Self-Balancing Binary Search Trees

EECS3101 E: Design and Analysis of Algorithms Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- When the Worst-Case RT of a BST Search Occurs
- *Height-Balance* Property
- Review: Insertion & Deletion on a BST
- Performing Rotations to Restore Tree Balance

Implementation: Generic BST Nodes

```
public class BSTNode<E> {
 private int kev: /* kev */
 private E value: /* value */
 private BSTNode<E> parent; /* unique parent node */
 private BSTNode<E> left: /* left child node */
 private BSTNode<E> right; /* right child node */
 public BSTNode() { ... }
 public BSTNode(int key, E value) { ... }
 public boolean isExternal() {
   return this.getLeft() == null && this.getRight() == null;
 public boolean isInternal() {
   return !this.isExternal():
 public int getKev() { ... }
 public void setKey(int key) { ... }
 public E getValue() { ... }
 public void setValue(E value) { ... }
 public BSTNode<E> getParent() { ... }
 public void setParent(BSTNode<E> parent) { ... }
 public BSTNode<E> getLeft() { ... }
 public void setLeft(BSTNode<E> left) { ... }
 public BSTNode<E> getRight() { ... }
 public void setRight(BSTNode<E> right) { ... }
```

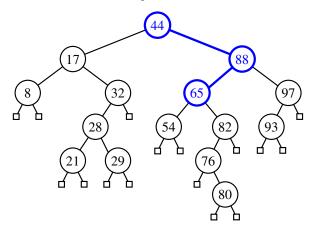

Implementing BST Operation: Searching

Given a BST rooted at node p, to locate a particular **node** whose key matches k, we may view it as a **decision tree**.

```
public BSTNode<E> search(BSTNode<E> p, int k) {
 BSTNode < E> result = null:
 if(p.isExternal()) {
  result = p; /* unsuccessful search */
 else if (p. qetKev() == k) {
  result = p; /* successful search */
 else if (k < p.getKev()) {
   result = search(p.getLeft(), k); /* recur on LST */
 else if (k > p.qetKev()) {
   result = search(p.getRight(), k): /* recur on RST */
 return result;
```


Visualizing BST Operation: Searching (1)

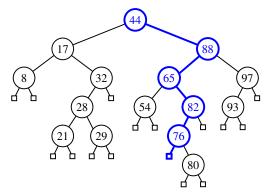
A **successful** search for **key 65**:



The *internal node* storing key 65 is <u>returned</u>.

Visualizing BST Operation: Searching (2)

An unsuccessful search for key 68:



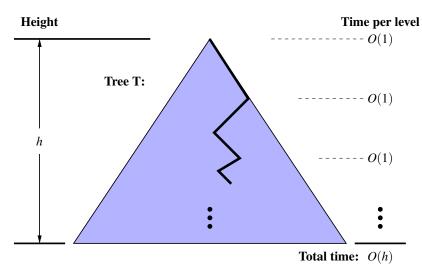
The **external**, **left child node** of the **internal node** storing **key 76** is **returned**.

<u>Exercise</u>: Provide keys for different external nodes to be returned.

Testing BST Operation: Searching

```
@Test
public void test binary search trees search() {
 BSTNode<String> n28 = new BSTNode<>(28, "alan");
 BSTNode<String> n21 = new BSTNode<>(21. "mark"):
 BSTNode<String> n35 = new BSTNode<>(35, "tom");
 BSTNode<String> extN1 = new BSTNode<>();
 BSTNode<String> extN2 = new BSTNode<>();
 BSTNode<String> extN3 = new BSTNode<>();
 BSTNode<String> extN4 = new BSTNode<>();
 n28.setLeft(n21); n21.setParent(n28);
 n28.setRight(n35); n35.setParent(n28);
 n21.setLeft(extN1); extN1.setParent(n21);
 n21.setRight(extN2); extN2.setParent(n21);
 n35.setLeft(extN3); extN3.setParent(n35);
 n35.setRight(extN4); extN4.setParent(n35);
 BSTUtilities<String> u = new BSTUtilities<>():
 /* search existing keys */
 assertTrue(n28 == u.search(n28, 28));
 assertTrue(n21 == u.search(n28, 21));
 assertTrue(n35 == u.search(n28, 35));
 assertTrue(extN1 == u.search(n28, 17)); /* *17* < 21 */
 assertTrue(extN2 == u.search(n28, 23)); /* 21 < *23* < 28 */
 assertTrue(extN3 == u.search(n28, 33)); /* 28 < *33* < 35 */
 assertTrue(extN4 == u.search(n28, 38)); /* 35 < *38* */
```


RT of BST Operation: Searching (1)



RT of BST Operation: Searching (2)

- Recursive calls of search are made on a path which
 - o Starts from the root
 - o Goes down one *level* at a time

RT of deciding from each node to go to LST or RST?

[*O*(1)]

 Stops when the key is found or when a *leaf* is reached *Maximum* number of nodes visited by the search?

[**h** + 1]

- ∴ RT of **search on a BST** is O(h)
- Recall: Given a BT with n nodes, the height h is bounded as:

$$log(n+1)-1 \leq h \leq n-1$$

Best RT of a binary search is O(log(n))

[balanced BST]

Worst RT of a binary search is O(n)

[ill-balanced BST]

• Binary search on non-linear vs. linear structures:

	Search on a BST	Binary Search on a Sorted Array
START	Root of BST	Middle of Array
Progress	LST or RST	Left Half or Right Half of Array
BEST RT	O(log(n))	O(log(n))
Worst RT	O(n)	

Sketch of BST Operation: Insertion

To *insert* an *entry* (with **key** *k* & **value** *v*) into a BST rooted at *node n*:

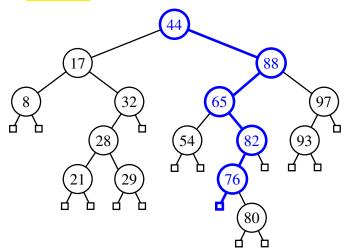
- Let node p be the return value from search (n, k).
- ∘ If *p* is an *internal node*
 - \Rightarrow Key k exists in the BST.
 - \Rightarrow Set p's value to v.
- If p is an external node
 - \Rightarrow Key k deos **not** exist in the BST.
 - \Rightarrow Set p's key and value to k and v.

Running time?

O(h)

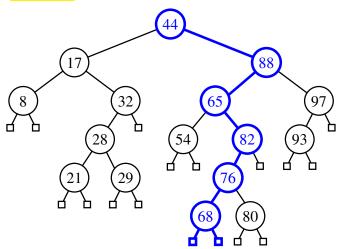
Visualizing BST Operation: Insertion (1)

Before *inserting* an entry with *key 68* into the following BST:



Visualizing BST Operation: Insertion (2)

After *inserting* an entry with *key 68* into the following BST:



Exercise on BST Operation: Insertion

<u>Exercise</u>: In BSTUtilities class, implement and test the void insert(BSTNode<E> p, int k, E v) method.

To **delete** an **entry** (with **key** k) from a BST rooted at **node** n:

Let node p be the return value from search (n, k).

- Case 1: Node p is external.
 - k is not an existing key \Rightarrow Nothing to remove
- Case 2: Both of node p's child nodes are external.
 - No "orphan" subtrees to be handled \Rightarrow Remove p
- Case 3: One of the node p's children, say r, is *internal*.

 - r's sibling is **external** \Rightarrow Replace node p by node r
- [Still BST?]

[Still BST?]

- Case 4: Both of node p's children are internal.
 - Let r be the right-most internal node p's LST.
 - \Rightarrow r contains the *largest key s.t.* key(r) < key(p).
 - **Exercise**: Can r contain the **smallest key s.t.** key(r) > key(p)?
 - Overwrite node p's entry by node r's entry.

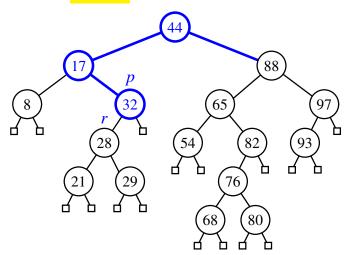
[Still BST?]

- r being the *right-most internal node* may have:
 - ⋄ Two external child nodes \Rightarrow Remove r as in Case 2.
 - \diamond An *external*, *RC* & an *internal LC* \Rightarrow Remove *r* as in **Case 3**.

Running time?

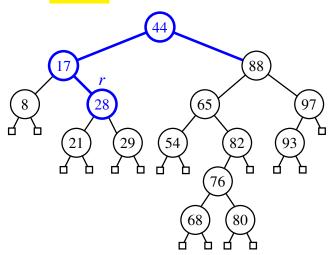
Visualizing BST Operation: Deletion (1.1)

(Case 3) Before *deleting* the node storing *key 32*:



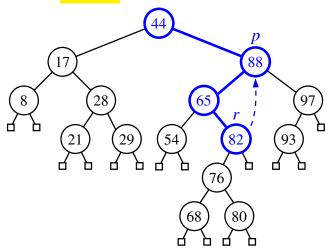
Visualizing BST Operation: Deletion (1.2)

(Case 3) After deleting the node storing key 32:



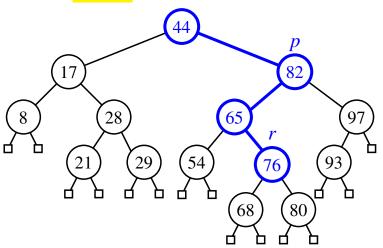
Visualizing BST Operation: Deletion (2.1)

(Case 4) Before deleting the node storing key 88:



Visualizing BST Operation: Deletion (2.2)

(Case 4) After deleting the node storing key 88:



Exercise on BST Operation: Deletion

<u>Exercise</u>: In BSTUtilities class, implement and test the void delete(BSTNode<E> p, int k) method.

Balanced Binary Search Trees: Motivation

- After *insertions* into a BST, the worst-case RT of a search occurs when the height h is at its maximum: O(n):
 - $\circ\,$ e.g., Entries were inserted in an <u>decreasing order</u> of their keys $\langle 100, 75, 68, 60, 50, 1 \rangle$
 - ⇒ One-path, left-slanted BST
 - \circ e.g., Entries were inserted in an <u>increasing order</u> of their keys (1,50,60,68,75,100)
 - ⇒ One-path, right-slanted BST
 - e.g., Last entry's key is <u>in-between</u> keys of the previous two entries (1,100,50,75,60,68)
 - ⇒ One-path, side-alternating BST
- To avoid the worst-case RT (: a *ill-balanced tree*), we need to take actions as soon as the tree becomes unbalanced.

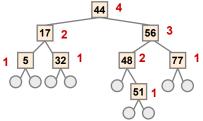
LASSONDE SCHOOL OF ENGINEERING

Balanced Binary Search Trees: Definition

Given a node p, the height of the subtree rooted at p is:

$$height(p) = \begin{cases} 0 & \text{if } p \text{ is } external \\ 1 + MAX \left(\left\{ \begin{array}{c} height(c) \mid parent \ (c) = p \end{array} \right\} \right) & \text{if } p \text{ is } internal \end{cases}$$

A balanced BST T satisfies the height-balance property:
 For every internal node n, heights of n's child nodes differ ≤ 1.



Q: Is the above tree a balanced BST?

Q: Will the tree remain balanced after inserting 55?

Q: Will the tree remain balanced after inserting 63?

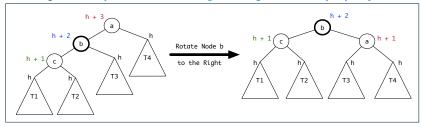
21 of 41

LASSONDE SCHOOL OF ENGINEERING

Fixing Unbalanced BST: Rotations

A tree **rotation** is performed:

- When the latest <u>insertion</u>/<u>deletion</u> creates <u>unbalanced</u> nodes, along the <u>ancestor path</u> of the node being inserted/deleted.
- To change the shape of tree, restoring the height-balance property



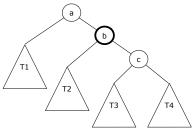
- **Q**. An *in-order traversal* on the resulting tree?
- **<u>A</u>**. Still produces a sequence of **sorted keys** $\langle T_1, c, T_2, b, T_3, a, T_4 \rangle$
- After **rotating** node b to the <u>right</u>:
 - Heights of *descendants* (b, c, T₁, T₂, T₃) and *sibling* (T₄) stay *unchanged*.
 - Height of *parent* (a) is *decreased by 1*.
 - ⇒ **Balance** of node a was **restored** by the **rotation**.

After Insertions: Trinode Restructuring via Rotation(s)

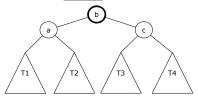
After *inserting* a new node *n*:

- Case 1: Nodes on n's ancestor path remain balanced.
 - ⇒ No rotations needed
- Case 2: At least one of n's ancestors becomes unbalanced.
 - Get the <u>first/lowest</u> unbalanced node a on n's ancestor path.
 - **2.** Get a's child node b in n's ancestor path.
 - 3. Get b's child node c in n's ancestor path.
 - **4.** Perform rotation(s) based on the *alignment* of *a*, *b*, and *c*:
 - Slanted the *same* way ⇒ *single rotation* on the <u>middle</u> node *b*
 - Slanted *different* ways ⇒ *double rotations* on the *lower* node *c*

Trinode Restructuring: Single, Left Rotation LASSONDE



After a *left rotation* on the middle node b:



BST property maintained?

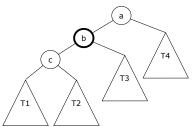
 $\langle T_1, a, T_2, b, T_3, c, T_4 \rangle$

Left Rotation

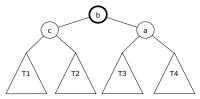
• *Insert* the following sequence of nodes into an <u>empty</u> BST:

- Is the BST now balanced?
- Insert 100 into the BST.
- Is the BST still balanced?
- Perform a *left rotation* on the appropriate node.
- Is the BST again balanced?

Trinode Restructuring: Single, Right Rotation SSONDE



After a *right rotation* on the <u>middle</u> node *b*:



BST property maintained?

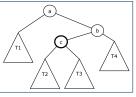
 $\langle T_1, a, T_2, b, T_3, c, T_4 \rangle$

Right Rotation

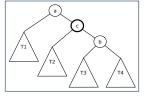
• *Insert* the following sequence of nodes into an empty BST:

- Is the BST now balanced?
- Insert 46 into the BST.
- Is the BST still balanced?
- Perform a <u>right rotation</u> on the appropriate node.
- Is the BST again balanced?

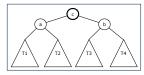
Trinode Restructuring: Double, R-L Rotation



Perform a Right Rotation on Node c



Perform a Left Rotation on Node c



After Right-Left Rotations

BST property maintained?

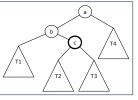
 $\langle T_1, a, T_2, c, T_3, b, T_4 \rangle$

R-L Rotations

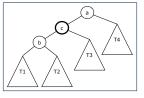
• *Insert* the following sequence of nodes into an empty BST:

- Is the BST now balanced?
- Insert 85 into the BST.
- Is the BST still balanced?
- Perform the **R-L rotations** on the appropriate node.
- Is the BST again balanced?

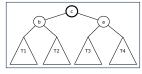
Trinode Restructuring: Double, L-R Rotation



Perform a Left Rotation on Node c



 $\underline{\mathsf{Perform}}$ a $\underline{\mathsf{\textit{Right Rotation}}}$ on Node c



After Left-Right Rotations

BST property maintained?

 $\langle T_1, b, T_2, c, T_3, a, T_4 \rangle$

L-R Rotations

• *Insert* the following sequence of nodes into an empty BST:

- Is the BST now balanced?
- Insert 54 into the BST.
- Is the BST still balanced?
- Perform the **L-R rotations** on the appropriate node.
- Is the BST again balanced?

After Deletions: Continuous Trinode Restructuring

- <u>Recall</u>: <u>Deletion</u> from a BST results in removing a node with <u>zero</u> or <u>one</u> <u>internal</u> child node.
- After *deleting* an existing node, say its child is *n*:

Case 1: Nodes on *n*'s *ancestor path* remain *balanced*. \Rightarrow No rotations

Case 2: At least one of n's ancestors becomes unbalanced.

- 1. Get the <u>first/lowest</u> <u>unbalanced</u> node a on *n*'s <u>ancestor path</u>.
- 2. Get a's taller child node b.

[b ∉ n's ancestor path]

- **3.** Choose *b*'s child node *c* as follows:
 - b's two child nodes have different heights ⇒ c is the taller child
 - b's two child nodes have **same** height \Rightarrow a, b, c slant the **same** way
- **4.** Perform rotation(s) based on the *alignment* of *a*, *b*, and *c*:
 - Slanted the same way ⇒ single rotation on the middle node b
 - Slanted *different* ways ⇒ *double rotations* on the <u>lower</u> node <u>c</u>
- As n's unbalanced ancestors are found, keep applying Case 2, until Case 1 is satisfied.
 [O(h) = O(log n) rotations]

Single Trinode Restructuring Step

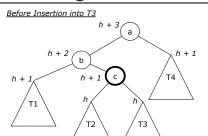
Insert the following sequence of nodes into an empty BST:

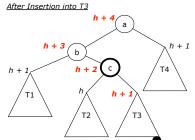
(44, 17, 62, 32, 50, 78, 48, 54, 88)

- Is the BST now balanced?
- **Delete** 32 from the BST.
- Is the BST still **balanced**?
- Perform a left rotation on the appropriate node.
- Is the BST again balanced?

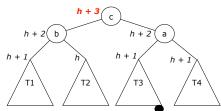
Multiple Trinode Restructuring Steps

- Insert the following sequence of nodes into an empty BST:
 (50, 25, 10, 30, 5, 15, 27, 1, 75, 60, 80, 55)
- Is the BST now balanced?
- Delete 80 from the BST.
- Is the BST still balanced?
- Perform a right rotation on the appropriate node.
- Is the BST now balanced?
- Perform another <u>right rotation</u> on the appropriate node.
- Is the BST again balanced?

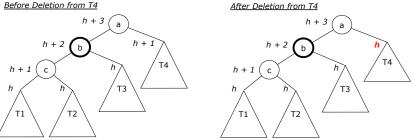




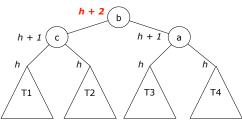
After Performing L-R Rotations on Node c: Height of Subtree Being Fixed Remains h + 3



Restoring Balance from Deletions



After Performing Right Rotation on Node b: Height of Subtree Being Fixed Reduces its Height by 1!



Restoring Balance: Insertions vs. Deletions LASSON

- Each *rotation* involves only *POs* of setting parent-child references.
 - ⇒ O(1) running time for each tree rotation
- After each insertion, a trinode restructuring step can restore the balance of the subtree rooted at the first unbalanced node.
 - \Rightarrow O(1) rotations suffices to restore the balance of tree
- After each deletion, one or more trinode restructuring steps may restore the balance of the subtree rooted at the first unbalanced node.
 - \Rightarrow May take $O(\log n)$ rotations to restore the balance of tree

Index (1)

Learning Outcomes of this Lecture

Implementation: Generic BST Nodes

Implementing BST Operation: Searching

Visualizing BST Operation: Searching (1)

Visualizing BST Operation: Searching (2)

Testing BST Operation: Searching

RT of BST Operation: Searching (1)

RT of BST Operation: Searching (2)

Sketch of BST Operation: Insertion

Visualizing BST Operation: Insertion (1)

Visualizing BST Operation: Insertion (2)

Index (2)

Exercise on BST Operation: Insertion

Sketch of BST Operation: Deletion

Visualizing BST Operation: Deletion (1.1)

Visualizing BST Operation: Deletion (1.2)

Visualizing BST Operation: Deletion (2.1)

Visualizing BST Operation: Deletion (2.2)

Exercise on BST Operation: Deletion

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

Fixing Unbalanced BST: Rotations

Index (3)

After Insertions:

Trinode Restructuring via Rotation(s)

Trinode Restructuring: Single, Left Rotation

Left Rotation

Trinode Restructuring: Single, Right Rotation

Right Rotation

Trinode Restructuring: Double, R-L Rotations

R-L Rotations

Trinode Restructuring: Double, L-R Rotations

L-R Rotations

After Deletions:

Continuous Trinode Restructuring

Index (4)

Single Trinode Restructuring Step

Multiple Trinode Restructuring Steps

Restoring Balance from Insertions

Restoring Balance from Deletions

Restoring Balance: Insertions vs. Deletions