
Graphs

EECS3101 E:
Design and Analysis of Algorithms

Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:
● Vocabulary of the Graph ADT
● Properties of Graphs
● Algorithms on Graphs○ Traversals: Depth-First Search vs. Breadth-First Search○ Topological Sort○ Minimum Spanning Trees (MST)○ Dijkstra’s Shortest Path Algorithm
● Proving Properties of Graphs
● Implementing Graphs in Java

2 of 44

Graphs: Definition

A graph G = (V ,E) represents relations that exist between
pairs of objects.

2

Graph Graph – most general data structure - consists of set of vertices (V)
and a set of edges (E) that connect vertices – G = {V, E}

Graphs

• vertices can also be referred to as nodes

• in Graph ADT, both vertices and edges are Positions, i.e they
store elements (e.g. v.element(), e.element())

Application Application – road maps, computer networks, WWW, activity charts

(Are two points connected? What is the shortest path between them? etc.)

A

B
E

F
D

C

vertex =
city

computer
Web-page

task

edge =
road
cable

hyperlink
transition state

○ A set V of objects: vertices (nodes)○ A set E of connections between objects: edges (arcs)
● Each edge (from E) is an ordered pair of vertices (from V).○ e.g., G = ({A,B,C,D,E ,F},{(A,B), (A,C), (A,E), (C,D), (D,E), (B,F)})

3 of 44

Directed vs. Undirected Edges

● An edge (u,v) connects two vertices u and v in the graph.
● Edge (u,v) is directed if it indicates the direction of travel.

u v

○ Vertex u is the origin.○ Vertex v is the destination.○ (u,v) ≠ (v ,u)
● Edge (u,v) is undirected if it does not indicate a direction.

u v

○ (u,v) = (v ,u)
● 1 undirected edge (u,v) ≡ 2 directed edges (u,v) and (v ,u).
● Directions of edges represent dependency, order, or flow.
4 of 44

Self vs. Parallel Edges

● An edge (u,u), either directed or undirected, is called a
self-edge (or a self-loop).

u

● Edges that have the same two end vertices are parallel edges

or multiple edges.

u v

e.g., In a flight network graph, there are more than one airlines
flying between two Seoul and Vancouver.

● A simple graph has no self-loops and parallel edges.
5 of 44

Vertices

Given an edge (u,v):
● Vertices u and v are its two End vertices (Endpoints).
● The two end vertices u and v is said to be adjacent .
● Edge (u,v) is incident on the two end vertices u and v .
● When edge (u,v) is directed:○ u is origin and v is destination○ Edge (u,v) is an outgoing edge of the origin u○ Edge (u,v) is an incoming edge of the destination u

● The degree of a vertex v is the number of edges incident on v .

6 of 44

Exercise (1)

5

Graphs: Types of Vertices

End Vertices (Endpoints) of an EdgeEnd Vertices (Endpoints) of an Edge – two vertices joined by the edge

Adjacent VerticesAdjacent Vertices – endpoints of the same edge

• in a directed edge, the first endpoint
is origin and the other is destination

A

B
E

F

DC

m

n

o
p

q
r

s

Edge Incident on VertexEdge Incident on Vertex – vertex is one of the edge’s endpoints

Outgoing Edges of a VertexOutgoing Edges of a Vertex – directed edges that originate at the vertex

Incoming Edges of a VertexIncoming Edges of a Vertex – directed edges that terminated at the vertex

Degree of a VertexDegree of a Vertex – deg(v) = number of incoming and outgoing edges of v
= number of edges incident on v

● End vertices of edge m? [A, B]
● Outgoing edges of vertex A? [m, o]
● Incoming edges of vertex A? [q]
● Edges incident on vertex A? [m, o, q]
● Degree of vertex A? [3]
7 of 44

Directed vs. Undirected Graphs

● In a directed graph, all edges are directed.
e.g., dependency graphs (inheritance relationships, method
calls, etc.)

● In an undirected graph, all edges are undirected.
e.g., Subway map of Young-University Line

● In a mixed graph, some edges directed; some undirected.
e.g., A city map has street intersections as vertices and streets
as edges: each street may be one-way (a directed edge) or
both-way (an undirected edge).

8 of 44

Directed Graph Example (1): A Flight Network

ORD

MIA

N
W

3
5

A
A

9
0
3 D

L
2
4
7

D
L

3
3
5

AA 49

AA 411

AA 523

U
A

12
0

U
A

8
7
7

SW 45

A
A

1387

DFW

LAX

SFO

BOS

JFK

9 of 44

Directed Graph Example (2): Class Inheritance

IPhone6s IPhone6sPlus Samsung HTC

IOS Android

SmartPhone

GalaxyS6Edge GalaxyS6EdgePlus HTCOneA9 HTCOneM9

10 of 44

Undirected Graph Example (1): London Tube

2

1

1

1

River Thames

Regent’s Park

Goodge
StreetBayswater

Warren Street

Farringdon

Barbican

Russell
Square

High Street Kensington

Old Street

Green Park

Baker
Street

Notting
Hill Gate

Victoria

Mansion House

Temple

Oxford
Circus

Bond
Street

Westminster

Piccadilly
Circus

Charing
Cross

Holborn

Monument

Moorgate

Leicester Square
St. Paul’s

Hyde Park Corner

Knightsbridge

Angel

Queensway

Marble Arch

South
Kensington

Sloane
Square

Covent Garden

Liverpool
Street

Great Portland
Street

Bank

Chancery Lane

Lancaster
GateHolland

Park

Cannon Street

Fenchurch Street

Gloucester
Road St. James’s

Park

Euston
SquareEdgware

Road

Edgware Road

Embankment

Blackfriars

Tottenham
Court Road

King’s Cross
St. Pancras

MarylebonePaddington

Kensal Green

Queen’s Park

Harlesden

Willesden Junction

Kilburn Park

Warwick
Avenue

Maida Vale
Euston

Shepherd’s
Bush

Kensington
(Olympia)

Caledonian Road
Chalk Farm

Camden Town

Mornington
Crescent

Camden
Road

Caledonian
Road &

Barnsbury
Swiss Cottage

Kilburn

West Hampstead

Finchley Road

St. John’s Wood

Gunnersbury

Turnham
Green

Stamford
Brook

Ravenscourt
Park

West
Kensington

Barons
Court

Earl’s
Court

Shepherd’s
Bush Market

Goldhawk Road

Hammersmith

Wood Lane

White
City

Kensal
Rise

Brondesbury
Park

Brondesbury

Kilburn
High Road

South
Hampstead

North
Acton

East
Acton

Waterloo

London
Bridge

Latimer Road

Ladbroke Grove

Royal Oak

Westbourne Park

Acton Central

South Acton

11 of 44

Undirected Graph Example (2): Co-authorship

Chiang

Goldwasser

TamassiaGoodrich

GargSnoeyink

Tollis

Vitter Preparata

12 of 44

Basic Properties of Graphs (1)

● Given a simple, undirected graph G = (V ,E) with �E � =m:

⌃
v ∈ V

degree(v) = 2 ⋅m

6

Graph: Basic Properties

Property 1:Property 1: If G is a graph with m edges then 2mdeg(v)
Gv

=∑
∈

A

B
E

F

DC

m
n

o
p

q
r

s

ProofProof On the left-hand side, every undirected edge (u,v) is counted twice – once
by its endpoint u and once by its endpoint v.

Property 2:Property 2: If G is a directed graph, then

ProofProof Each directed edge (u,v) contributes once to indeg sum of its origin, and
once to outdeg sum of its destination

moutdeg(v)indeg(v)
GvGv

==∑∑
∈∈

A

B
E

F

DC

m
n

o
p

q
r

s

)deg(v...)deg(v)deg(vdeg(v) n21

Gv
+++=∑

∈

○ Intuition: Each edge (u,v) contributes to degrees of both u and v .○ Formal Proof : Mathematical inductoin on �V �.
● Prove that the claim still holds on graphs that are not simple.
13 of 44

Basic Properties of Graphs (2)

● Given a simple, directed graph G = (V ,E) with �E � =m:

⌃
v ∈ V

in-degree(v) = ⌃
v ∈ V

out-degree(v)

6

Graph: Basic Properties

Property 1:Property 1: If G is a graph with m edges then 2mdeg(v)
Gv

=∑
∈

A

B
E

F

DC

m
n

o
p

q
r

s

ProofProof On the left-hand side, every undirected edge (u,v) is counted twice – once
by its endpoint u and once by its endpoint v.

Property 2:Property 2: If G is a directed graph, then

ProofProof Each directed edge (u,v) contributes once to indeg sum of its origin, and
once to outdeg sum of its destination

moutdeg(v)indeg(v)
GvGv

==∑∑
∈∈

A

B
E

F

DC

m
n

o
p

q
r

s

)deg(v...)deg(v)deg(vdeg(v) n21

Gv
+++=∑

∈

○ Intuition: Each directed edge (u,v) contributes to the
out-degree of origin u and the in-degree of destination v .○ Formal Proof : Mathematical inductoin on �V �.

● Prove that the claim still holds on graphs that are not simple.
14 of 44

Basic Properties of Graphs (3)

● Given a simple, undirected graph G = (V ,E), �V � = n, �E � =m:

m ≤ n ⋅ (n − 1)
2

7

Graphs: Basic Properties (cont.)

Property 3:Property 3: In a simple undirected graph with n vertices and m edges
(no self-loops and parallel edges) the following must hold

2
1)n(nm −

≤

ProofProof Assume all n vertexes are mutually connected (case with max # of edges).
Such a graph is called complete.

A

DC

B

E

2
1)-n(n 1 ... 2)-(n 1)-(nm =+++=

)deg(v..)deg(v)deg(v)deg(vm },..,v,v{v-G in
n

},v{v-G in
3

}{v-G in
2

G in
1 1-n21211 ++++=

A

DC

B

E A

DC

B

E

max possible
number of edges in

a graph with n nodes

● Intuition: Say V = {v1,v2, . . . ,vn}○ Maximum value of m is obtained when each vertex is connected
to all other n − 1 vertices: n ⋅ (n − 1)○ Since G is undirected, for each pair of vertices vi and vj , we have
double-counted (vi ,vj) and (vj ,vi): n⋅(n−1)

2● G is a complete graph when m = n⋅(n−1)
2

15 of 44

Paths and Cycles (1)

Given a graph G = (V ,E):● A path of G is a sequence of alternating vertices and edges,
which starts and ends at vertices:
�v1,e1,v2,e2, . . . ,vn−1,en−1,vn� vi ∈ V ,1 ≤ i ≤ n,ej ∈ E ,1 ≤ j < n

● A cycle of G is a path of G with the same vertex appearing
more than once.

● A simple path of G is a path of G with distinct vertices.
● A simple cycle of G is a cycle of G with distinct vertices

(except the beginning and end vertices that form the cycle).● Given two vertices u and v in G, vertex v is reachable from
vertex u if there exists a path of G such that its start vertex is
u and end vertex is v .○ Vertex v may be reachable from vertex u via more than one paths.○ Any of the reachable paths from u to v contains a cycle⇒ An infinite number of reachable paths from u to v .

16 of 44

Paths and Cycles (2)

8

Graphs: Paths and Cycles

Path Path – sequence of alternating vertices and edges – starts at a vertex
and ends at a vertex

Simple Path Simple Path – each vertex in the path is distinct

Cycle Cycle – path with identical start and end vertex

Simple Cycle Simple Cycle – each vertex in the cycle is distinct

A

B
E

F

C
D

m
n

q
o

r

p
s

t
A

B
E

F

C
D

m
n

q
o

r

p
s

t

Path = (F, s, D, t, E, p, F, n, B)

Simple Path = (C, q, A, o, E)

Cycle = (E, p, F, n, B, m, A, o, E, t, D, s, F, p, E)

Simple Cycle = (E, t, D, r, C, q, A, o, E)

8

Graphs: Paths and Cycles

Path Path – sequence of alternating vertices and edges – starts at a vertex
and ends at a vertex

Simple Path Simple Path – each vertex in the path is distinct

Cycle Cycle – path with identical start and end vertex

Simple Cycle Simple Cycle – each vertex in the cycle is distinct

A

B
E

F

C
D

m
n

q
o

r

p
s

t
A

B
E

F

C
D

m
n

q
o

r

p
s

t

Path = (F, s, D, t, E, p, F, n, B)

Simple Path = (C, q, A, o, E)

Cycle = (E, p, F, n, B, m, A, o, E, t, D, s, F, p, E)

Simple Cycle = (E, t, D, r, C, q, A, o, E)

Vertex F is reachable from vertex A via:
● (A,m,B,n,F)
● (A,o,E ,p,F)
● (A,o,E , t ,D,s,F)
. . .

17 of 44

Subgraphs vs. Spanning Subgraphs

Given a graph G = (V ,E):● A subgraph of G is another graph G
′ = (V’,E’) such that

V’ ⊆ V and that E’ ⊆ E .
e.g., G1 = ({A,B,C,D,E ,F},{m,q, r})

9

Graphs: Subgraphs

Subgraph Subgraph – graph in G whose vertices and edges are subset of vertices
and edges of G

B
E

F

C
D

m

q
r

Subgraph =
{A, B, C, D} U {m, q, r}

B
E

F

C
D

m

r

p
s

t

Spanning Spanning Subgraph Subgraph – subgraph in G that contains all the vertices of G

Spanning Subgraph =
= {A, B, C, D, E, F} U {m, o, p, s, t, r}

Connected Graph Connected Graph – for any two vertices there is a path between them

Connected Components of a Graph Connected Components of a Graph – maximal connected subgraphs

A A

B
E

Fm
n

o

r

p
A

Graph with 2
Connected Components

C
D

● A spanning subgraph of G is another graph G
′ = (V’,E’) s.t.

V’ = V and that E’ ⊆ E .
e.g., G2 = ({A,B,C,D,E ,F},{m,p,s, t , r})

9

Graphs: Subgraphs

Subgraph Subgraph – graph in G whose vertices and edges are subset of vertices
and edges of G

B
E

F

C
D

m

q
r

Subgraph =
{A, B, C, D} U {m, q, r}

B
E

F

C
D

m

r

p
s

t

Spanning Spanning Subgraph Subgraph – subgraph in G that contains all the vertices of G

Spanning Subgraph =
= {A, B, C, D, E, F} U {m, o, p, s, t, r}

Connected Graph Connected Graph – for any two vertices there is a path between them

Connected Components of a Graph Connected Components of a Graph – maximal connected subgraphs

A A

B
E

Fm
n

o

r

p
A

Graph with 2
Connected Components

C
D

18 of 44

Connected Graph vs. Connected Components

Given a graph G = (V ,E):
● G is connected : there is a path between any two vertices of G.

e.g., Spanning subgraph G2 extended with the edge n, o, or q● G’s connected components: G’s maximal connected

subgraphs.
A CC is maximal in that it cannot be expanded any further.
e.g., How many connected components does the following
graph have?

Answer: 3
19 of 44

Forests vs. Trees

● A forest is an undirected graph without cycles.

11

Graphs: Forests and Trees

Forest Forest – undirected graph without cycles

Free Tree Free Tree – connected forest (free = has no root)

Spanning Tree Spanning Tree – subgraph of G that contains all of G’s vertices and
enough of its edges to form a tree

• undirected connected graph without cycles

B
E

C D

m

q

soA

F

Forest

B
E

m

q

soA

F
p

Spanning Tree

• in a graph with cycles there is more than one spanning tree

C D

• connected components of a forest are free trees

○ Acyclic :

Any two vertices are connected via at most one path.○ A forest may or may not be connected .
(∃v1, v2 ● {v1, v2} ⊆ V ∧ ¬connected(v1, v2))⇒ ¬connected(Forest G)

● A tree is a connected forest .
○ Acyclic & Connected :

Any two vertices are connected via exactly one path.○ e.g., Add either edge (E ,F) or (E ,D) to the above forest.
20 of 44

Spanning Trees

● A spanning tree of graph G: a spanning subgraph that is
also a tree○ ⇒ A spanning tree of G is a connected spanning subgraph of

G that contains no cycles.○ ⇒ ¬connected(G)⇒ ¬(∃G′ ●G’ is a spanning tree of G)
12

Graphs: Forests and Trees

Example 2 [spanning trees]

B
E

A

F

C
D

B

A

F

C
D

E
B

A

F

C
D

E

B

A

F

C
D

E
B F

D

E
A

B F

D

E

C

A

C

Spanning Tree 1 Spanning Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

Are there any other spanning threes besides these? Find them!

12

Graphs: Forests and Trees

Example 2 [spanning trees]

B
E

A

F

C
D

B

A

F

C
D

E
B

A

F

C
D

E

B

A

F

C
D

E
B F

D

E
A

B F

D

E

C

A

C

Spanning Tree 1 Spanning Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

Are there any other spanning threes besides these? Find them!

12

Graphs: Forests and Trees

Example 2 [spanning trees]

B
E

A

F

C
D

B

A

F

C
D

E
B

A

F

C
D

E

B

A

F

C
D

E
B F

D

E
A

B F

D

E

C

A

C

Spanning Tree 1 Spanning Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

Are there any other spanning threes besides these? Find them!

12

Graphs: Forests and Trees

Example 2 [spanning trees]

B
E

A

F

C
D

B

A

F

C
D

E
B

A

F

C
D

E

B

A

F

C
D

E
B F

D

E
A

B F

D

E

C

A

C

Spanning Tree 1 Spanning Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

Are there any other spanning threes besides these? Find them!

12

Graphs: Forests and Trees

Example 2 [spanning trees]

B
E

A

F

C
D

B

A

F

C
D

E
B

A

F

C
D

E

B

A

F

C
D

E
B F

D

E
A

B F

D

E

C

A

C

Spanning Tree 1 Spanning Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

Are there any other spanning threes besides these? Find them!

12

Graphs: Forests and Trees

Example 2 [spanning trees]

B
E

A

F

C
D

B

A

F

C
D

E
B

A

F

C
D

E

B

A

F

C
D

E
B F

D

E
A

B F

D

E

C

A

C

Spanning Tree 1 Spanning Tree 2

Spanning Tree 3 Spanning Tree 4 Spanning Tree 5

Are there any other spanning threes besides these? Find them!
21 of 44

Exercise (2)

Given a graph

Which one of the following is a spanning tree?

(a) (b) (c)

● (a): spanning subgraph containing a cycle (∴ not a tree).● (b): tree but not spanning.
22 of 44

Basic Properties of Graphs (4)

Given G = (V ,G) an undirected graph with �V � = n, �E � =m:
�����������������

m = n − 1 if G is a spanning tree
m ≤ n − 1 if G is a forest
m ≥ n − 1 if G is connected
m ≥ n if G contains a cycle

○ Prove the spanning tree case via mathematical induction on n :
● Base Cases: n = 1⇒ m = 0, n = 2⇒ m = 1, n = 3⇒ m = 2● Inductive Cases: Assume that a spanning tree has n vertices and

n − 1 edges.● When adding a new vertex v
′ into the existing graph, we may only

expand the existing spanning tree by connecting v
′ to exactly one of

the existing vertices; otherwise there will be a cycle.● This makes the new spanning tree contains n + 1 vertices and n edges.○ When G is a forest , it may be unconnected⇒ m < n − 1○ When G is connected, it may contain cycles ⇒ m ≥ n

23 of 44

Graph Traversals: Definition

Given a graph G = (V, E):
● A traversal of G is a systematic procedure for examining all its

vertices V and edges E.
● A traversal of G is considered efficient if its running time is

linear on �V� and/or �E�. [e.g., O(�V � + �E �)]

24 of 44

Graph Traversals: Applications

Fundamental questions about graphs involve reachability .
Given a graph G = (V, E) (directed or undirected):
● Given a vertex u, find all other vertices in G reachable from u.
● Given a vertex u and a vertex v:○ compute a path from u to v, or report that there is no such a path.○ compute a path from u to v that involves the minimum number of

edges, or report that there is no such a path.
● Determine whether or not G is connected .
● Given that G is connected , compute a spanning tree of G.
● Compute the connected components of G.
● Identify a cycle in G, or report that G is acyclic.

25 of 44

Depth-First Search (DFS)

● A Depth-First Search (DFS) of graph G = (V, E),
starting from some vertex v ∈ V , proceeds along a path from v .○ The path is constructed by following an incident edge.○ The path is extended as far as possible, until all incident edges

lead to vertices that have already been visited .○ Once the path originated from v cannot be extended further,
backtrack to the latest vertex whose incident edges lead to
some unvisited vertices.

3

Depth-First Search (DFS) in Undirected Graphs

Depth First Search Depth First Search – traversal that proceeds along a path from v as
far into the graph as possible, before backing up

NOTE: DFS resembles “preorder” traversal in trees!

Example 1 [visitation order for DFS]

C

G

A

B D

E F

H

(1)

(2)

(3)

(4) (5)

(6)

(7) (8)

• DFS is useful for:
(1) finding a path from one vertex to another,
(2) determining whether or not a graph is connected
(3) finding a spanning tree of a connected graph, etc.

● DFS resembles the preorder traversal in trees.
● Use a LIFO stack to keep track of the nodes to be visited.
26 of 44

DFS: Marking Vertices and Edges

Before the DFS starts:
● All vertices are unvisited .
● All edges are unexplored/unmarked.
Over the course of a DFS, we mark vertices and edges:
● A vertex v is marked visited when it is first encountered.
● Then, we iterate through each of v ’s incident edges, say e:○ If edge e is already marked, then skip it.○ Otherwise, mark edge e as:

● A discovery edge if it leads to an unvisited vertex● A back edge if it leads to a visited vertex (i.e., an ancestor vertex)

27 of 44

DFS: Illustration (1.1)

5

Depth-First Search (cont.)

Example 2 [recursive DFS(G,v) on a graph with cycles]

C

A

B D E

unexplored edge

C

A

B D E

discovery edge

back edge

unexplored vertex

visited vertex

C

A

B D E

C

A

B D E

C

A

B D E

(1) (2)

(3) (4) (5)

5

Depth-First Search (cont.)

Example 2 [recursive DFS(G,v) on a graph with cycles]

C

A

B D E

unexplored edge

C

A

B D E

discovery edge

back edge

unexplored vertex

visited vertex

C

A

B D E

C

A

B D E

C

A

B D E

(1) (2)

(3) (4) (5)

5

Depth-First Search (cont.)

Example 2 [recursive DFS(G,v) on a graph with cycles]

C

A

B D E

unexplored edge

C

A

B D E

discovery edge

back edge

unexplored vertex

visited vertex

C

A

B D E

C

A

B D E

C

A

B D E

(1) (2)

(3) (4) (5)

5

Depth-First Search (cont.)

Example 2 [recursive DFS(G,v) on a graph with cycles]

C

A

B D E

unexplored edge

C

A

B D E

discovery edge

back edge

unexplored vertex

visited vertex

C

A

B D E

C

A

B D E

C

A

B D E

(1) (2)

(3) (4) (5)

5

Depth-First Search (cont.)

Example 2 [recursive DFS(G,v) on a graph with cycles]

C

A

B D E

unexplored edge

C

A

B D E

discovery edge

back edge

unexplored vertex

visited vertex

C

A

B D E

C

A

B D E

C

A

B D E

(1) (2)

(3) (4) (5)

5

Depth-First Search (cont.)

Example 2 [recursive DFS(G,v) on a graph with cycles]

C

A

B D E

unexplored edge

C

A

B D E

discovery edge

back edge

unexplored vertex

visited vertex

C

A

B D E

C

A

B D E

C

A

B D E

(1) (2)

(3) (4) (5)

28 of 44

DFS: Illustration (1.2)

6

Depth-First Search (cont.)

C

A

B D E

C

A

B D E

(6) (7)

Other possible solutions:

C

A

B D E

C

A

B D E

C

A

B D E

edge AC visited first edge AD visited first edge AE visited first

6

Depth-First Search (cont.)

C

A

B D E

C

A

B D E

(6) (7)

Other possible solutions:

C

A

B D E

C

A

B D E

C

A

B D E

edge AC visited first edge AD visited first edge AE visited first

Other solutions (different incident edges on vertex A to get started):

6

Depth-First Search (cont.)

C

A

B D E

C

A

B D E

(6) (7)

Other possible solutions:

C

A

B D E

C

A

B D E

C

A

B D E

edge AC visited first edge AD visited first edge AE visited first

6

Depth-First Search (cont.)

C

A

B D E

C

A

B D E

(6) (7)

Other possible solutions:

C

A

B D E

C

A

B D E

C

A

B D E

edge AC visited first edge AD visited first edge AE visited first

6

Depth-First Search (cont.)

C

A

B D E

C

A

B D E

(6) (7)

Other possible solutions:

C

A

B D E

C

A

B D E

C

A

B D E

edge AC visited first edge AD visited first edge AE visited first
29 of 44

DFS: Illustration (2)

(0) (1) (2)
A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B

(3) (4) (5)
A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B

30 of 44

DFS: Properties

1. Running Time?○ Every vertex is set as visited at most once.○ Each edge is set as either DISCOVERY or BACK at most once.
⇒ O(m + n)

2. For a DFS starting from vertex u in a graph G = (V, E):
2.1 �visited nodes� = �V �⇒ G is connected

2.2 �visited nodes� < �V �⇒ G has > 1 connected components

2.3 There are no back edges ⇒ G is acyclic

3. For a DFS starting from vertex u in an undirected graph G:
3.1 The traversal visits all nodes in the connected component

containing u.
3.2 Discovery edges form a spanning tree (with �V �− 1 edges) of the

connected component containing u.
4. If a graph G is not connected , then it takes multiple runs of

DFS to identify all G’s connected components.
31 of 44

Graph Questions: Adapting DFS

● Given a (directed or undirected) graph G = (V ,E):○ Find a path between vertex u and vertex v .
Start a DFS from u and stop as soon as v is encountered.○ Is vertex v reachable from vertex u?
No if a DFS starting from u never encounters v .○ Find all connected components of G.

● Continuously apply DFS’s until the entire set V is visited.● Each DFS produces a subgraph representing a new CC.○ Given that G is connected , find a spanning tree of it.
G is connected. ⇒ G’s only CC is its spanning tree.● Given an undirected graph G = (V ,E):○ Is G connected?

● Start a DFS from an arbitrary vertex, and count # of visited nodes.● When the traversal completes, compare the counter value against �V �.○ Is G acyclic?
● Start a DFS from an arbitrary vertex.● Return no (i.e., a cycle exists) as soon as a back edge is found.

32 of 44

Graphs in Java: DL Node and List

For each graph, maintain two doubly-linked lists for vertices and edges.

public class DLNode<E> { /* Doubly-Linked Node */
private E element;
private DLNode<E> prev; private DLNode<E> next;
public DLNode(E e, DLNode<E> p, DLNode<E> n) { . . . }
/* setters and getters for prev and next */

}

public class DoublyLinkedList<E> {
private int size;
private DLNode<E> header; private DLNode<E> trailer;
public void remove (DLNode<E> node) {
DLNode<E> pred = node.getPrev();
DLNode<E> succ = node.getSucc();
pred.setNext(succ); succ.setPrev(pred);
node.setNext(null); node.setPrev(null);
size --;

}
}

33 of 44

Graphs in Java: Vertex and Edge

public class Vertex<V> {
private V element;
public Vertex(V element) { this.element = element; }
/* setter and getter for element */

}

public class Edge<E, V> {
private E element;
private Vertex<V> origin;
private Vertex<V> dest;
public Edge(E element) { this.element = element; }
/* setters and getters for element, origin, and destination */

}

34 of 44

Graphs in Java: Interface (1)

public interface Graph<V,E> {
/* Number of vertices of the graph */
public int numVertices();

/* Number of edges of the graph */
public int numEdges();

/* Vertices of the graph */
public Iterable<Vertex<V>> vertices();

/** Edges of the graph */
public Iterable<Edge<E, V>> edges();

/* Number of edges leaving vertex v. */
public int outDegree(Vertex<V> v);

/* Number of edges for which vertex v is the destination. */
public int inDegree(Vertex<V> v);

public int degree(Vertex<V> v);

35 of 44

Graphs in Java: Interface (2)

/* Edges for which vertex v is the origin. */
public Iterable<Edge<E, V>> outgoingEdges(Vertex<V> v);

/* Edges for which vertex v is the destination. */
public Iterable<Edge<E, V>> incomingEdges(Vertex<V> v);

/* The edge from u to v, or null if they are not adjacent. */
public Edge<E, V> getEdge(Vertex<V> u, Vertex<V> v);

36 of 44

Graphs in Java: Interface (3)

/* Inserts a new vertex, storing given element. */
public Vertex<V> insertVertex(V element);

/* Inserts a new edge between vertices u and v,
* storing given element.
*/
public Edge<E, V> insertEdge(Vertex<V> u, Vertex<V> v, E element);

/* Removes a vertex and all its incident edges from the graph. */
public void removeVertex(Vertex<V> v);

/* Removes an edge from the graph. */
public void removeEdge(Edge<E, V> e);

} /* end Graph */

37 of 44

Graphs in Java: Edge List (1)

Each vertex or edge stores a reference to its position in the
respective vertex or edge list.⇒ O(1) deletion of the vertex or edge from the list.
public class EdgeListVertex<V> extends Vertex<V> {
public DLNode<Vertex<V>> vertextListPosition;
/* setter and getter for vertexListPosition */

}

public class EdgeListEdge<E, V> extends Edge<E, V> {
public DLNode<Edge<E, V>> edgeListPosition;
/* setter and getter for edgeListPosition */

}

38 of 44

Graphs in Java: Edge List (2)

public class EdgeListGraph<V, E> implements Graph<V, E> {
private DoublyLinkedList<EdgeListVertex<V>> vertices;
private DoublyLinkedList<EdgeListEdge<E, V>> edges;
private boolean isDirected;

/* initialize an empty graph */
public EdgeListGraph(boolean isDirected) {
vertices = new DoublyLinkedList<>();
edges = new DoublyLinkedList<>();
this.isDirected = isDirected;

}
...

}

39 of 44

Graphs in Java: Edge List (3)

19

1. Edge List Structure (cont.)

Edge List Structure Edge List Structure – the simples implementation of a graph
• each vertex / edge is represented by an object

• all vertices are stored in container V, all edges
are stored in container E

• direct access from edges to the vertices they are
incident upon is provided – endVertices, origin,
destination, opposite run in O(1) time

• access to edges incident upon a given vertex is
inefficient – all edge objects must be inspected

A

CB

D
A B C D

o p

q

r

o p q r

E

V

40 of 44

Index (1)

Learning Outcomes of this Lecture

Graphs: Definition

Directed vs. Undirected Edges

Self vs. Parallel Edges

Vertices

Exercise (1)

Directed vs. Undirected Graphs

Directed Graph Example (1): A Flight Network

Directed Graph Example (2): Class Inheritance

Undirected Graph Example (1): London Tube

Undirected Graph Example (2): Co-authorship

41 of 44

Index (2)

Basic Properties of Graphs (1)

Basic Properties of Graphs (2)

Basic Properties of Graphs (3)

Paths and Cycles (1)

Paths and Cycles (2)

Subgraphs vs. Spanning Subgraphs

Connected Graph vs. Connected Components

Forests vs. Trees

Spanning Trees

Exercise (2)

Basic Properties of Graphs (4)

42 of 44

Index (3)

Graph Traversals: Definition

Graph Traversals: Applications

Depth-First Search (DFS)

DFS: Marking Vertices and Edges

DFS: Illustration (1.1)

DFS: Illustration (1.2)

DFS: Illustration (2)

DFS: Properties

Graph Questions: Adapting DFS

Graphs in Java: DL Node and List

Graphs in Java: Vertex and Edge

43 of 44

Index (4)

Graphs in Java: Interface (1)

Graphs in Java: Interface (2)

Graphs in Java: Interface (3)

Graphs in Java: Edge List (1)

Graphs in Java: Edge List (2)

Graphs in Java: Edge List (3)

44 of 44

