
Asymptotic Analysis of Algorithms

EECS3101 E:
Design and Analysis of Algorithms

Fall 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What You’re Assumed to Know

● You will be required to implement Java classes and methods, and to
test their correctness using JUnit.
Review them if necessary:

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS2030_F21

○ Implementing classes and methods in Java [Weeks 1 – 2]
○ Testing methods in Java [Week 4]

● Also, make sure you know how to trace programs using a debugger :
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#java_from_scratch_w21

○ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

2 of 35

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21

Learning Outcomes

This module is designed to help you learn about:
● Notions of Algorithms and Data Structures
● Measurement of the “goodness” of an algorithm
● Measurement of the efficiency of an algorithm
● Experimental measurement vs. Theoretical measurement
● Understand the purpose of asymptotic analysis.
● Understand what it means to say two algorithms are:

○ equally efficient, asymptotically
○ one is more efficient than the other, asymptotically

● Given an algorithm, determine its asymptotic upper bound .

3 of 35

Algorithm and Data Structure
● A data structure is:

○ A systematic way to store and organize data in order to facilitate
access and modifications

○ Never suitable for all purposes: it is important to know its
strengths and limitations

● A well-specified computational problem precisely describes
the desired input/output relationship.
○ Input: A sequence of n numbers ⟨a1, a2, . . . , an⟩

○ Output: A permutation (reordering) ⟨a′1, a′2, . . . , a′n⟩ of the input
sequence such that a′1 ≤ a′2 ≤. . . ≤ a′n

○ An instance of the problem: ⟨3, 1, 2, 5, 4⟩
● An algorithm is:

○ A solution to a well-specified computational problem
○ A sequence of computational steps that

takes value(s) as input and produces value(s) as output
● An algorithm manipulates some chosen data structure(s).
4 of 35

Measuring “Goodness” of an Algorithm

1. Correctness :
○ Does the algorithm produce the expected output?
○ Use unit & regression testing (e.g., JUnit) to ensure this.

2. Efficiency:
○ Time Complexity : processor time required to complete
○ Space Complexity : memory space required to store data

Correctness is always the priority.
How about efficiency? Is time or space more of a concern?

5 of 35

Measuring Efficiency of an Algorithm

● Time is more of a concern than is storage.
● Solutions (run on computers) should be as fast as possible.
● Particularly, we are interested in how running time depends on

two input factors :
1. size

e.g., sorting an array of 10 elements vs. 1m elements
2. structure

e.g., sorting an already-sorted array vs. a hardly-sorted array

Q. How does one determine the running time of an algorithm?

1. Measure time via experiments
2. Characterize time as a mathematical function of the input size

6 of 35

Measure Running Time via Experiments

● Once the algorithm is implemented (e.g., in Java):
○ Execute program on test inputs of various sizes & structures.
○ For each test, record the elapsed time of the execution.

long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;

○ Visualize the result of each test.
● To make sound statistical claims about the algorithm’s

running time, the set of test inputs should be “complete”.
e.g., To experiment with the RT of a sorting algorithm:
● Unreasonable: only consider small-sized and/or almost-sorted arrays
● Reasonable: also consider large-sized, randomly-organized arrays

7 of 35

Experimental Analysis: Challenges

1. An algorithm must be fully implemented (e.g., in Java) in
order study its runtime behaviour experimentally.
○ What if our purpose is to choose among alternative data

structures or algorithms to implement?
○ Can there be a higher-level analysis to determine that one

algorithm or data structure is more “superior” than others?
2. Comparison of multiple algorithms is only meaningful when

experiments are conducted under the same working
environment of:
○ Hardware: CPU, running processes
○ Software: OS, JVM version, Version of Compiler

3. Experiments can be done only on a limited set of test inputs.
○ What if worst-case inputs were not included in the experiments?
○ What if “important” inputs were not included in the experiments?

8 of 35

Moving Beyond Experimental Analysis

● A better approach to analyzing the efficiency (e.g., running
time) of algorithms should be one that:
○ Can be applied using a high-level description of the algorithm

(without fully implementing it).
[e.g., Pseudo Code, Java Code (with “tolerances”)]

○ Allows us to calculate the relative efficiency (rather than absolute
elapsed time) of algorithms in a way that is independent of the
hardware and software environment.

○ Considers all possible inputs (esp. the worst-case scenario).
● We will learn a better approach that contains 3 ingredients:

1. Counting primitive operations
2. Approximating running time as a function of input size
3. Focusing on the worst-case input (requiring most running time)

9 of 35

Counting Primitive Operations

● A primitive operation (POs) corresponds to a low-level
instruction with a constant execution time .
○ (Variable) Assignment [e.g., x = 5;]
○ Indexing into an array [e.g., a[i]]
○ Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
○ Accessing an attribute of an object [e.g., acc.balance]
○ Returning from a method [e.g., return result;]

Q: Is a method call a primitive operation?
A: Not in general. It may be a call to:
○ a “cheap” method (e.g., printing Hello World), or
○ an “expensive” method (e.g., sorting an array of integers)

● RT of an algorithm is approximated as the number of POs
involved (despite the execution environment).

10 of 35

From Absolute RT to Relative RT
○ Each primitive operation (PO) takes approximately the same,

constant amount of time to execute. [say t]
The absolute value of t depends on the execution environment .

Q. How do you relate the number of POs required by an algorithm
and its actual RT on a specific working environment?

A. Number of POs should be proportional to the actual RT .

RT = t ⋅ number of POs

○ e.g., findMax (int[] a, int n) has 7n - 2 POs
RT = (7n - 2) ⋅ t

○ e.g., Say two algorithms with RT (7n - 2) ⋅ t and RT (10n + 3) ⋅ t:
It suffices to compare their relative running time:

7n - 2 vs. 10n + 3.
∴ To determine the time efficiency of an algorithm, we only
focus on their number of POs.

11 of 35

Example: Approx. # of Primitive Operations
● Given # of primitive operations counted precisely as 7n − 2,

we view it as
7 ⋅ n1

− 2 ⋅ n0

● We say
○ n is the highest power
○ 7 and 2 are the multiplicative constants
○ 2 is the lower term

● When approximating a function [e.g., RT ≈ f(n)]
(considering that input size may be very large):
○ Only the highest power matters.
○ multiplicative constants and lower terms can be dropped.
⇒ 7n − 2 is approximately n
Exercise: Consider 7n + 2n ⋅ log n + 3n2:
○ highest power? [n2]
○ multiplicative constants? [7, 2, 3]
○ lower terms? [7n, 2n ⋅ log n]

12 of 35

Approximating Running Time
as a Function of Input Size

Given the high-level description of an algorithm, we

associate it with a function f , such that f (n) returns the
number of primitive operations that are performed on an
input of size n.
○ f (n) = 5 [constant]
○ f (n) = log2n [logarithmic]
○ f (n) = 4 ⋅ n [linear]
○ f (n) = n2 [quadratic]
○ f (n) = n3 [cubic]
○ f (n) = 2n [exponential]

13 of 35

Rates of Growth: Comparison
f(

n
)

107106

n

105104103102

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

101510141013101210111010109108101

100

104

108

1012

1016

1020

1028

1032

1036

1040

1044

100

1024

14 of 35

Focusing on the Worst-Case Input
R

u
n

n
in

g
T

im
e

B C D E F G

best-case time

A

}

Input Instance

1 ms

2 ms

3 ms

4 ms

5 ms worst-case time

average-case time?

● Average-case analysis calculates the expected running time
based on the probability distribution of input values.

● worst-case analysis or best-case analysis?
15 of 35

What is Asymptotic Analysis?

Asymptotic analysis
● Is a method of describing behaviour towards the limit :

○ How the running time of the algorithm under analysis changes as
the input size changes without bound

○ e.g., Contrast: RT1(n) = n vs. RT2(n) = n2

● Allows us to compare the relative performance of alternative
algorithms:
○ For large enough inputs, the multiplicative constants and

lower-order terms of an exact running time can be disregarded.
○ e.g., RT1(n) = 3n2 + 7n + 18 and RT1(n) = 100n2 + 3n − 100 are

considered equally efficient, asymptotically .
○ e.g., RT1(n) = n3 + 7n + 18 is considered less efficient than

RT1(n) = 100n2 + 100n + 2000, asymptotically .

16 of 35

Three Notions of Asymptotic Bounds

We may consider three kinds of asymptotic bounds for the
running time of an algorithm:
● Asymptotic upper bound [O]
● Asymptotic lower bound [Ω]
● Asymptotic tight bound [Θ]

17 of 35

Asymptotic Upper Bound: Definition
● Let f(n) and g(n) be functions mapping

pos. integers (input size) to pos. real numbers (running time).
○ f(n) characterizes the running time of some algorithm.
○ O(g(n)) :

● denotes a collection of functions
● consists of all functions that can be upper bounded by g(n), starting

at some point, using some constant factor
● f(n) ∈ O(g(n)) if there are:

○ A real constant c > 0
○ An integer constant n0 ≥ 1
such that:

f(n) ≤ c ⋅ g(n) for n ≥ n0

● For each member function f(n) in O(g(n)) , we say that:
○ f (n) ∈ O(g(n)) [f(n) is a member of “big-O of g(n)”]
○ f (n) is O(g(n)) [f(n) is “big-O of g(n)”]
○ f (n) is order of g(n)

18 of 35

Asymptotic Upper Bound: Visualization

Input Size

R
u
n
n
in

g
 T

im
e

cg(n)

f(n)

n0

From n0, f(n) is upper bounded by c ⋅ g(n), so f(n) is O(g(n)) .

19 of 35

Asymptotic Upper Bound: Proposition
If f (n) is a polynomial of degree d , i.e.,

f (n) = a0 ⋅ n0
+ a1 ⋅ n1

+ ⋅ ⋅ ⋅ + ad ⋅ nd

and a0,a1, . . . ,ad are integers, then f (n) is O(nd) .
○ We prove by choosing

c = ∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣

n0 = 1

○ We know that for n ≥ 1: n0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nd

○ Upper-bound effect: n0 = 1? [f (1) ≤ (∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣) ⋅ 1d]

a0 ⋅ 10
+ a1 ⋅ 11

+ ⋅ ⋅ ⋅ + ad ⋅ 1d
≤ ∣a0∣ ⋅ 1d

+ ∣a1∣ ⋅ 1d
+ ⋅ ⋅ ⋅ + ∣ad ∣ ⋅ 1d

○ Upper-bound effect holds? [f (n) ≤ (∣a0∣ + ∣a1∣ + ⋅ ⋅ ⋅ + ∣ad ∣) ⋅ nd]

a0 ⋅ n0
+ a1 ⋅ n1

+ ⋅ ⋅ ⋅ + ad ⋅ nd
≤ ∣a0∣ ⋅ nd

+ ∣a1∣ ⋅ nd
+ ⋅ ⋅ ⋅ + ∣ad ∣ ⋅ nd

20 of 35

Asymptotic Upper Bound: Example

Prove: The function f (n) = 5n4 − 3n3 + 2n2 − 4n + 1 is O(n4).
Strategy: Choose a real constant c > 0 and an integer constant
n0 ≥ 1, such that for every integer n ≥ n0:

5n4
+ 3n3

+ 2n2
+ 4n + 1 ≤ c ⋅ n4

Using the proven proposition, choose:
○ c = ∣5∣ + ∣ − 3∣ + ∣2∣ + ∣ − 4∣ + ∣1∣ = 15
○ n0 = 1

21 of 35

Asymptotic Upper Bound: Families

● If a function f (n) is upper bounded by another function g(n) of
degree d , d ≥ 0, then f (n) is also upper bounded by all other
functions of a strictly higher degree (i.e., d + 1, d + 2, etc.).
○ e.g., Family of O(n) contains all f (n) that can be upper bounded

by g(n) = n1:
n, 2n, 3n, . . . [functions with degree 1]
n0, 2n0, 3n0, . . . [functions with degree 0]

○ e.g., Family of O(n2) contains all f (n) that can be upper bounded
by g(n) = n2:

n2, 2n2, 3n2, . . . [functions with degree 2]
n, 2n, 3n, . . . [functions with degree 1]
n0, 2n0, 3n0, . . . [functions with degree 0]

● Consequently:

O(n0
) ⊂ O(n1

) ⊂ O(n2
) ⊂ . . .

22 of 35

Using Asymptotic Upper Bound Accurately

● Use the big-O notation to characterize a function (of an
algorithm’s running time) as closely as possible.
For example, say f (n) = 4n3 + 3n2 + 5:
○ Recall: O(n3) ⊂ O(n4) ⊂ O(n5) ⊂ . . .

○ It is the most accurate to say that f (n) is O(n3).
○ It is true, but not very useful, to say that f (n) is O(n4) and that

f (n) is O(n5).
○ It is false to say that f (n) is O(n2), O(n), or O(1).

● Do not include constant factors and lower-order terms in the
big-O notation.
For example, say f (n) = 2n2 is O(n2), do not say f (n) is
O(4n2 + 6n + 9).

23 of 35

Asymptotic Upper Bound: More Examples

● 5n2 + 3n ⋅ logn + 2n + 5 is O(n2) [c = 15, n0 = 1]
● 20n3 + 10n ⋅ logn + 5 is O(n3) [c = 35, n0 = 1]
● 3 ⋅ logn + 2 is O(logn) [c = 5, n0 = 2]

○ Why can’t n0 be 1?
○ Choosing n0 = 1 means⇒ f (1) is upper-bounded by c ⋅ log 1 :

● We have f (1) = 3 ⋅ log1 + 2, which is 2.
● We have c ⋅ log 1 , which is 0.

⇒ f (1) is not upper-bounded by c ⋅ log 1 [Contradiction!]

● 2n+2 is O(2n) [c = 4, n0 = 1]
● 2n + 100 ⋅ logn is O(n) [c = 102, n0 = 1]

24 of 35

Classes of Functions

upper bound class cost
O(1) constant cheapest

O(log(n)) logarithmic
O(n) linear

O(n ⋅ log(n)) “n-log-n”
O(n2) quadratic
O(n3) cubic

O(nk), k ≥ 1 polynomial
O(an), a > 1 exponential most expensive

25 of 35

Upper Bound of Algorithm: Example (1)

1 boolean containsDuplicate (int[] a, int n) {
2 for (int i = 0; i < n;) {
3 for (int j = 0; j < n;) {
4 if (i != j && a[i] == a[j]) {
5 return true; }
6 j ++; }
7 i ++; }
8 return false; }

● Worst case is when we reach Line 8.
● # of primitive operations ≈ c1 + n ⋅ n ⋅ c2, where c1 and c2 are

some constants.
● Therefore, the running time is O(n2) .
● That is, this is a quadratic algorithm.
26 of 35

Upper Bound of Algorithm: Example (2)

1 int sumMaxAndCrossProducts (int[] a, int n) {
2 int max = a[0];
3 for(int i = 1; i < n; i ++) {
4 if (a[i] > max) { max = a[i]; }
5 }
6 int sum = max;
7 for (int j = 0; j < n; j ++) {
8 for (int k = 0; k < n; k ++) {
9 sum += a[j] * a[k]; } }

10 return sum; }

● # of primitive operations ≈ (c1 ⋅ n + c2) + (c3 ⋅ n ⋅ n + c4), where
c1, c2, c3, and c4 are some constants.

● Therefore, the running time is O(n + n2) = O(n2) .
● That is, this is a quadratic algorithm.
27 of 35

Upper Bound of Algorithm: Example (3)

1 int triangularSum (int[] a, int n) {
2 int sum = 0;
3 for (int i = 0; i < n; i ++) {

4 for (int j = i ; j < n; j ++) {

5 sum += a[j]; } }
6 return sum; }

● # of primitive operations ≈ n + (n − 1) + ⋅ ⋅ ⋅ + 2 + 1 =
n⋅(n+1)

2

● Therefore, the running time is O(n2+n
2) = O(n2) .

● That is, this is a quadratic algorithm.

28 of 35

Array Implementations: Stack and Queue
● When implementing stack and queue via arrays, we imposed a

maximum capacity:
public class ArrayStack<E> implements Stack<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
. . .
public void push(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { . . . }

}
. . .

}

public class ArrayQueue<E> implements Queue<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
. . .
public void enqueue(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { . . .

}
. . .

}

● This made the push and enqueue operations both cost O(1).
29 of 35

Dynamic Array: Constant Increments
Implement stack using a dynamic array resizing itself by a constant increment:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int C;
4 private int capacity;
5 private E[] data;
6 public ArrayStack() {
7 I = 1000; /* arbitrary initial size */
8 C = 500; /* arbitrary fixed increment */
9 capacity = I;

10 data = (E[]) new Object[capacity];
11 t = -1;
12 }
13 public void push(E e) {
14 if (size() == capacity) {
15 /* resizing by a fixed constant */
16 E[] temp = (E[]) new Object[capacity + C];
17 for(int i = 0; i < capacity; i ++) {
18 temp[i] = data[i];
19 }
20 data = temp;
21 capacity = capacity + C
22 }
23 t++;
24 data[t] = e;
25 }
26 }

● This alternative strategy
resizes the array,
whenever needed,
by a constant amount.

● L17 – L19 make push cost
O(n), in the worst case.

● However, given that resizing
only happens rarely, how about
the average running time?

● We will refer L14 – L22 as the
resizing part and L23 – L24
as the update part.

30 of 35

Dynamic Array: Doubling
Implement stack using a dynamic array resizing itself by doubling:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int capacity;
4 private E[] data;
5 public ArrayStack() {
6 I = 1000; /* arbitrary initial size */
7 capacity = I;
8 data = (E[]) new Object[capacity];
9 t = -1;

10 }
11 public void push(E e) {
12 if (size() == capacity) {
13 /* resizing by doubling */
14 E[] temp = (E[]) new Object[capacity * 2];
15 for(int i = 0; i < capacity; i ++) {
16 temp[i] = data[i];
17 }
18 data = temp;
19 capacity = capacity * 2
20 }
21 t++;
22 data[t] = e;
23 }
24 }

● This alternative strategy
resizes the array,
whenever needed,
by doubling its current size.

● L15 – L17 make push cost
O(n), in the worst case.

● However, given that resizing
only happens rarely, how about
the average running time?

● We will refer L12 – L20 as the
resizing part and L21 – L22 as
the update part.

31 of 35

Avg. RT: Const. Increment vs. Doubling

● Without loss of generality, assume: There are n push operations, and the
last push triggers the last resizing routine.

Constant Increments Doubling
RT of exec. update part for n pushes O(n)

RT of executing 1st resizing I
RT of executing 2nd resizing I +C 2 ⋅ I
RT of executing 3rd resizing I + 2 ⋅C 4 ⋅ I
RT of executing 4th resizing I + 3 ⋅C 8 ⋅ I
RT of executing kth resizing I + (k − 1) ⋅C 2k−1 ⋅ I
RT of executing last resizing n

of resizing needed (solve k for RT = n) O(n) O(log2n)
Total RT for n pushes O(n2) O(n)

Amortized/Average RT over n pushes O(n) O(1)

● Over n push operations, the amortized / average running time of the
doubling strategy is more efficient.

32 of 35

Index (1)

What You’re Assumed to Know

Learning Outcomes

Algorithm and Data Structure

Measuring “Goodness” of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Experimental Analysis: Challenges

Moving Beyond Experimental Analysis

Counting Primitive Operations

From Absolute RT to Relative RT

Example: Approx. # of Primitive Operations
33 of 35

Index (2)

Approximating Running Time
as a Function of Input Size

Rates of Growth: Comparison

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

Asymptotic Upper Bound: Definition

Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Proposition

Asymptotic Upper Bound: Example

Asymptotic Upper Bound: Families

34 of 35

Index (3)
Using Asymptotic Upper Bound Accurately

Asymptotic Upper Bound: More Examples

Classes of Functions

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)

Upper Bound of Algorithm: Example (3)

Array Implementations: Stack and Queue

Dynamic Array: Constant Increments

Dynamic Array: Doubling

Avg. RT: Const. Increment vs. Doubling

35 of 35

	What You're Assumed to Know
	Learning Outcomes
	Algorithm and Data Structure
	Measuring ``Goodness'' of an Algorithm
	Measuring Efficiency of an Algorithm
	Measure Running Time via Experiments
	Experimental Analysis: Challenges
	Moving Beyond Experimental Analysis
	Counting Primitive Operations
	From Absolute RT to Relative RT
	Example: Approx. # of Primitive Operations
	Approximating Running Time as a Function of Input Size
	Rates of Growth: Comparison
	Focusing on the Worst-Case Input
	What is Asymptotic Analysis?
	Three Notions of Asymptotic Bounds
	Asymptotic Upper Bound: Definition
	Asymptotic Upper Bound: Visualization
	Asymptotic Upper Bound: Proposition
	Asymptotic Upper Bound: Example
	Asymptotic Upper Bound: Families
	Using Asymptotic Upper Bound Accurately
	Asymptotic Upper Bound: More Examples
	Classes of Functions
	Upper Bound of Algorithm: Example (1)
	Upper Bound of Algorithm: Example (2)
	Upper Bound of Algorithm: Example (3)
	Array Implementations: Stack and Queue
	Dynamic Array: Constant Increments
	Dynamic Array: Doubling
	Avg. RT: Const. Increment vs. Doubling

