
Self-Balancing Binary Search Trees

EECS3101 E:
Design and Analysis of Algorithms

Fall 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:
● When the Worst-Case RT of a BST Search Occurs
● Height-Balance Property
● Review: Insertion & Deletion on a BST
● Performing Rotations to Restore Tree Balance

2 of 41

Implementation: Generic BST Nodes

public class BSTNode<E> {
private int key; /* key */
private E value; /* value */
private BSTNode<E> parent; /* unique parent node */
private BSTNode<E> left; /* left child node */
private BSTNode<E> right; /* right child node */

public BSTNode() { . . . }
public BSTNode(int key, E value) { . . . }

public boolean isExternal() {
return this.getLeft() == null && this.getRight() == null;

}
public boolean isInternal() {
return !this.isExternal();

}
public int getKey() { . . . }
public void setKey(int key) { . . . }
public E getValue() { . . . }
public void setValue(E value) { . . . }
public BSTNode<E> getParent() { . . . }
public void setParent(BSTNode<E> parent) { . . . }
public BSTNode<E> getLeft() { . . . }
public void setLeft(BSTNode<E> left) { . . . }
public BSTNode<E> getRight() { . . . }
public void setRight(BSTNode<E> right) { . . . }

}

3 of 41

Implementing BST Operation: Searching

Given a BST rooted at node p, to locate a particular node
whose key matches k , we may view it as a decision tree.

public BSTNode<E> search(BSTNode<E> p, int k) {
BSTNode<E> result = null;
if(p.isExternal()) {
result = p; /* unsuccessful search */

}
else if(p.getKey() == k) {
result = p; /* successful search */

}
else if(k < p.getKey()) {
result = search(p.getLeft(), k); /* recur on LST */

}
else if(k > p.getKey()) {
result = search(p.getRight(), k); /* recur on RST */

}
return result;

}

4 of 41

Visualizing BST Operation: Searching (1)

A successful search for key 65:

28

21 29

82

88

65

54

44

32

17

8

93

97

76

80

The internal node storing key 65 is returned.
5 of 41

Visualizing BST Operation: Searching (2)

● An unsuccessful search for key 68:

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

The external, left child node of the internal node
storing key 76 is returned.

● Exercise : Provide keys for different external nodes to be returned.
6 of 41

Testing BST Operation: Searching

@Test
public void test_binary_search_trees_search() {
BSTNode<String> n28 = new BSTNode<>(28, "alan");
BSTNode<String> n21 = new BSTNode<>(21, "mark");
BSTNode<String> n35 = new BSTNode<>(35, "tom");
BSTNode<String> extN1 = new BSTNode<>();
BSTNode<String> extN2 = new BSTNode<>();
BSTNode<String> extN3 = new BSTNode<>();
BSTNode<String> extN4 = new BSTNode<>();
n28.setLeft(n21); n21.setParent(n28);
n28.setRight(n35); n35.setParent(n28);
n21.setLeft(extN1); extN1.setParent(n21);
n21.setRight(extN2); extN2.setParent(n21);
n35.setLeft(extN3); extN3.setParent(n35);
n35.setRight(extN4); extN4.setParent(n35);

BSTUtilities<String> u = new BSTUtilities<>();
/* search existing keys */
assertTrue(n28 == u.search(n28, 28));
assertTrue(n21 == u.search(n28, 21));
assertTrue(n35 == u.search(n28, 35));
/* search non-existing keys */
assertTrue(extN1 == u.search(n28, 17)); /* *17* < 21 */
assertTrue(extN2 == u.search(n28, 23)); /* 21 < *23* < 28 */
assertTrue(extN3 == u.search(n28, 33)); /* 28 < *33* < 35 */
assertTrue(extN4 == u.search(n28, 38)); /* 35 < *38* */

}

7 of 41

RT of BST Operation: Searching (1)

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

8 of 41

RT of BST Operation: Searching (2)

● Recursive calls of search are made on a path which○ Starts from the root○ Goes down one level at a time
RT of deciding from each node to go to LST or RST? [O(1)]○ Stops when the key is found or when a leaf is reached
Maximum number of nodes visited by the search? [h + 1]∴ RT of search on a BST is O(h)● Recall: Given a BT with n nodes, the height h is bounded as:

log(n + 1) − 1 ≤ h ≤ n − 1○ Best RT of a binary search is O(log(n)) [balanced BST]○ Worst RT of a binary search is O(n) [ill-balanced BST]● Binary search on non-linear vs. linear structures:
Search on a BST Binary Search on a Sorted Array

START Root of BST Middle of Array
PROGRESS LST or RST Left Half or Right Half of Array
BEST RT O(log(n)) O(log(n))WORST RT O(n)

9 of 41

Sketch of BST Operation: Insertion

To insert an entry (with key k & value v) into a BST rooted at node n:

○ Let node p be the return value from search(n, k).○ If p is an internal node⇒ Key k exists in the BST.⇒ Set p’s value to v .○ If p is an external node⇒ Key k deos not exist in the BST.⇒ Set p’s key and value to k and v .

Running time? [O(h)]

10 of 41

Visualizing BST Operation: Insertion (1)

Before inserting an entry with key 68 into the following BST:

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

11 of 41

Visualizing BST Operation: Insertion (2)

After inserting an entry with key 68 into the following BST:

21

8068

82

88

65

54

44

32

17

8

93

97

76

28

29

12 of 41

Exercise on BST Operation: Insertion

Exercise : In BSTUtilities class, implement and test the
void insert(BSTNode<E> p, int k, E v) method.

13 of 41

Sketch of BST Operation: Deletion

To delete an entry (with key k) from a BST rooted at node n:
Let node p be the return value from search(n, k).○ Case 1: Node p is external .

k is not an existing key⇒ Nothing to remove○ Case 2: Both of node p’s child nodes are external .
No “orphan” subtrees to be handled⇒ Remove p [Still BST?]○ Case 3: One of the node p’s children, say r , is internal .

● r ’s sibling is external ⇒ Replace node p by node r [Still BST?]○ Case 4: Both of node p’s children are internal .
● Let r be the right-most internal node p’s LST .⇒ r contains the largest key s.t. key(r) < key(p).

Exercise: Can r contain the smallest key s.t. key(r) > key(p)?● Overwrite node p’s entry by node r ’s entry. [Still BST?]● r being the right-most internal node may have:◇ Two external child nodes ⇒ Remove r as in Case 2.◇ An external, RC & an internal LC ⇒ Remove r as in Case 3.

Running time? [O(h)]
14 of 41

Visualizing BST Operation: Deletion (1.1)

(Case 3) Before deleting the node storing key 32:

21

p

76

82

88

65

54

44

32

17

8

93

97

8068

r

28

29

15 of 41

Visualizing BST Operation: Deletion (1.2)

(Case 3) After deleting the node storing key 32:

28

29

68

r

82

88

65

54

44

17

93

97

76

80

8

21

16 of 41

Visualizing BST Operation: Deletion (2.1)

(Case 4) Before deleting the node storing key 88:

p

21 29

8

82

88

65

54

44

93

97

76

8068

r

17

28

17 of 41

Visualizing BST Operation: Deletion (2.2)

(Case 4) After deleting the node storing key 88:

97
r

93

17

29

8068

76

658

p

82

28

21 54

44

18 of 41

Exercise on BST Operation: Deletion

Exercise : In BSTUtilities class, implement and test the
void delete(BSTNode<E> p, int k) method.

19 of 41

Balanced Binary Search Trees: Motivation

● After insertions into a BST, the worst-case RT of a search
occurs when the height h is at its maximum: O(n) :
○ e.g., Entries were inserted in an decreasing order of their keys

�100,75,68,60,50,1�
⇒ One-path, left-slanted BST○ e.g., Entries were inserted in an increasing order of their keys

�1,50,60,68,75,100�
⇒ One-path, right-slanted BST○ e.g., Last entry’s key is in-between keys of the previous two entries

�1,100,50,75,60,68�
⇒ One-path, side-alternating BST

● To avoid the worst-case RT (∵ a ill-balanced tree), we need to
take actions as soon as the tree becomes unbalanced .

20 of 41

Balanced Binary Search Trees: Definition

● Given a node p, the height of the subtree rooted at p is:

height(p) = �������
0 if p is external
1 +MAX ({ height(c) � parent (c) = p }) if p is internal

● A balanced BST T satisfies the height-balance property :
For every internal node n, heights of n’s child nodes differ ≤ 1.

2

AVL Trees

Binary Search Trees Binary Search Trees – better than “linear” dictionaries; however, the
worst–case performance of find, insert, remove
operations still linear (O(n))

HeightHeight--Balance PropertyBalance Property – for every internal node v of T, the heights
of the children of v can differ at most by 1;
if v has only one (internal node) child, its
height must be 1

44

5617

325 48

51

4

3

2 1

2

11 77

1

AVL Tree AVL Tree – any binary search tree T that satisfies the height-balance
property is said to be an AVL Tree

If an AVL tree has n nodes,
what is the cost of

find, insert, remove ??

Q: Is the above tree a balanced BST ? ✓
Q: Will the tree remain balanced after inserting 55? ×
Q: Will the tree remain balanced after inserting 63? ✓

21 of 41

Fixing Unbalanced BST: Rotations

A tree rotation is performed:● When the latest insertion/deletion creates unbalanced nodes, along the
ancestor path of the node being inserted/deleted.● To change the shape of tree, restoring the height-balance property

Rotate Node b

to the Rightc

 T1

b

a

 T2

 T3

 T4

c

 T1

a

 T2 T3 T4

b

h + 1 h

h + 2 h h + 1

h h

h + 3 h + 2

h + 1

h h

h h

Q. An in-order traversal on the resulting tree?
A. Still produces a sequence of sorted keys �T1, c, T2, b, T3, a, T4�○ After rotating node b to the right:
● Heights of descendants (b, c, T1, T2, T3) and sibling (T4) stay unchanged .● Height of parent (a) is decreased by 1.
⇒ Balance of node a was restored by the rotation.

22 of 41

After Insertions:

Trinode Restructuring via Rotation(s)

After inserting a new node n:
● Case 1: Nodes on n’s ancestor path remain balanced .

⇒ No rotations needed

● Case 2: At least one of n’s ancestors becomes unbalanced .
1. Get the first/lowest unbalanced node a on n’s ancestor path.

2. Get a’s child node b in n’s ancestor path.

3. Get b’s child node c in n’s ancestor path.

4. Perform rotation(s) based on the alignment of a, b, and c:
● Slanted the same way⇒ single rotation on the middle node b

● Slanted different ways⇒ double rotations on the lower node c

23 of 41

Trinode Restructuring: Single, Left Rotation

a

 T1

b

c

 T2

 T3 T4

After a left rotation on the middle node b:

a

 T1

b

c

 T2 T3 T4

BST property maintained? �T1, a, T2, b, T3, c, T4�
24 of 41

Left Rotation

● Insert the following sequence of nodes into an empty BST:
�44,17,78,32,50,88,95�

● Is the BST now balanced?
● Insert 100 into the BST.
● Is the BST still balanced?
● Perform a left rotation on the appropriate node.
● Is the BST again balanced?

25 of 41

Trinode Restructuring: Single, Right Rotation

c

 T1

b

a

 T2

 T3

 T4

After a right rotation on the middle node b:

c

 T1

b

a

 T2 T3 T4

BST property maintained? �T1, a, T2, b, T3, c, T4�
26 of 41

Right Rotation

● Insert the following sequence of nodes into an empty BST:
�44,17,78,32,50,88,48�

● Is the BST now balanced?
● Insert 46 into the BST.
● Is the BST still balanced?
● Perform a right rotation on the appropriate node.
● Is the BST again balanced?

27 of 41

Trinode Restructuring: Double, R-L Rotations

a

 T1
c

b

 T2 T3

 T4

a

 T1

c

b

 T2

 T3 T4

a

 T1

c

b

 T2 T3 T4

Perform a Right Rotation on Node c Perform a Left Rotation on Node c After Right-Left Rotations

BST property maintained? �T1, a, T2, c, T3, b, T4�

28 of 41

R-L Rotations

● Insert the following sequence of nodes into an empty BST:
�44,17,78,32,50,88,82,95�

● Is the BST now balanced?
● Insert 85 into the BST.
● Is the BST still balanced?
● Perform the R-L rotations on the appropriate node.
● Is the BST again balanced?

29 of 41

Trinode Restructuring: Double, L-R Rotations

b

 T1

c

a

 T2 T3

 T4 b

 T1

c

a

 T2

 T3

 T4
b

 T1

c

a

 T2 T3 T4

Perform a Left Rotation on Node c Perform a Right Rotation on Node c After Left-Right Rotations

BST property maintained? �T1, b, T2, c, T3, a, T4�

30 of 41

L-R Rotations

● Insert the following sequence of nodes into an empty BST:
�44,17,78,32,50,88,48,62�

● Is the BST now balanced?
● Insert 54 into the BST.
● Is the BST still balanced?
● Perform the L-R rotations on the appropriate node.
● Is the BST again balanced?

31 of 41

After Deletions:

Continuous Trinode Restructuring

● Recall : Deletion from a BST results in
removing a node with zero or one internal child node.● After deleting an existing node, say its child is n:

Case 1: Nodes on n’s ancestor path remain balanced . ⇒ No rotations
Case 2: At least one of n’s ancestors becomes unbalanced .
1. Get the first/lowest unbalanced node a on n’s ancestor path.
2. Get a’s taller child node b . [b �∈ n’s ancestor path]
3. Choose b’s child node c as follows:

● b’s two child nodes have different heights⇒ c is the taller child
● b’s two child nodes have same height⇒ a, b, c slant the same way

4. Perform rotation(s) based on the alignment of a, b, and c:
● Slanted the same way⇒ single rotation on the middle node b

● Slanted different ways⇒ double rotations on the lower node c● As n’s unbalanced ancestors are found, keep applying Case 2,
until Case 1 is satisfied. [O(h) = O(log n) rotations]

32 of 41

Single Trinode Restructuring Step

● Insert the following sequence of nodes into an empty BST:
�44,17,62,32,50,78,48,54,88�

● Is the BST now balanced?
● Delete 32 from the BST.
● Is the BST still balanced?
● Perform a left rotation on the appropriate node.
● Is the BST again balanced?

33 of 41

Multiple Trinode Restructuring Steps

● Insert the following sequence of nodes into an empty BST:
�50,25,10,30,5,15,27,1,75,60,80,55�

● Is the BST now balanced?
● Delete 80 from the BST.
● Is the BST still balanced?
● Perform a right rotation on the appropriate node.
● Is the BST now balanced?
● Perform another right rotation on the appropriate node.
● Is the BST again balanced?

34 of 41

Restoring Balance from Insertions

b

 T1

c

a

 T2 T3

 T4h + 1

h h

h + 1

h + 2

h + 3

h + 1

Before Insertion into T3

b

 T1

c

a

 T2 T3

 T4h + 1

h h + 1

h + 2

h + 3

h + 4

h + 1

After Insertion into T3

b

 T1

c

a

 T2 T3 T4

h + 1 h

h + 2

h + 1 h + 1

h + 2

h + 3

After Performing L-R Rotations on Node c: Height of Subtree Being Fixed Remains h + 3

35 of 41

Restoring Balance from Deletions

c

 T1

b

a

 T2

 T3

 T4

Before Deletion from T4

h + 3

h + 2

h + 1

h h

h

h + 1

c

 T1

b

a

 T2

 T3

 T4

After Deletion from T4

h + 3

h + 2

h + 1

h h

h

h

c

 T1

b

a

 T2 T3 T4

After Performing Right Rotation on Node b: Height of Subtree Being Fixed Reduces its Height by 1!

h + 2

h + 1 h + 1

h h h h

36 of 41

Restoring Balance: Insertions vs. Deletions

● Each rotation involves only POs of setting parent-child references.
⇒ O(1) running time for each tree rotation

● After each insertion, a trinode restructuring step can restore the
balance of the subtree rooted at the first unbalanced node.
⇒ O(1) rotations suffices to restore the balance of tree

● After each deletion, one or more trinode restructuring steps may restore
the balance of the subtree rooted at the first unbalanced node.
⇒ May take O(log n) rotations to restore the balance of tree

37 of 41

Index (1)

Learning Outcomes of this Lecture

Implementation: Generic BST Nodes

Implementing BST Operation: Searching

Visualizing BST Operation: Searching (1)

Visualizing BST Operation: Searching (2)

Testing BST Operation: Searching

RT of BST Operation: Searching (1)

RT of BST Operation: Searching (2)

Sketch of BST Operation: Insertion

Visualizing BST Operation: Insertion (1)

Visualizing BST Operation: Insertion (2)

38 of 41

Index (2)

Exercise on BST Operation: Insertion

Sketch of BST Operation: Deletion

Visualizing BST Operation: Deletion (1.1)

Visualizing BST Operation: Deletion (1.2)

Visualizing BST Operation: Deletion (2.1)

Visualizing BST Operation: Deletion (2.2)

Exercise on BST Operation: Deletion

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

Fixing Unbalanced BST: Rotations

39 of 41

Index (3)

After Insertions:

Trinode Restructuring via Rotation(s)

Trinode Restructuring: Single, Left Rotation

Left Rotation

Trinode Restructuring: Single, Right Rotation

Right Rotation

Trinode Restructuring: Double, R-L Rotations

R-L Rotations

Trinode Restructuring: Double, L-R Rotations

L-R Rotations

After Deletions:

Continuous Trinode Restructuring

40 of 41

Index (4)

Single Trinode Restructuring Step

Multiple Trinode Restructuring Steps

Restoring Balance from Insertions

Restoring Balance from Deletions

Restoring Balance: Insertions vs. Deletions

41 of 41

