Cases: Assume that a spanning tree has n vertices and
n-1 edges.

e When adding a new vertex v’ into the existing graph, we may only
expand the existing spanning tree by connecting v’ to exactly one of
the existing vertices; otherwise there will be a cycle.

¢ This makes the new spanning tree contains n+ 1 vertices and n edges.

o When G is a forest, it may be unconnected = m<n-1
o When G is connected, it may contain cycles = m>n

v3ioraz
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Graph Traversals: Definition LASSONDE

Given a graph G = (V, E):
e A traversal of G is a systematic procedure for examining all its
vertices V and edges E.

» A traversal of G is considered efficient if its running time is
linear on |V| and/or |E|. [e.g., O(|V|+|E])]

A ot Az
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Graph Traversals: Applications LASSONDE

Fundamental questions about graphs involve reachability.
Given a graph G = (V, E) (directed or undirected):

Given a vertex u, find all other vertices in G reachable from u.

e Given a vertex u and a vertex v:

o compute a path from u to v, or report that there is no such a path.
o compute a path from u to v that involves the minimum number of
edges, or report that there is no such a path.

Determine whether or not G is connected.

Given that G is connected, compute a spanning tree of G.
Compute the connected components of G.

Identify a cycle in G, or report that G is acyclic.

o otz
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Depth-First Search (DFS) AL

e A Depth-First Search (DFS) of graph G = (V, E),

starting from some vertex v € V, proceeds along a path from v.

o The path is constructed by following an incident edge.

o The path is extended as far as possible, until all incident edges
lead to vertices that have already been visited.

o Once the path originated from v cannot be extended further,
backtrack to the latest vertex whose incident edges lead to
some unvisited vertices.

e DFS resembles the preorder traversal in trees.

e Use a LIFO stack to keep track of the nodes to be visited.
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DFS: Marking Vertices and Edges

Before the DFS starts:

¢ All vertices are unvisited.

» All edges are unexplored/unmarked.

Over the course of a DFS, we mark vertices and edges:

e A vertex v is marked visited when it is first encountered.

e Then, we iterate through each of v’s incident edges, say e:

o If edge e is already marked, then skip it.
o Otherwise, mark edge e as:
o A discovery edge if it leads to an unvisited vertex
o A back edge if it leads to a visited vertex (i.e., an ancestor vertex)

v orad



DFS: lllustration (1.1)

et ae o

unexplored edge
discovery edge
back edge

unexplored vertex

visited vertex

(1)
(Al
e
@)
O ©

(4)

(2)
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DFS: lllustration (1.2)
(6) (7)

edge AC visited first edge AD visited first edge AE visited first




DFS: lllustration (2)




DFS: Properties LASSONDE

1. Running Time?
o Every vertex is set as visited at most once.
o Each edge is set as either DISCOVERY or BACK at most once.
= O(m+n)

2. For a DFS starting from vertex v in a graph G = (V, E):
2.1 |visited nodes| = |V| = G is connected
2.2 |visited nodes| < |V| = G has > 1 connected components
2.3 There are no back edges = G is acyclic
3. For a DFS starting from vertex v in an undirected graph G:
3.1 The traversal visits all nodes in the connected component
containing u.
3.2 Discovery edges form a spanning tree (with |V| -1 edges) of the
connected component containing u.

4. If a graph G is not connected, then it takes multiple runs of

DFS to identify all G’s connected components.
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Graph Questions: Adapting DFS LASSONDE

e Given a (directed or undirected) graph G= (V, E):
o Find a path between vertex u and vertex v.
Start a DFS from v and stop as soon as v is encountered.
o Is vertex v reachable from vertex u?
No if a DFS starting from u never encounters v.
o Find all connected components of G.
e Continuously apply DFS’s until the entire set V is visited.
e Each DFS produces a subgraph representing a new CC.
o Given that G is connected, find a spanning tree of it.
G is connected. = G's only CC is its spanning tree.
e Given an undirected graph G = (V, E):
o Is G connected?
o Start a DFS from an arbitrary vertex, and count # of visited nodes.
o When the traversal completes, compare the counter value against | V/.
o Is G acyclic?
o Start a DFS from an arbitrary vertex.
e Return no (i.e., a cycle exists) as soon as a back edge is found.

37 otz



Graphs in Java: DL Node and List

For each graph, maintain two doubly-linked lists for vertices and edges.

public class DLNode<E> { /x*
private E element;
private DLNode<E> prev; private DLNode<E> next;
public DLNode (E e, DLNode<E> p, DLNode<E> n) { ...}

s for prev and next x/

/* setters : gett

public class DoublyLinkedList<E> {
private int size;
private DLNode<E> header; private DLNode<E> trailer;
public void remove (DLNode<E> node) {
DLNode<E> pred = node.getPrev();
DLNode<E> succ = node.getSucc();
pred.setNext (succ); succ.setPrev(pred);
node. setNext (null); node.setPrev(null);
size —-—;

}

33014
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Graphs in Java: Vertex and Edge

\n,

public class Vertex<V> {
private V element;
publlc Vertex(v element) { this.element = element; }

/* setter and getter for ele

public class Edge<E, V> {
private E element;
private Vertex<V> origin;
private Vertex<V> dest;

public Edge(E element) { this.element = element; }
/+ setters and getters for element, origin, and de:s N/
}
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Graphs in Java: Interface (1) LASSONDE

\n,

publlc interface Graph<V E> {

of

- A F NF Fha
r of edges of the

publlc 1nt numEdges () ;

vertex v. #*/

edges leav
public int outDegree(Vertex<V> v);
>r of edges for wh vertex v is the destination. =/

public 1nt 1nDegree(Vertex<V> v);

public int degree(Vertex<V> v);

35 otz
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Graphs in Java: Interface (2) LASSONDE

/
* /

rtex v 1s the des

publlc Iterable<Edge<E V>> incomingEdges (Vertex<V> v);

ac "cm ent. */

/* The edge from u to v, or n

public Edge<E > getEdge(Vertex<V> u, Vertex<V> v);

if they are not

3b otz
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Graphs in Java: Interface (3)

rtex,

/ I S
public Vertex<V> insertVertex(V element)

Vertex<V> v, E element);

public Edge<E, V> insertEdge(Vertex<V> u,

all

moves a vertex ar

public void removeVertex (Vertex<V> v);
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Graphs in Java: Edge List (1)

Each vertex or edge stores a reference to its position in the
respective vertex or edge list.
= O(1) deletion of the vertex or edge from the list.

public class EdgeListVertex<V> extends Vertex<V> ({
public DLNode<Vertex<V>> vertextListPosition;

/+ setter and getter for vertexListPosition #*/

public class EdgeListEdge<E, V> extends Edge<E, V> ({
public DLNbde<Edge<E V>> edgelListPosition;
/+ setter and getter for edgeListPosition #*/

}

38 or a2
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Graphs in Java: Edge List (2) LASSONDE

\n,

public class EdgeListGraph<V, E> implements Graph<V, E> {
private DoublyLinkedList<EdgeListVertex<V>> vertices;
private DoublyLinkedList<EdgeListEdge<E, V>> edges;
private boolean isDirected;

initialize an empty s
publlc EdgeLlstGraph(boolean 1sD1rected) {
vertices = new DoublyLinkedList<>();
edges = new DoublyLinkedList<>();
this.isDirected = isDirected;

39 ot 42



Graphs in Java: Edge List (3)
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