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Learning Outcomes of this Lecture

This module is designed to help you understand:
● Vocabulary of the Graph ADT
● Properties of Graphs
● Algorithms on Graphs○ Traversals: Depth-First Search vs. Breadth-First Search○ Topological Sort○ Minimum Spanning Trees (MST)○ Dijkstra’s Shortest Path Algorithm
● Proving Properties of Graphs
● Implementing Graphs in Java
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Graphs: Definition

A graph G = (V ,E) represents relations that exist between
pairs of objects.

2

Graph   Graph   – most general data structure - consists of set of vertices (V)
and a set of edges (E) that connect vertices  – G = {V, E}   

Graphs

• vertices can also be referred to as nodes

• in Graph ADT, both vertices and edges are Positions, i.e they
store elements   (e.g.  v.element(),  e.element())

Application Application – road maps, computer networks, WWW, activity charts

(Are two points connected?   What is the shortest path between them?   etc. )

A

B
E

F
D

C

vertex =
city

computer
Web-page

task

edge =
road
cable

hyperlink
transition state

○ A set V of objects: vertices (nodes)○ A set E of connections between objects: edges (arcs)
● Each edge (from E) is an ordered pair of vertices (from V ).○ e.g., G = ({A,B,C,D,E ,F},{(A,B), (A,C), (A,E), (C,D), (D,E), (B,F)})

3 of 44

Directed vs. Undirected Edges

● An edge (u,v) connects two vertices u and v in the graph.
● Edge (u,v) is directed if it indicates the direction of travel.

u v

○ Vertex u is the origin.○ Vertex v is the destination.○ (u,v) ≠ (v ,u)
● Edge (u,v) is undirected if it does not indicate a direction.

u v

○ (u,v) = (v ,u)
● 1 undirected edge (u,v) ≡ 2 directed edges (u,v) and (v ,u).
● Directions of edges represent dependency, order, or flow.
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Self vs. Parallel Edges

● An edge (u,u), either directed or undirected, is called a
self-edge (or a self-loop).

u

● Edges that have the same two end vertices are parallel edges

or multiple edges.

u v

e.g., In a flight network graph, there are more than one airlines
flying between two Seoul and Vancouver.

● A simple graph has no self-loops and parallel edges.
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Vertices

Given an edge (u,v):
● Vertices u and v are its two End vertices (Endpoints).
● The two end vertices u and v is said to be adjacent .
● Edge (u,v) is incident on the two end vertices u and v .
● When edge (u,v) is directed:○ u is origin and v is destination○ Edge (u,v) is an outgoing edge of the origin u○ Edge (u,v) is an incoming edge of the destination u

● The degree of a vertex v is the number of edges incident on v .
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Exercise (1)

5

Graphs:   Types of Vertices

End Vertices (Endpoints) of an EdgeEnd Vertices (Endpoints) of an Edge – two vertices joined by the edge

Adjacent VerticesAdjacent Vertices – endpoints of the same edge

• in a directed edge, the first endpoint
is origin and the other is destination 
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Edge Incident on VertexEdge Incident on Vertex – vertex is one of the edge’s endpoints

Outgoing Edges of a VertexOutgoing Edges of a Vertex – directed edges that originate at the vertex

Incoming Edges of a VertexIncoming Edges of a Vertex – directed edges that terminated at the vertex

Degree of a VertexDegree of a Vertex – deg(v) = number of incoming and outgoing edges of v
= number of edges incident on v

● End vertices of edge m? [A, B]
● Outgoing edges of vertex A? [m, o]
● Incoming edges of vertex A? [q]
● Edges incident on vertex A? [m, o, q]
● Degree of vertex A? [3]
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Directed vs. Undirected Graphs

● In a directed graph, all edges are directed.
e.g., dependency graphs (inheritance relationships, method
calls, etc.)

● In an undirected graph, all edges are undirected.
e.g., Subway map of Young-University Line

● In a mixed graph, some edges directed; some undirected.
e.g., A city map has street intersections as vertices and streets
as edges: each street may be one-way (a directed edge) or
both-way (an undirected edge).
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Directed Graph Example (1): A Flight Network
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Directed Graph Example (2): Class Inheritance

IPhone6s IPhone6sPlus Samsung HTC

IOS Android

SmartPhone

GalaxyS6Edge GalaxyS6EdgePlus HTCOneA9 HTCOneM9

10 of 44

Undirected Graph Example (1): London Tube
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Undirected Graph Example (2): Co-authorship

Chiang

Goldwasser

TamassiaGoodrich

GargSnoeyink

Tollis

Vitter Preparata
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Basic Properties of Graphs (1)

● Given a simple, undirected graph G = (V ,E) with �E � =m:

⌃
v ∈ V

degree(v) = 2 ⋅m

6

Graph:   Basic Properties

Property 1:Property 1: If G is a graph with m edges then 2mdeg(v)
Gv

=∑
∈

A

B
E

F

DC

m
n

o
p

q
r

s

ProofProof On the left-hand side, every undirected edge (u,v) is counted twice – once 
by its endpoint u and once by its endpoint v.  

Property 2:Property 2: If G is a directed graph, then  

ProofProof Each directed edge (u,v) contributes once to indeg sum of its origin, and
once to outdeg sum of its destination

moutdeg(v)indeg(v)
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Gv
+++=∑

∈

○ Intuition: Each edge (u,v) contributes to degrees of both u and v .○ Formal Proof : Mathematical inductoin on �V �.
● Prove that the claim still holds on graphs that are not simple.
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Basic Properties of Graphs (2)

● Given a simple, directed graph G = (V ,E) with �E � =m:

⌃
v ∈ V

in-degree(v) = ⌃
v ∈ V

out-degree(v)

6

Graph:   Basic Properties

Property 1:Property 1: If G is a graph with m edges then 2mdeg(v)
Gv
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ProofProof On the left-hand side, every undirected edge (u,v) is counted twice – once 
by its endpoint u and once by its endpoint v.  

Property 2:Property 2: If G is a directed graph, then  

ProofProof Each directed edge (u,v) contributes once to indeg sum of its origin, and
once to outdeg sum of its destination
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○ Intuition: Each directed edge (u,v) contributes to the
out-degree of origin u and the in-degree of destination v .○ Formal Proof : Mathematical inductoin on �V �.

● Prove that the claim still holds on graphs that are not simple.
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Basic Properties of Graphs (3)

● Given a simple, undirected graph G = (V ,E), �V � = n, �E � =m:

m ≤ n ⋅ (n − 1)
2

7

Graphs:   Basic Properties   (cont.)

Property 3:Property 3: In a simple undirected graph with n vertices and m edges  
(no self-loops and parallel edges)  the following must hold

2
1)n(nm −

≤

ProofProof Assume all n vertexes are mutually connected (case with max # of edges).
Such a graph is called complete.
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a graph with n nodes

● Intuition: Say V = {v1,v2, . . . ,vn}○ Maximum value of m is obtained when each vertex is connected
to all other n − 1 vertices: n ⋅ (n − 1)○ Since G is undirected, for each pair of vertices vi and vj , we have
double-counted (vi ,vj) and (vj ,vi): n⋅(n−1)

2● G is a complete graph when m = n⋅(n−1)
2
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Paths and Cycles (1)

Given a graph G = (V ,E):● A path of G is a sequence of alternating vertices and edges,
which starts and ends at vertices:
�v1,e1,v2,e2, . . . ,vn−1,en−1,vn� vi ∈ V ,1 ≤ i ≤ n,ej ∈ E ,1 ≤ j < n

● A cycle of G is a path of G with the same vertex appearing
more than once.

● A simple path of G is a path of G with distinct vertices.
● A simple cycle of G is a cycle of G with distinct vertices

(except the beginning and end vertices that form the cycle).● Given two vertices u and v in G, vertex v is reachable from
vertex u if there exists a path of G such that its start vertex is
u and end vertex is v .○ Vertex v may be reachable from vertex u via more than one paths.○ Any of the reachable paths from u to v contains a cycle⇒ An infinite number of reachable paths from u to v .
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Paths and Cycles (2)

8

Graphs:   Paths and Cycles

Path  Path  – sequence of alternating vertices and edges – starts at a vertex 
and ends at a vertex

Simple Path  Simple Path  – each vertex in the path is distinct

Cycle  Cycle  – path with identical start and end vertex

Simple Cycle  Simple Cycle  – each vertex in the cycle is distinct
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Path = (F, s, D, t, E, p, F, n, B) 

Simple Path = (C, q, A, o, E) 

Cycle = (E, p, F, n, B, m, A, o, E, t, D, s, F, p, E) 

Simple Cycle = (E, t, D, r, C, q, A, o, E) 
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Graphs:   Paths and Cycles

Path  Path  – sequence of alternating vertices and edges – starts at a vertex 
and ends at a vertex

Simple Path  Simple Path  – each vertex in the path is distinct

Cycle  Cycle  – path with identical start and end vertex

Simple Cycle  Simple Cycle  – each vertex in the cycle is distinct
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Path = (F, s, D, t, E, p, F, n, B) 

Simple Path = (C, q, A, o, E) 

Cycle = (E, p, F, n, B, m, A, o, E, t, D, s, F, p, E) 

Simple Cycle = (E, t, D, r, C, q, A, o, E) 

Vertex F is reachable from vertex A via:
● (A,m,B,n,F)
● (A,o,E ,p,F)
● (A,o,E , t ,D,s,F)
. . .
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Subgraphs vs. Spanning Subgraphs

Given a graph G = (V ,E):● A subgraph of G is another graph G
′ = (V’,E’) such that

V’ ⊆ V and that E’ ⊆ E .
e.g., G1 = ({A,B,C,D,E ,F},{m,q, r})

9

Graphs:   Subgraphs   

Subgraph  Subgraph  – graph in G whose vertices and edges are subset of vertices
and edges of G
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Subgraph =
{A, B, C, D} U {m, q, r} 
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Spanning Spanning Subgraph  Subgraph  – subgraph in G that contains all the vertices of G

Spanning Subgraph = 
= {A, B, C, D, E, F} U {m, o, p, s, t, r}  

Connected Graph  Connected Graph  – for any two vertices there is a path between them

Connected Components of a Graph  Connected Components of a Graph  – maximal connected subgraphs
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Graph with 2 
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C
D

● A spanning subgraph of G is another graph G
′ = (V’,E’) s.t.

V’ = V and that E’ ⊆ E .
e.g., G2 = ({A,B,C,D,E ,F},{m,p,s, t , r})

9

Graphs:   Subgraphs   

Subgraph  Subgraph  – graph in G whose vertices and edges are subset of vertices
and edges of G
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Spanning Spanning Subgraph  Subgraph  – subgraph in G that contains all the vertices of G

Spanning Subgraph = 
= {A, B, C, D, E, F} U {m, o, p, s, t, r}  

Connected Graph  Connected Graph  – for any two vertices there is a path between them

Connected Components of a Graph  Connected Components of a Graph  – maximal connected subgraphs
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Connected Graph vs. Connected Components

Given a graph G = (V ,E):
● G is connected : there is a path between any two vertices of G.

e.g., Spanning subgraph G2 extended with the edge n, o, or q● G’s connected components: G’s maximal connected

subgraphs.
A CC is maximal in that it cannot be expanded any further.
e.g., How many connected components does the following
graph have?

Answer: 3
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Forests vs. Trees

● A forest is an undirected graph without cycles.

11

Graphs:   Forests and Trees   

Forest  Forest  – undirected graph without cycles

Free Tree  Free Tree  – connected forest  (free = has no root)

Spanning Tree  Spanning Tree  – subgraph of G that contains all of G’s vertices and 
enough of its edges to form a tree

• undirected connected graph without cycles 
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Forest
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F
p

Spanning Tree

• in a graph with cycles there is more than one spanning tree 

C D

• connected components of a forest are free trees

○ Acyclic :

Any two vertices are connected via at most one path.○ A forest may or may not be connected .
(∃v1, v2 ● {v1, v2} ⊆ V ∧ ¬connected(v1, v2))⇒ ¬connected(Forest G)

● A tree is a connected forest .
○ Acyclic & Connected :

Any two vertices are connected via exactly one path.○ e.g., Add either edge (E ,F) or (E ,D) to the above forest.
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Spanning Trees

● A spanning tree of graph G: a spanning subgraph that is
also a tree○ ⇒ A spanning tree of G is a connected spanning subgraph of

G that contains no cycles.○ ⇒ ¬connected(G)⇒ ¬(∃G′ ●G’ is a spanning tree of G)
12

Graphs:   Forests and Trees   

Example 2 [ spanning trees ]
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Are there any other spanning threes besides these?   Find them! 
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Are there any other spanning threes besides these?   Find them! 
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Exercise (2)

Given a graph

Which one of the following is a spanning tree?

(a) (b) (c)

● (a): spanning subgraph containing a cycle (∴ not a tree).● (b): tree but not spanning.
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Basic Properties of Graphs (4)

Given G = (V ,G) an undirected graph with �V � = n, �E � =m:
�����������������

m = n − 1 if G is a spanning tree
m ≤ n − 1 if G is a forest
m ≥ n − 1 if G is connected
m ≥ n if G contains a cycle

○ Prove the spanning tree case via mathematical induction on n :
● Base Cases: n = 1⇒ m = 0, n = 2⇒ m = 1, n = 3⇒ m = 2● Inductive Cases: Assume that a spanning tree has n vertices and

n − 1 edges.● When adding a new vertex v
′ into the existing graph, we may only

expand the existing spanning tree by connecting v
′ to exactly one of

the existing vertices; otherwise there will be a cycle.● This makes the new spanning tree contains n + 1 vertices and n edges.○ When G is a forest , it may be unconnected⇒ m < n − 1○ When G is connected, it may contain cycles ⇒ m ≥ n
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Graph Traversals: Definition

Given a graph G = (V, E):
● A traversal of G is a systematic procedure for examining all its

vertices V and edges E.
● A traversal of G is considered efficient if its running time is

linear on �V� and/or �E�. [ e.g., O(�V � + �E �) ]
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Graph Traversals: Applications

Fundamental questions about graphs involve reachability .
Given a graph G = (V, E) (directed or undirected):
● Given a vertex u, find all other vertices in G reachable from u.
● Given a vertex u and a vertex v:○ compute a path from u to v, or report that there is no such a path.○ compute a path from u to v that involves the minimum number of

edges, or report that there is no such a path.
● Determine whether or not G is connected .
● Given that G is connected , compute a spanning tree of G.
● Compute the connected components of G.
● Identify a cycle in G, or report that G is acyclic.
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Depth-First Search (DFS)

● A Depth-First Search (DFS) of graph G = (V, E),
starting from some vertex v ∈ V , proceeds along a path from v .○ The path is constructed by following an incident edge.○ The path is extended as far as possible, until all incident edges

lead to vertices that have already been visited .○ Once the path originated from v cannot be extended further,
backtrack to the latest vertex whose incident edges lead to
some unvisited vertices.

3

Depth-First Search (DFS) in Undirected Graphs

Depth First Search  Depth First Search  – traversal that proceeds along a path from v as
far into the graph as possible, before backing up

NOTE:  DFS resembles “preorder” traversal in trees!

Example 1 [ visitation order for DFS ]

C

G
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B D

E F

H

(1)

(2)

(3)

(4) (5)

(6)

(7) (8)

• DFS is useful for:  
(1) finding a path from one vertex to another,  
(2) determining whether or not a graph is connected
(3) finding a spanning tree of a connected graph, etc. 

● DFS resembles the preorder traversal in trees.
● Use a LIFO stack to keep track of the nodes to be visited.
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DFS: Marking Vertices and Edges

Before the DFS starts:
● All vertices are unvisited .
● All edges are unexplored/unmarked.
Over the course of a DFS, we mark vertices and edges:
● A vertex v is marked visited when it is first encountered.
● Then, we iterate through each of v ’s incident edges, say e:○ If edge e is already marked, then skip it.○ Otherwise, mark edge e as:

● A discovery edge if it leads to an unvisited vertex● A back edge if it leads to a visited vertex (i.e., an ancestor vertex)
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DFS: Illustration (1.1)
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Depth-First Search   (cont.)

Example 2 [ recursive DFS(G,v)  on a graph with cycles ]
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Depth-First Search   (cont.)
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DFS: Illustration (1.2)
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DFS: Illustration (2)
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DFS: Properties

1. Running Time?○ Every vertex is set as visited at most once.○ Each edge is set as either DISCOVERY or BACK at most once.
⇒ O(m + n)

2. For a DFS starting from vertex u in a graph G = (V, E):
2.1 �visited nodes� = �V �⇒ G is connected

2.2 �visited nodes� < �V �⇒ G has > 1 connected components

2.3 There are no back edges ⇒ G is acyclic

3. For a DFS starting from vertex u in an undirected graph G:
3.1 The traversal visits all nodes in the connected component

containing u.
3.2 Discovery edges form a spanning tree (with �V �− 1 edges) of the

connected component containing u.
4. If a graph G is not connected , then it takes multiple runs of

DFS to identify all G’s connected components.
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Graph Questions: Adapting DFS

● Given a (directed or undirected) graph G = (V ,E):○ Find a path between vertex u and vertex v .
Start a DFS from u and stop as soon as v is encountered.○ Is vertex v reachable from vertex u?
No if a DFS starting from u never encounters v .○ Find all connected components of G.

● Continuously apply DFS’s until the entire set V is visited.● Each DFS produces a subgraph representing a new CC.○ Given that G is connected , find a spanning tree of it.
G is connected. ⇒ G’s only CC is its spanning tree.● Given an undirected graph G = (V ,E):○ Is G connected?

● Start a DFS from an arbitrary vertex, and count # of visited nodes.● When the traversal completes, compare the counter value against �V �.○ Is G acyclic?
● Start a DFS from an arbitrary vertex.● Return no (i.e., a cycle exists) as soon as a back edge is found.
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Graphs in Java: DL Node and List

For each graph, maintain two doubly-linked lists for vertices and edges.

public class DLNode<E> { /* Doubly-Linked Node */
private E element;
private DLNode<E> prev; private DLNode<E> next;
public DLNode(E e, DLNode<E> p, DLNode<E> n) { . . . }
/* setters and getters for prev and next */

}

public class DoublyLinkedList<E> {
private int size;
private DLNode<E> header; private DLNode<E> trailer;
public void remove (DLNode<E> node) {
DLNode<E> pred = node.getPrev();
DLNode<E> succ = node.getSucc();
pred.setNext(succ); succ.setPrev(pred);
node.setNext(null); node.setPrev(null);
size --;

}
}
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Graphs in Java: Vertex and Edge

public class Vertex<V> {
private V element;
public Vertex(V element) { this.element = element; }
/* setter and getter for element */

}

public class Edge<E, V> {
private E element;
private Vertex<V> origin;
private Vertex<V> dest;
public Edge(E element) { this.element = element; }
/* setters and getters for element, origin, and destination */

}
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Graphs in Java: Interface (1)

public interface Graph<V,E> {
/* Number of vertices of the graph */
public int numVertices();

/* Number of edges of the graph */
public int numEdges();

/* Vertices of the graph */
public Iterable<Vertex<V>> vertices();

/** Edges of the graph */
public Iterable<Edge<E, V>> edges();

/* Number of edges leaving vertex v. */
public int outDegree(Vertex<V> v);

/* Number of edges for which vertex v is the destination. */
public int inDegree(Vertex<V> v);

public int degree(Vertex<V> v);
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Graphs in Java: Interface (2)

/* Edges for which vertex v is the origin. */
public Iterable<Edge<E, V>> outgoingEdges(Vertex<V> v);

/* Edges for which vertex v is the destination. */
public Iterable<Edge<E, V>> incomingEdges(Vertex<V> v);

/* The edge from u to v, or null if they are not adjacent. */
public Edge<E, V> getEdge(Vertex<V> u, Vertex<V> v);
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Graphs in Java: Interface (3)

/* Inserts a new vertex, storing given element. */
public Vertex<V> insertVertex(V element);

/* Inserts a new edge between vertices u and v,
* storing given element.
*/
public Edge<E, V> insertEdge(Vertex<V> u, Vertex<V> v, E element);

/* Removes a vertex and all its incident edges from the graph. */
public void removeVertex(Vertex<V> v);

/* Removes an edge from the graph. */
public void removeEdge(Edge<E, V> e);

} /* end Graph */
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Graphs in Java: Edge List (1)

Each vertex or edge stores a reference to its position in the
respective vertex or edge list.⇒ O(1) deletion of the vertex or edge from the list.
public class EdgeListVertex<V> extends Vertex<V> {
public DLNode<Vertex<V>> vertextListPosition;
/* setter and getter for vertexListPosition */

}

public class EdgeListEdge<E, V> extends Edge<E, V> {
public DLNode<Edge<E, V>> edgeListPosition;
/* setter and getter for edgeListPosition */

}
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Graphs in Java: Edge List (2)

public class EdgeListGraph<V, E> implements Graph<V, E> {
private DoublyLinkedList<EdgeListVertex<V>> vertices;
private DoublyLinkedList<EdgeListEdge<E, V>> edges;
private boolean isDirected;

/* initialize an empty graph */
public EdgeListGraph(boolean isDirected) {
vertices = new DoublyLinkedList<>();
edges = new DoublyLinkedList<>();
this.isDirected = isDirected;

}
...

}
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Graphs in Java: Edge List (3)

19

1.   Edge List Structure   (cont.)

Edge List Structure  Edge List Structure  – the simples implementation of a graph
• each vertex / edge is represented by an object

• all vertices are stored in container V, all edges 
are stored in container E

• direct access from edges to the vertices they are
incident upon is provided – endVertices, origin,
destination, opposite run in O(1) time

• access to edges incident upon a given vertex is
inefficient – all edge objects must be inspected 

A

CB

D
A B C D

o p

q

r

o p q r

E

V
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