Self-Balancing Binary Search Trees

EECS3101 E: Design and Analysis of Algorithms Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- When the Worst-Case RT of a BST Search Occurs
- *Height-Balance* Property
- Review: Insertion & Deletion on a BST
- Performing Rotations to Restore Tree Balance

2 of 41

Implementation: Generic BST Nodes


```
public class BSTNode<E> {
 private int key; /* key */
 private E value; /* value */
 private BSTNode<E> parent; /* unique parent node */
 private BSTNode<E> left; /* left child node */
 private BSTNode<E> right; /* right child node */
 public BSTNode() { ... }
 public BSTNode(int key, E value) { ... }
 public boolean isExternal() {
  return this.getLeft() == null && this.getRight() == null;
 public boolean isInternal() {
  return !this.isExternal();
 public int getKey() { ... }
 public void setKey(int key) { ... }
 public E getValue() { ... }
 public void setValue(E value) { ... }
 public BSTNode<E> getParent() { ... }
 public void setParent(BSTNode<E> parent) { ... }
 public BSTNode<E> getLeft() { ... }
 public void setLeft(BSTNode<E> left) { ... }
 public BSTNode<E> getRight() { ... }
 public void setRight(BSTNode<E> right) { ... }
```

3 of 41

Implementing BST Operation: Searching

Given a BST rooted at node p, to locate a particular **node** whose key matches k, we may view it as a **decision tree**.

```
public BSTNode<E> search(BSTNode<E> p, int k) {
   BSTNode<E> result = null;
   if(p.isExternal()) {
      result = p; /* unsuccessful search */
   }
   else if(p.getKey() == k) {
      result = p; /* successful search */
   }
   else if(k < p.getKey()) {
      result = search(p.getLeft(), k); /* recur on LST */
   }
   else if(k > p.getKey()) {
      result = search(p.getRight(), k); /* recur on RST */
   }
   return result;
}
```


Visualizing BST Operation: Searching (1)

A successful search for key 65:

The *internal node* storing key 65 is returned.

5 of 41

Visualizing BST Operation: Searching (2)

• An unsuccessful search for key 68:

The **external**, **left child node** of the **internal node** storing **key 76** is **returned**.

• Exercise: Provide keys for different external nodes to be returned.

6 of 41

Testing BST Operation: Searching


```
public void test_binary_search_trees_search() {
 BSTNode<String> n28 = new BSTNode<>(28, "alan");
 BSTNode<String> n21 = new BSTNode<>(21, "mark");
 BSTNode<String> n35 = new BSTNode<>(35, "tom");
 BSTNode<String> extN1 = new BSTNode<>();
 BSTNode<String> extN2 = new BSTNode<>();
 BSTNode<String> extN3 = new BSTNode<>();
 BSTNode<String> extN4 = new BSTNode<>();
 n28.setLeft(n21); n21.setParent(n28);
 n28.setRight(n35); n35.setParent(n28);
 n21.setLeft(extN1); extN1.setParent(n21);
 n21.setRight(extN2); extN2.setParent(n21);
 n35.setLeft(extN3); extN3.setParent(n35);
 n35.setRight(extN4); extN4.setParent(n35);
 BSTUtilities<String> u = new BSTUtilities<>();
 /* search existing keys */
 assertTrue (n28 == u.search(n28, 28));
 assertTrue (n21 == u.search (n28, 21));
 assertTrue(n35 == u.search(n28, 35));
 assertTrue(extN1 == u.search(n28, 17)); /* *17* < 21 */
 assertTrue(extN2 == u.search(n28, 23)); /* 21 < *23* < 28 */
 assertTrue(extN3 == u.search(n28, 33)); /* 28 < *33* < 35 */
 assertTrue(extN4 == u.search(n28, 38)); /* 35 < *38* */
```

7 of 41

RT of BST Operation: Searching (1)

RT of BST Operation: Searching (2)

- Recursive calls of search are made on a path which
 - Starts from the root
 - o Goes down one level at a time

RT of deciding from each node to go to LST or RST?

[O(1)]

o Stops when the key is found or when a *leaf* is reached

Maximum number of nodes visited by the search?

[**h** + 1]

 \therefore RT of **search on a BST** is O(h)

• Recall: Given a BT with *n* nodes, the *height h* is bounded as:

$$log(n+1)-1 \leq h \leq n-1$$

Best RT of a binary search is O(log(n))

[balanced BST]

Worst RT of a binary search is O(n)

[ill-balanced BST]

• Binary search on non-linear vs. linear structures:

	Search on a BST	Binary Search on a Sorted Array
START	Root of BST	Middle of Array
PROGRESS	LST or RST	Left Half or Right Half of Array
BEST RT	O(log(n))	O(log(n))
Worst RT	O(n)	

9 of 41

Sketch of BST Operation: Insertion

To *insert* an *entry* (with **key** *k* & **value** *v*) into a BST rooted at *node n*:

- Let node p be the return value from search (n, k).
- If **p** is an **internal node**
 - \Rightarrow Key k exists in the BST.
 - \Rightarrow Set p's value to v.
- If p is an external node
 - \Rightarrow Key k deos **not** exist in the BST.
 - \Rightarrow Set p's key and value to k and v.

Running time?

[*O*(*h*)]

10 of 41

Visualizing BST Operation: Insertion (1)

Before *inserting* an entry with *key 68* into the following BST:

Visualizing BST Operation: Insertion (2)

After *inserting* an entry with *key 68* into the following BST:

Exercise on BST Operation: Insertion

<u>Exercise</u>: In BSTUtilities class, <u>implement</u> and <u>test</u> the <u>void</u> <u>insert(BSTNode<E> p, int k, E v)</u> method.

13 of 41

Sketch of BST Operation: Deletion

To *delete* an *entry* (with **key** *k*) from a BST rooted at *node n*:

Let node p be the return value from search (n, k).

• Case 1: Node p is external.

k is not an existing key \Rightarrow Nothing to remove

• Case 2: Both of node p's child nodes are external.

No "orphan" subtrees to be handled \Rightarrow Remove p [Still BST?]

- Case 3: One of the node *p*'s children, say *r*, is *internal*.
 - r's sibling is **external** \Rightarrow Replace node p by node r [Still BST?]
- Case 4: Both of node p's children are internal.
 - Let r be the <u>right-most</u> internal node p's LST.
 ⇒ r contains the <u>largest key s.t. key(r)</u> < key(p).

Exercise: Can r contain the **smallest** key s.t. key(r) > key(p)?

- Overwrite node p's entry by node r's entry. [Still BST?]
- *r* being the *right-most internal node* may have:
 - ♦ Two *external child nodes* \Rightarrow Remove *r* as in Case 2.
 - \diamond An external, RC & an internal LC \Rightarrow Remove r as in Case 3.

Running time?

[*O*(*h*)]

16 of 41

Visualizing BST Operation: Deletion (1.1)

(Case 3) Before *deleting* the node storing *key 32*:

Visualizing BST Operation: Deletion (1.2)

(Case 3) After *deleting* the node storing *key 32*:

2.1) LASSONDE

Visualizing BST Operation: Deletion (2.1)

(Case 4) Before *deleting* the node storing *key 88*:

17 of 41

Visualizing BST Operation: Deletion (2.2)

(Case 4) After *deleting* the node storing *key 88*:

Exercise on BST Operation: Deletion

<u>Exercise</u>: In BSTUtilities class, <u>implement</u> and <u>test</u> the <u>void</u> <u>delete(BSTNode<E> p, int k)</u> method.

19 of 41

Balanced Binary Search Trees: Motivation

- After *insertions* into a BST, the worst-case RT of a search occurs when the height h is at its maximum: O(n):
 - $\circ~$ e.g., Entries were inserted in an <u>decreasing order</u> of their keys $\langle 100,75,68,60,50,1\rangle$
 - ⇒ One-path, left-slanted BST
 - $\circ~$ e.g., Entries were inserted in an <code>increasing order</code> of their keys $\langle 1, 50, 60, 68, 75, 100 \rangle$
 - ⇒ One-path, right-slanted BST
 - \circ e.g., Last entry's key is <u>in-between</u> keys of the previous two entries (1,100,50,75,60,68)
 - ⇒ One-path, side-alternating BST
- To avoid the worst-case RT (: a *ill-balanced tree*), we need to take actions as soon as the tree becomes unbalanced.

Balanced Binary Search Trees: Definition

• Given a node p, the **height** of the subtree rooted at p is:

$$height(p) = \begin{cases} 0 & \text{if } p \text{ is external} \\ 1 + \text{MAX} \left(\left\{ \begin{array}{c} height(c) \mid parent(c) = p \end{array} \right\} \right) & \text{if } p \text{ is internal} \end{cases}$$

• A *balanced* BST *T* satisfies the *height-balance property*:

For every *internal node n*, *heights* of *n*'s child nodes differ ≤ 1.

Q: Is the above tree a *balanced BST*?

Q: Will the tree remain *balanced* after inserting 55?

Q: Will the tree remain *balanced* after inserting 63?

21 of 41

Fixing Unbalanced BST: Rotations

A tree **rotation** is performed:

- When the latest <u>insertion/deletion</u> creates <u>unbalanced</u> nodes, along the ancestor path of the node being inserted/deleted.
- To change the **shape** of tree, **restoring** the **height-balance property**

Q. An in-order traversal on the resulting tree?

A. Still produces a sequence of **sorted keys** $\langle T_1, c, T_2, b, T_3, a, T_4 \rangle$

- After **rotating** node b to the right:
 - Heights of *descendants* (b, c, T₁, T₂, T₃) and *sibling* (T₄) stay *unchanged*.
 - Height of parent (a) is decreased by 1.
 - ⇒ Balance of node a was restored by the rotation.

After Insertions: Trinode Restructuring via Rotation(s)

After *inserting* a new node *n*:

- Case 1: Nodes on n's ancestor path remain balanced.
 - ⇒ No rotations needed
- Case 2: At least one of n's ancestors becomes unbalanced.
 - 1. Get the first/lowest unbalanced node a on n's ancestor path.
 - **2.** Get a's child node b in n's ancestor path.
 - **3.** Get *b*'s child node *c* in *n*'s *ancestor path*.
 - **4.** Perform rotation(s) based on the *alignment* of *a*, *b*, and *c*:
 - Slanted the *same* way ⇒ *single rotation* on the **middle** node *b*
 - Slanted *different* ways ⇒ *double rotations* on the **lower** node *c*

23 of 41

Trinode Restructuring: Single, Left Rotation LASSONDE

After a *left rotation* on the middle node *b*:

BST property maintained?

 $\langle T_1, a, T_2, b, T_3, c, T_4 \rangle$

Left Rotation

Right Rotation

- *Insert* the following sequence of nodes into an empty BST: (44, 17, 78, 32, 50, 88, 95)
- Is the BST now balanced?
- Insert 100 into the BST.
- Is the BST still balanced?
- Perform a *left rotation* on the appropriate node.
- Is the BST again balanced?

25 of 41

Trinode Restructuring: Single, Right Rotation SSONDE

After a *right rotation* on the middle node *b*:

BST property maintained?

 $\langle T_1, a, T_2, b, T_3, c, T_4 \rangle$

- *Insert* the following sequence of nodes into an empty BST: (44, 17, 78, 32, 50, 88, 48)
- Is the BST now balanced?
- Insert 46 into the BST.
- Is the BST still balanced?
- Perform a right rotation on the appropriate node.
- Is the BST again balanced?

27 of 41

Trinode Restructuring: Double, R-L Rotation S. SONDE

Perform a Right Rotation on Node c

Perform a Left Rotation on Node c

After Right-Left Rotations

BST property maintained?

 $\langle T_1, a, T_2, c, T_3, b, T_4 \rangle$

R-L Rotations

• *Insert* the following sequence of nodes into an empty BST:

(44, 17, 78, 32, 50, 88, 82, 95)

- Is the BST now balanced?
- Insert 85 into the BST.
- Is the BST still balanced?
- Perform the **R-L rotations** on the appropriate node.
- Is the BST again balanced?

29 of 41

Trinode Restructuring: Double, L-R Rotation S. SONDE

Perform a *Left Rotation* on Node c

 $\underline{\mathsf{Perform}}$ a $\underline{\mathsf{\textit{Right Rotation}}}$ on Node c

After Left-Right Rotations

BST property maintained?

 $\langle T_1, b, T_2, c, T_3, a, T_4 \rangle$

L-R Rotations

Insert the following sequence of nodes into an empty BST:

(44, 17, 78, 32, 50, 88, 48, 62)

- Is the BST now balanced?
- Insert 54 into the BST.
- Is the BST still balanced?
- Perform the **L-R rotations** on the appropriate node.
- Is the BST again balanced?

31 of 41

After Deletions: Continuous Trinode Restructuring

- Recall: Deletion from a BST results in removing a node with zero or one internal child node.
- After *deleting* an existing node, say its child is *n*:

Case 1: Nodes on n's ancestor path remain balanced. ⇒ No rotations

Case 2: At least one of n's ancestors becomes unbalanced.

- 1. Get the <u>first/lowest</u> <u>unbalanced</u> node <u>a</u> on *n*'s <u>ancestor path</u>.
- **2.** Get a's **taller** child node **b**.

[b ∉ n's ancestor path]

- **3.** Choose *b*'s child node *c* as follows:
 - b's two child nodes have **different** heights \Rightarrow c is the **taller** child
 - b's two child nodes have same height ⇒ a, b, c slant the same way
- **4.** Perform rotation(s) based on the *alignment* of a, b, and c:
 - Slanted the *same* way \Rightarrow *single rotation* on the <u>middle</u> node <u>b</u>
- Slanted different ways ⇒ double rotations on the lower node c
- As n's unbalanced ancestors are found, keep applying Case 2,

until Case 1 is satisfied.

 $[O(h) = O(\log n) \text{ rotations}]$

Single Trinode Restructuring Step

- *Insert* the following sequence of nodes into an <u>empty</u> BST: (44, 17, 62, 32, 50, 78, 48, 54, 88)
- Is the BST now balanced?
- **Delete** 32 from the BST.
- Is the BST still balanced?
- Perform a *left rotation* on the appropriate node.
- Is the BST again balanced?

33 of 41

Multiple Trinode Restructuring Steps

- *Insert* the following sequence of nodes into an <u>empty</u> BST: (50, 25, 10, 30, 5, 15, 27, 1, 75, 60, 80, 55)
- Is the BST now balanced?
- Delete 80 from the BST.
- Is the BST still balanced?
- Perform a *right rotation* on the appropriate node.
- Is the BST now balanced?
- Perform another *right rotation* on the appropriate node.
- Is the BST again balanced?

34 of 41

Restoring Balance from Insertions

Before Insertion into T3 h + 3 h + 2 h + 1 T1 h + 1 T2 T3

After Performing L-R Rotations on Node c: Height of Subtree Being Fixed Remains h + 3

35 of 41

36 of 41

Restoring Balance from Deletions

After Performing Right Rotation on Node b: Height of Subtree Being Fixed Reduces its Height by 1!

Restoring Balance: Insertions vs. Deletions LASSONDE

- Each *rotation* involves only *POs* of setting parent-child references.
 - ⇒ O(1) running time for each tree rotation
- After each insertion, a trinode restructuring step can restore the balance of the subtree rooted at the first unbalanced node.
 - \Rightarrow O(1) rotations suffices to restore the balance of tree
- After each deletion, one or more trinode restructuring steps may restore the balance of the subtree rooted at the first unbalanced node.
 - \Rightarrow May take O(log n) rotations to restore the balance of tree

37 of 41

Index (1)

Learning Outcomes of this Lecture

Implementation: Generic BST Nodes

Implementing BST Operation: Searching

Visualizing BST Operation: Searching (1)

Visualizing BST Operation: Searching (2)

Testing BST Operation: Searching

RT of BST Operation: Searching (1)

RT of BST Operation: Searching (2)

Sketch of BST Operation: Insertion

Visualizing BST Operation: Insertion (1)

Visualizing BST Operation: Insertion (2)

38 of 41

Index (2)

Exercise on BST Operation: Insertion

Sketch of BST Operation: Deletion

Visualizing BST Operation: Deletion (1.1)

Visualizing BST Operation: Deletion (1.2)

Visualizing BST Operation: Deletion (2.1)

Visualizing BST Operation: Deletion (2.2)

Exercise on BST Operation: Deletion

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

Fixing Unbalanced BST: Rotations

39 of 41

Index (3)

After Insertions:

Trinode Restructuring via Rotation(s)

Trinode Restructuring: Single, Left Rotation

Left Rotation

Trinode Restructuring: Single, Right Rotation

Right Rotation

Trinode Restructuring: Double, R-L Rotations

R-L Rotations

Trinode Restructuring: Double, L-R Rotations

L-R Rotations

After Deletions:

Continuous Trinode Restructuring

Index (4)

Single Trinode Restructuring Step

Multiple Trinode Restructuring Steps

Restoring Balance from Insertions

Restoring Balance from Deletions

Restoring Balance: Insertions vs. Deletions