Graphs

EECS3101 E:
Design and Analysis of Algorithms

YO R K ' Fall 2025
U N R S T
U N S

| VE I E
Y 1 TY CHEN-WEI WANG

Learning Outcomes of this Lecture LASSONDE

ooooooooooooooooo

This module is designed to help you understand:
e Vocabulary of the Graph ADT

e Properties of Graphs

e Algorithms on Graphs

o Traversals: Depth-First Search vs. Breadth-First Search
o Topological Sort

o Minimum Spanning Trees (MST)

o Dijkstra’s Shortest Path Algorithm

* Proving Properties of Graphs
e Implementing Graphs in Java

Gl‘aphs: Definition fASSONDE

ooooooooooooooooo

A graph G=(V,E) represents relations that exist between
pairs of objects.

:

vertex= (A
city \
computer edge =
Web-page ©/ road ®
task cable

hyperlink
transition state

o A set V of objects: vertices (nodes)
o A set E of connections between objects: edges (arcs)
e Each edge (from E) is an ordered pair of vertices (from V).
o e.g., G=({AB,C,D,E,F},{(AB),(AC)(AE)(CD),(DE)(BF)})

Directed vs. Undirected Edges LASSONDE

ooooooooooooooooo

e An edge (u,v) connects two vertices u and v in the graph.
e Edge (u,v)is directed if it indicates the direction of travel.

O—®

o Vertex u is the origin.
o Vertex v is the destination.
o (u,v) = (v,u)

e Edge (u,v) is undirected if it does not indicate a direction.

O—®

° (u,v)=(v,u)
e 1 undirected edge (u, v) = 2 directed edges (u, v) and (v, u).

¢ Directions of edges represent dependency, order, or flow.

Self vs. Parallel Edges LASSONDE

* An edge (u, u), either directed or undirected, is called a

self-edge (or a self-loop). E

¢ Edges that have the same two end vertices are parallel edges
or multiple edges.

e.g., In a flight network graph, there are more than one airlines
flying between two Seoul and Vancouver.

* A simple graph has no self-loops and parallel edges.

Vertices LassoNDE

Given an edge (u,v):

e Vertices u and v are its two End vertices (Endpoints).
The two end vertices u and v is said to be adjacent.
Edge (u, v) is incident on the two end vertices u and v.
When edge (u, v) is directed:

o uis origin and v is destination

o Edge (u,v) is an outgoing edge of the origin u
o Edge (u,v) is an incoming edge of the destination u

The degree of a vertex v is the number of edges incident on v.

6 of 44

Exercise (1) LASSONDE

e End vertices of edge m? [A, B]
e Qutgoing edges of vertex A? [m, o]
 Incoming edges of vertex A? [q]
e Edges incident on vertex A? [m, o, q]
e Degree of vertex A? [3]

Directed vs. Undirected Graphs LASSONDE

¢ In a directed graph, all edges are directed.

e.g., dependency graphs (inheritance relationships, method
calls, efc.)

¢ In an undirected graph, all edges are undirected.
e.g., Subway map of Young-University Line
e In a mixed graph, some edges directed; some undirected.

e.g., A city map has street intersections as vertices and streets
as edges: each street may be one-way (a directed edge) or
both-way (an undirected edge).

8 of 44

Undirected Graph Example (1): London Tub@ssono:

HOOL OF ENGINEERING.

[rarsem=r ‘ Kensal Brondesbury @ Chalk Farm’ A2
Willesden Ji [Rise Park West Hampstead = ey
illesden Junction I Z A La > Road Caledoni
Z O aledoniar
Brondesbury Finchley Road Feamden Town Road &
" Kensal Green Barnsbury
H Swiss Cottage b e
Queen'sPark Kilburn South . Crescent
High Road Hampstead St. John's Wood King's Cross
st. Pancras

ilburn Park

Edgwafe Road v Baker GreatPoftland Euston
Maida Vale Oy Street Street =
Warwick gel
Avenue
old stre
Edgware arren Street Square
Royal Oak
Russell
Westbourne Park Square)
Ladbroke Grove Bayswater Soodge
Bond
N\ Latimer Road Street
Marble Arch, m
East White | X\ Shepherd's Nottin Tottenham,
Acton City Bush= Hitl Gage Court Road
2 >, Lancaster
North Holland Queensway te
Acton Park
(e Hyde Park Corner,
. \ Piccadilly’
D Shepherd’s =) High Street Kensington ircus Monume!
Bush Market ™| Kensington Gy) Mansion
5 T (Olympia) Knightsbridge = Charing fansion House
ross X
Barons Gloucester “ == Blackfriars i
Hammersmi Court Road s St. James's
) L Victoria Temple
)

P N g & /)
L) ~7
am Stamford Ravenscourt West Earl's south Sloane Wesurninszer Embankment &= Tondon
nf Brool Park Kensington Court Kensington Square _ - / Bridge ¥
_ L EN

scBPOL OF ENGINEERING.

Directed Graph Example (2): Class Inheritan Undirected Graph Example (2): Co-authorsh

SCHOOL OF ENGINEERING.

Snoeyink

smarphane
Goldwasser
108 Android . .
Goodrich Tamassia
R — sameung wre Tollis
JS—— GalneySoEdgerus — P—
]—[Preparata Chiang

LSSoNDE

Basic Properties of Graphs (1)

 Given a simple, undirected graph G = (V, E) with |E| = m:

Y degree(v)=2-m
veV

o Intuition: Each edge (u, v) contributes to degrees of both u and v.
o Formal Proof: Mathematical inductoin on |V/|.

¢ Prove that the claim still holds on graphs that are not simple.

LSSoNDE

Basic Properties of Graphs (2)

» Given a simple, directed graph G = (V, E) with |E| = m:

Y in-degree(v)= X

out—degree(V)
veV veV

o Intuition: Each directed edge (u, v) contributes to the
out-degree of origin u and the in-degree of destination v.
o Formal Proof: Mathematical inductoin on |V/|.

. [[h imple.
140If34r4ove that the claim still holds on graphs that are not simple

LSSoNDE

Basic Properties of Graphs (3)
 Given a simple, undirected graph G= (V,E), |V|=n, |[E|=m:

”.(” 1)
m< ——=
> ‘

e Intuition: Say V = {vy,vo,..., vy}
o Maximum value of m is obtained when each vertex is connected
to all other n—1 vertices: n-(n-1)
o Since G is undirected, for each pair of vertices v; and v;, we have

double-counted (v;, ;) and (v}, v;): (21

. .(n—1
« Gis a complete graph when m = *(2-1)

Paths and Cycles (1) VT

Givenagraph G=(V,E):
e A path of G is a sequence of alternating vertices and edges,
which starts and ends at vertices:
(vi,e1,V0,€2,...,Vay,6n1,Vn) VieV 1<i<neeE 1<j<n
e A cycle of G is a path of G with the same vertex appearing
more than once.

e A simple path of G is a path of G with distinct vertices.

e A simple cycle of G is a cycle of G with distinct vertices
(except the beginning and end vertices that form the cycle).

¢ Given two vertices u and v in G, vertex v is reachable from
vertex u if there exists a path of G such that its start vertex is
u and end vertex is v.
o Vertex v may be reachable from vertex u via more than one paths.
o Any of the reachable paths from u to v contains a cycle

= An infinite number of reachable paths from u to v.

Paths and Cycles (2) LASSONDE

Path =(F,s,D,t,E,p,F,n,B) Cycle=(E,p,F,n,B,m, A, 0,EtD,s,F,p, E)
Simple Path = (C, q, A, o, E) Simple Cycle = (E, t,D, 1, C, q, A, o, E)

Vertex F is reachable from vertex A via:

e (Am,B,nF)

* (A0,E,p,F)

e (Ao,E t,D,s,F)

LSSoNDE

Subgraphs vs. Spanning Subgraphs

Given agraph G=(V,E):
e A subgraph of G is another graph G’ = (V’, E’) such that

and that E’c E.

e-g-a G1 = ({Aa Ba C7D7E7F}a{m7q»r})

O @
/.®
o

* A spanning subgraph of G is another graph G’ = (V’, E) s.t.

and that E'c E.

eg., G.=({AB,C,D,E.F},{m,p,s,tr})

8
©

P

Connected Graph vs. Connected Componen:
Given agraph G=(V,E):
e G is connected: there is a path between any two vertices of G.
e.g., Spanning subgraph G. extended with the edge n, o, or g
e G’s connected components: G's maximal connected
subgraphs.
A CC is maximal in that it cannot be expanded any further.
e.g., How many connected components does the following

graph have? I:I : S E E

swer: 3

A
=\l
19 of 44/

LSSoNDE

Forests vs. Trees

e A forest is an undirected graph without cycles.
)
m B ® ®
Q o s
TN© 0)

Any two vertices are connected via at most one path.
o A forest may or may not be connected.
(Fvi,va e {vi, o} € V A ~connected(vq, V2)) = —~connected(Forest G)
¢ A freeis a connected forest.
Acyclic & Connected ‘:

o

Any two vertices are connected via exactly one path.
o e.g., Add either edge (E, F) or (E, D) to the above forest.

Spanning Trees

\wy

LSSoNDE

e A spanning tree of graph G: a spanning subgraph that is
also a tree
o = A spanning tree of G is a connected spanning subgraph of
G that contains no cycles.
o = -connected(G) = (3G ¢ G’ is a spanning tree of G)

o0

Spannlng Tree 1 Spannlng Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

21 of 44/

Exercise (2)

LSSoNDE

Given a graph

Which one of the following is a spanning tree?

(a) (b) (©)

e (a): spanning subgraph containing a cycle (.. not a tree).

¢ (b): tree but not spanning.

Basic Properties of Graphs (4) LASSONDE
Given G = (V, G) an undirected graph with |V|=n, |E|=m

m=n-1 if Gis aspanning tree

m<n-1 ifGisaforest
m>n-1 if Gisconnected
mzxn if G contains a cycle

o Prove the spanning tree case via mathematical induction on n :
e BaseCases: n=1=m=0,n=2=m=1,n=3=>m=2
o Inductive Cases: Assume that a spanning tree has n vertices and
n-1 edges.
¢ When adding a new vertex v’ into the existing graph, we may only
expand the existing spanning tree by connecting v’ to exactly one of
the existing vertices; otherwise there will be a cycle.
e This makes the new spanning tree contains n+ 1 vertices and n edges.
o When G is a forest, it may be unconnected = m<n-1
o When G is connected, it may contain cycles = m>n

e

-

SSCnDE

\u,

Graph Traversals: Definition

i
>

Given a graph G = (V, E):
e A traversal of G is a systematic procedure for examining all its
vertices V and edges E.

* A traversal of G is considered efficient if its running time is
linear on |V| and/or |E|. [e.g., O(JV|+]|E])]

24 of 44/

Graph Traversals: Applications

LSSoNDE

Fundamental questions about graphs involve reachability .
Given a graph G = (V, E) (directed or undirected):

¢ Given a vertex u, find all other vertices in G reachable from u.
e Given a vertex u and a vertex v:

o compute a path from u to v, or report that there is no such a path.
o compute a path from u to v that involves the minimum number of
edges, or report that there is no such a path.

¢ Determine whether or not G is connected.

Given that G is connected, compute a spanning tree of G.
Compute the connected components of G.

Identify a cycle in G, or report that G is acyclic.

Depth-First Search (DFS)

e A Depth-First Search (DFS) of graph G = (V, E),

starting from some vertex v € V, proceeds along a path from v.

o The path is constructed by following an incident edge.

o The path is extended as far as possible, until all incident edges
lead to vertices that have already been visited.

o Once the path originated from v cannot be extended further,
backtrack to the latest vertex whose incident edges lead to
some unvisited vertices.

¢ DFS resembles the preorder traversal in trees.

e Use a LIFO stack to keep track of the nodes to be visited.

DFS: Marking Vertices and Edges

LSSoNDE

Before the DFS starts:

o All vertices are unvisited.

¢ All edges are unexplored/unmarked.

Over the course of a DFS, we mark vertices and edges:

e A vertex v is marked visited when it is first encountered.
¢ Then, we iterate through each of v’s incident edges, say e:

o If edge e is already marked, then skip it.
o Otherwise, mark edge e as:

e A discovery edge if it leads to an unvisited vertex
o A back edge if it leads to a visited vertex (i.e., an ancestor vertex)

27 of 44/

DFS: lllustration (1.1) LAssONDE

unexplored edge

discovery edge

back edge

(1) (2)
A A
—
LY 2 @ @ G E Q G
unexplored vertex O
visited vertex [l G G

(4)

(5)
A A
B b| (& [B] b| (B

DFS: lllustration (1.2)

\wy

—

i2ONDE

ke

(6) (7)

edge AC visited first edge AD visited first

DFS: lllustration (2)

edge AE visited first

LSSoNDE

DFS: Properties LASSONDE

ke

1. Running Time?
o Every vertex is set as visited at most once.
o Each edge is set as either DISCOVERY or BACK at most once.
= O(m+n)

2. For a DFS starting from vertex u in a graph G = (V, E):
2.1 |visited nodes| = |V| = G is connected
2.2 |visited nodes| < |V| = G has > 1 connected components
2.3 There are no back edges = G is acyclic
3. For a DFS starting from vertex v in an undirected graph G:
3.1 The traversal visits all nodes in the connected component
containing u.
3.2 Discovery edges form a spanning tree (with |V| -1 edges) of the
connected component containing u.
4. If a graph G is not connected, then it takes multiple runs of

DFS to identify all G’s connected components.

Graph Questions: Adapting DFS LASSONDE

e Given a (directed or undirected) graph G= (V, E):
o Find a path between vertex u and vertex v.
Start a DFS from u and stop as soon as v is encountered.
o Is vertex v reachable from vertex u?
No if a DFS starting from v never encounters v.
o Find all connected components of G.
e Continuously apply DFS’s until the entire set V is visited.
e Each DFS produces a subgraph representing a new CC.
o Given that G is connected, find a spanning tree of it.
G is connected. = G's only CC is its spanning tree.
e Given an undirected graph G= (V, E):
o Is G connected?
e Start a DFS from an arbitrary vertex, and count # of visited nodes.
e When the traversal completes, compare the counter value against | V/|.
o Is G acyclic?
e Start a DFS from an arbitrary vertex.
e Return no (i.e., a cycle exists) as soon as a back edge is found.

e

Graphs in Java: DL Node and List e Graphs in Java: Interface (1) e

HOOL OF ENGINEERING.

For each graph, maintain two doubly-linked lists for vertices and edges. publlc interface Graph<v E> {
public class DLNode<E> { /x y—L */ publlc int numVertlces(

private E element;
private DLNode<E> prev; private DILNode<E> next; / % er of edges of
publlc DLNode (E e, DLNode<E> p, DLNode<E> n) { ...} public int numEdges () ;

ters for prev and next */

ices of the graph x/

publlc Iterable<Vertex<V>> vertices();

public class DoublyLinkedList<E> {
private int size;
private DLNode<E> header; private DLNode<E> trailer;
public void remove (DLNode<E> node) {
DLNode<E> pred = node.getPrev();
DLNode<E> succ = node.getSucc();
pred.setNext (succ); succ.setPrev(pred);
node.setNext (null); node.setPrev(null);
size ——;

/** Edges of the graph */

public Iterable<Edge<E, V>> edges|();

/ > f cl
publlc 1nt 1nDegree(Vertex<V> V) ;

public int degree(Vertex<V> v);

S Graphs in Java: Interface (2) o

HOOL OF ENGINEERING. HOOL OF ENGINEERING.

80 Alw,

Graphs in Java: Vertex and Edge

public class Vertex<V> {
private V element;

public Vertex(V element) { this.element = element; } /+ Edges for h v 1 I
ter for element x/ public Iterable<Edge<E, V>> outg01ngEdges(VerteX<V> v);

/* setter and ge

/% Edg

public Iterable<Edge<E V>> 1ncom1ngEdges(Vertex<V> v);

public class Edge<E, V> {
private E element; /+ The edge . ¢ . 7 A .) -
private Vertex<V> origin; public Edge<E V> getEdge(Vertex<V> u, Vertex<v> v);
private Vertex<V> dest;

public Edge(E element) { this.element = element }

/ *

1d L'L ters

36 of 44

Graphs in Java: Interface (3)

ASSONDE

ELg

storing given

publlc Vertex<V> insertVertex(V element);

/e T fo a2 new ver
/+ Inserts a new vertex,

public Edge<E, V> insertEdge (Vertex<V> u,

Vertex<Vv> v,

E element) ;

37 of 44

Graphs in Java: Edge List (1)

g\

SSCnDE

sC

g

Each vertex or edge stores a reference to its position in the

respective vertex or edge list.

= O(1) deletion of the vertex or edge from the list.

public class EdgeListVertex<V> extends Vertex<V> ({
public DLNode<Vertex<V>> vertextListPosition;

cotter nAd cetrtrer for er
/+ setter and getter for ve

}

texListPosition */

public class EdgeListEdge<E, V> extends Edge<E, V>
public DLNbde<Edge<E v>> edgeLlstP051tlon,

/ cptFtor 1 O s T f w nT o
/+ setter and gette: or edgelLis

}

{

38 of 44

Graphs in Java: Edge List (2)

ELg

ASSONDE

public class EdgeListGraph<V, E> implements Graph<V, E> ({
private DoublyLinkedList<EdgeListVertex<V>> vertices;
private DoublyLinkedList<EdgeListEdge<E, V>> edges;
private boolean isDirected;

/ initialize an ty

publlc EdgeLlstGraph(boolean isDirected) {
vertices = new DoublyLinkedList<>();
edges = new DoublyLinkedList<>();
this.isDirected = isDirected;

}

aph */

39 of 44

Graphs in Java: Edge List (3)

L\

SSCnDE

sCHooL o

R

Index (1) LassoNpE

|[Learning Outcomes of this Lecture|

|Graphs: Definition|
IDirected vs. Undirected Edges|
[Self vs. Parallel Edges|

Exercise (1)

[Directed vs. Undirected Graphs|
IDirected Graph Example (1): A Flight Network|
[Directed Graph Example (2): Class Inheritance|

[Undirected Graph Example (1): London Tube|

|Undirected Graph Example (2): Co-authorship|

Index (2) :AssoNDE

|Basic Properties of Graphs (1)|

[Basic Properties of Graphs (2)|

[Basic Properties of Graphs (3)|
[Paths and Cycles (1)|

[Paths and Cycles (2)|

|[Subgraphs vs. Spanning Subgraphs|

|Connected Graph vs. Connected Components|

[Forests vs. Trees|

[Spanning Trees|

Exercise (2)

[Basic Properties of Graphs (4)|

Index (3) LassoNDE

|Graph Traversals: Definition|

|Graph Traversals: Applications|
[Depth-First Search (DFS)|

IDFS: Marking Vertices and Edges|
[DFS: lllustration (1.1)|

[DFS: lllustration (1.2)|

[DFS: lllustration (2)|

DFS: Properties|

|Graph Questions: Adapting DFS|
|Graphs in Java: DL Node and List|

|Graphs in Java: Vertex and Edge|

Index (4) :AssoNDE

|Graphs in Java: Interface (1)|

|Graphs in Java: Interface (2)|

|Graphs in Java: Interface (3)|
|Graphs in Java: Edge List (1)|
|Graphs in Java: Edge List (2)|
|Graphs in Java: Edge List (3)|

