Self-Balancing Binary Search Trees

EECS3101 E:
Design and Analysis of Algorithms

YORK ' Fall 2025

UN I ERSITE
UNIVERSITY CHEN-WEI WANG

\ |
v |

Learning Outcomes of this Lecture LASSONDE

ooooooooooooooooo

This module is designed to help you understand:

e When the Worst-Case RT of a BST Search Occurs
¢ Height-Balance Property

¢ Review: Insertion & Deletion on a BST

¢ Performing Rotations to Restore Tree Balance

Implementation: Generic BST Nodes

LASSONDE

ooooooooooooooooo

public class BSTNode<E> {
private int key; vy
private E value; /= 11 ue
private BSTNode<E> parent; L que
private BSTNode<E> left; « left c le oa
private BSTNode<E> right; + right child node =

public BSTNode() { ... }
public BSTNode (int key, E value) { ... }

public boolean isExternal() {
return this.getLeft () == null && this.getRight() == null;

public boolean isInternal() {
return !this.isExternal();
}
public int getKey() { ... }
public void setKey(int key) { ... }
public E getValue() { ... }
public void setValue(E value) { ... }
public BSTNode<E> getParent() { ... }
public void setParent (BSTNode<E> parent) { ... }
public BSTNode<E> getLeft() { ... }
public void setLeft (BSTNode<E> left) { ... }
public BSTNode<E> getRight() { ... }
public void setRight (BSTNode<E> right) { ... }

}
e

Implementing BST Operation: Searching

LASSONDE

ooooooooooooooooo

Given a BST rooted at node p, to locate a particular node
whose key matches k, we may view it as a decision tree.

public BSTNode<E> search(BSTNode<E> p, int k) {
BSTNode<E> result = null;
if(p.isExternal()) |

result = p; /* unsuccessful search */
}
else if (p.getKey() == k) |

result = p; /* successful search +*

}
else if (k < p.getKey()) {
result = search(p.getLeft (), k); /+ recur on LSI
}
else if (k > p.getKey()) |
result = search(p.getRight(), k); /* recur on RST x/
}

return result;

Visualizing BST Operation: Searching (1)

A successful search for key 65:

Testing BST Operation: Searching

@Test

BSTNode<String>
BSTNode<String>
BSTNode<String>
BSTNode<String>
BSTNode<String>
BSTNode<String>
BSTNode<String>

n28 =
n2l =
n35 =
extN1
extN2
extN3
extN4

n28.

n35.

setLeft (n21); n2l

public void test_binary_search _trees_search()

new BSTNode<> (28,
new BSTNode<> (21,
new BSTNode<> (35,
new BSTNode<> ()
new BSTNode<> ()
new BSTNode<> ()
new BSTNode<> ()

i

.setParent (n28)

"alan");
")

n28.setRight (n35); n35.setParent (n28)
n2l.setLeft (extNl); extNl.setParent(n2l);
n2l.setRight (extN2); extN2.setParent (n2l);
n35.setLeft (extN3); extN3.setParent (n35);

setRight (extN4); extN4.setParent (n35);

assertTrue (n28

.search(n28, 28));

assertTrue

assertTrue

assertTrue (n35

n21

o
o
ISR

extNl ==

:sea}ch n28, 17

.search(n28, 21));
.search(n28, 35));

{

"tom") ;

BSTUtilities<String> u = new BSTUtilities<>()

(u (V)i
assertTrue (extN2 == u.search(n28, 23)); 21 2 2
assertTrue (extN3 == u.search(n28, 33)); 2
assertTrue (extN4 == u.search(n28, 38)); 3
. . . }
The internal node storing key 65 is returned.

Visualizing BST Operation: Searching (2) |issonos RT of BST Operation: Searching (1) I

e An unsuccessful search for key 68:

Height Time per level
o(1)

The external, left child node of the internal node
storing key 76 is returned.

e Exercise : Provide keys for different external nodes to be returned.

Total time: O(h)

RT of BST Operation: Searching (2) Mot

ooooooooooooooooo

e Recursive calls of search are made on a path which
o Starts from the root
o Goes down one level at a time

RT of deciding from each node to go to LST or RST? [O(1)]
o Stops when the key is found or when a leaf is reached
Maximum number of nodes visited by the search? [A+1]

- RT of search on a BST is O(h)
e Recall: Given a BT with n nodes, the height h is bounded as:
log(n+1)-1<h<n-1
o Best RT of a binary search is O(log(n)) [balanced BST]
o Worst RT of a binary search is O(n) [ill-balanced BST]

e Binary search on non-linear vs. linear structures:

Search on a BST | Binary Search on a Sorted Array
START Root of BST Middle of Array
PROGRESS LST or RST Left Half or Right Half of Array
BEST RT O(log(n))
WORST RT O(n) O(log(n))
[of4il

Sketch of BST Operation: Insertion LASSONDE

ooooooooooooooooo

To insert an entry (with key k & value v) into a BST rooted at node n:

o Let node p be the return value from search (n, k).
o If pis an internal node

= Key k exists in the BST.

= Set p’s value to v.
o If pis an external node

= Key k deos not exist in the BST.

= Set p’s key and value to k and v.

Running time? [O(h)]

Visualizing BST Operation: Insertion (1) LASSONDE

ooooooooooooooooo

Before inserting an entry with key 68 into the following BST:

Visualizing BST Operation: Insertion (2)
After inserting an entry with key 68 into the following BST:

Exercise on BST Operation: Insertion LASSONDE Visualizing BST Operation: Deletion (1.1)

ooooooooooooooooo

(Case 3) Before deleting the node storing key 32:

Exercise : In BSTUtilities class, implement and test the

’void insert (BSTNode<E> p, int k, E v) ‘methOd

Sketch of BST Operation: Deletion LASSONDE Visualizing BST Operation: Deletion (1.2) |.ssonoe

oooooooooooooooooooooooooooooooooo

To delete an entry (with key k) from a BST rooted at node n: (Case 3) After deleting the node storing key 32:

Let node p be the return value from search (n, k).
o Case 1: Node p is external.

k is not an existing key = Nothing to remove
o Case 2: Both of node p’s child nodes are external.

No “orphan” subtrees to be handled = Remove p [Still BST?]
o Case 3: One of the node p’s children, say r, is internal.
e r’s sibling is external = Replace node p by node r [Still BST?]

o Case 4: Both of node p’s children are internal.
o Let r be the right-most internal node p’s LST.
= r contains the largest key s.t. key(r) < key(p).
Exercise: Can r contain the smallest key s.t. key(r) > key(p)?
o Overwrite node p’s entry by node r’s entry. [Still BST?]
e r being the right-most internal node may have:
o Two external child nodes = Remove r as in Case 2.
o An external, RC & an internal LC = Remove r as in Case 3.

Running time? [O(h)]

LASSONDE

ooooooooooooooooo

Visualizing BST Operation: Deletion (2.1)
(Case 4) Before deleting the node storing key 88:

_

LASSONDE

ooooooooooooooooo

Visualizing BST Operation: Deletion (2.2)
(Case 4) After deleting the node storing key 88:

LASSONDE

ooooooooooooooooo

Exercise on BST Operation: Deletion

Exercise : In BSTUtilities class, implement and test the

’void delete (BSINode<E> p, int k) \method.

LASSONDE

ooooooooooooooooo

Balanced Binary Search Trees: Motivation

o After insertions into a BST, the worst-case RT of a search
occurs when the height his at its maximum: O(n) :
o e.g., Entries were inserted in an decreasing order of their keys
(100, 75,68,60,50,1)

= One-path, left-slanted BST
o e.g., Entries were inserted in an increasing order of their keys

(1,50,60,68,75,100)
= One-path, right-slanted BST
o e.g., Last entry’s key is in-between keys of the previous two entries

(1,100, 50, 75,60, 68)
= One-path, side-alternating BST
¢ To avoid the worst-case RT (. a ill-balanced tree), we need to
take actions as soon as the tree becomes unbalanced.

LSSoNDE

Balanced Binary Search Trees: Definition
¢ Given a node p, the height of the subtree rooted at p is:

0 if p is external

height(p) =
eight(p) {1 +MAX ({ height(c) | parent (c) =p }) if pis internal

» A balanced BST T satisfies the height-balance property :
For every internal node n, heights of n’s child nodes differ < 1.

OO
Q: Is the above tree a balanced BST? v
Q: Will the tree remain balanced after inserting 557 X
Q: Will the tree remain balanced after inserting 637 v
Fixing Unbalanced BST: Rotations o

A tree rotation is performed:

® When the latest insertion/deletion creates unbalanced nodes, along the
ancestor path of the node being inserted/deleted.

® To change the shape of tree, restoring the height-balance property

h+2

Rotate Node b

to the Right

Q. An in-order traversal on the resulting tree?
A. Still produces a sequence of sorted keys
o After rotating node b to the right:

e Heights of descendants (b, c, Ty, T, T3) and sibling (T4) stay unchanged.
e Height of parent (a) is decreased by 1.
= Balance of node a was restored by the rotation.

(7}) (:a 773a t)7 7?37 a, 7j1>

LSSoNDE

After Insertions:
Trinode Restructuring via Rotation(s)

After inserting a new node n:
e Case 1: Nodes on n’s ancestor path remain balanced.
= No rotations needed

e Case 2: At least one of n's ancestors becomes unbalanced.
1. Get the first/lowest unbalanced node a on n's ancestor path.

2. Get a’s child node b in n's ancestor path.
3. Get b’s child node c¢ in n's ancestor path.

4. Perform rotation(s) based on the alignment of a, b, and c:
¢ Slanted the same way = single rotation on the middle node b
o Slanted different ways = double rotations on the lower node c¢

Trinode Restructuring: Single, Left Rotation|.ssono:

After a left rotation on the middle node b:

O
(=) (c)
BST property maintained? (Th, a, T2, b, T3, ¢, Ta)

Left Rotation LASSONDE Right Rotation LASSONDE

e Insert the following sequence of nodes into an empty BST: e Insert the following sequence of nodes into an empty BST:
(44,17,78,32,50, 88,95) (44,17,78,32,50, 88,48)

e |s the BST now balanced? e |s the BST now balanced?

e Insert 100 into the BST. ¢ Insert 46 into the BST.

e |s the BST still balanced? e |s the BST still balanced?

e Perform a left rotation on the appropriate node. e Perform a right rotation on the appropriate node.

e |s the BST again balanced? e |s the BST again balanced?

Trinode Restructuring: Single, Right Rotatiorf”'gsésom

ooooooooooooooooo

Perform a Right Rotation on Node ¢ Perform a Left Rotation on Node ¢ After Right-Left Rotations
BST property maintained? (T, a, Tz, ¢, T3, b, Ta)
T1 T2 T3 T4
BST property maintained? (Th, a, Tz, b, T3, c, T4)

R-L Rotations LASSONDE

ooooooooooooooooo

e Insert the following sequence of nodes into an empty BST:
(44,17,78,32,50, 88,82, 95)

Is the BST now balanced?

e Insert 85 into the BST.

Is the BST still balanced?

Perform the R-L rotations on the appropriate node.

Is the BST again balanced?

Perform a Left Rotation on Node ¢ Perform a Right Rotation on Node ¢ After Left-Right Rotations

BST property maintained? (Th, b, T2, ¢, Tg, &, Ta)

L-R Rotations LASSONDE

ooooooooooooooooo

e Insert the following sequence of nodes into an empty BST:
(44,17,78,32,50, 88,48, 62)

Is the BST now balanced?

e Insert 54 into the BST.

Is the BST still balanced?

Perform the L-R rotations on the appropriate node.

Is the BST again balanced?

131 of 41]

LASSONDE

ooooooooooooooooo

After Deletions:
Continuous Trinode Restructuring

® Recall : Deletion from a BST results in
removing a node with zero or one internal child node.
® After deleting an existing node, say its child is n:
Case 1: Nodes on n's ancestor path remain balanced. = No rotations
Case 2: At least one of n's ancestors becomes unbalanced.
1. Get the first/lowest unbalanced node a on n’s ancestor path.
2. Get a's taller child node b . [b¢ n's ancestor path]
3. Choose b’s child node ¢ as follows:
¢ b’s two child nodes have different heights = c¢ is the taller child
e b's two child nodes have same height = a, b, ¢ slant the same way
4. Perform rotation(s) based on the alignment of a, b, and c:
¢ Slanted the same way = single rotation on the middle node b

o Slanted different ways = double rotations on the lower node c¢
® As n's unbalanced ancestors are found, keep applying Case 2,

until Case 1 is satisfied. [O(h) = O(log n) rotations]

Single Trinode Restructuring Step LASSONDE Restoring Balance from Insertions LASSONDE

oooooooooooooooooooooooooooooooooo

Before In. ion into T. After Insertion into T3

e Insert the following sequence of nodes into an empty BST:
(44,17,62,32,50,78,48,54,88)

Is the BST now balanced?

Delete 32 from the BST.

Is the BST still balanced? After Performing L-R Rotations on Node c: Height of Subtree Being_Fixed Remains h + 3
Perform a left rotation on the appropriate node.

Is the BST again balanced?

Multiple Trinode Restructuring Steps LASSONDE Restoring Balance from Deletions LASSONDE

oooooooooooooooooooooooooooooooooo

Before Deletion from T4 After Deletion from T4
h+3

Insert the following sequence of nodes into an empty BST:
(50,25,10,30,5,15,27,1,75,60, 80, 55)

e |Is the BST now balanced?

¢ Delete 80 from the BST.

e |s the BST still balanced?

e Perform a right rotation on the appropriate node.

e |s the BST now balanced?

¢ Perform another right rotation on the appropriate node.

¢ |Is the BST again balanced?

After Performing_Right Rotation on Node b: Height of Subtree Being Fixed Reduces its Height by 1!

Restoring Balance: Insertions vs. Deletions LASSONDE

e Each rotation involves only POs of setting parent-child references.
= O(1) running time for each tree rotation

® After each insertion, a trinode restructuring step can restore the
balance of the subtree rooted at the first unbalanced node.

= O(1) rotations suffices to restore the balance of tree

® After each deletion, one or more {trinode restructuring steps may restore
the balance of the subtree rooted at the first unbalanced node.

= May take O(log n) rotations to restore the balance of tree

37 of 41

Index (1) :AssoNDE

|[Learning Outcomes of this Lecture|

[Implementation: Generic BST Nodes|

implementing BST Operation: Searching|

|Visualizing BST Operation: Searching (1)|
|Visualizing BST Operation: Searching (2)|
|Testing BST Operation: Searching|

[RT of BST Operation: Searching (1))

[RT of BST Operation: Searching (2)|
|Sketch of BST Operation: Insertion|

|Visualizing BST Operation: Insertion (1))

|Visualizing BST Operation: Insertion (2)|

Index (2) LassoNDE

|[Exercise on BST Operation: Insertion|
|Sketch of BST Operation: Deletion|
|Visualizing BST Operation: Deletion (1.1))
|Visualizing BST Operation: Deletion (1.2)|
|Visualizing BST Operation: Deletion (2.1))
|Visualizing BST Operation: Deletion (2.2)|

|[Exercise on BST Operation: Deletion|

|Balanced Binary Search Trees: Motivation|

([Balanced Binary Search Trees: Definition|

[Fixing Unbalanced BST: Rotations|

Index (3) Sssonee

[After Insertions: |
[Trinode Restructuring via Rotation(s)|

[Trinode Restructuring: Single, Left Rotation|
Left Rotation
[Trinode Restructuring: Single, Right Rotation|

Right Rotation

[Trinode Restructuring: Double, R-L Rotations|
[Trinode Restructuring: Double, L-R Rotations|

[After Deletions: I
|Continuous Trinode Restructuring|

Index (4) LASSONDE
[Single Trinode Restructuring Step|

[Multiple Trinode Restructuring Steps|

|[Restoring Balance from Insertions|

|Restoring Balance from Deletions|

[Restoring Balance: Insertions vs. Deletions|

