Asymptotic Analysis of Algorithms

EECS3101 E: Design and Analysis of Algorithms Fall 2025

CHEN-WEI WANG

What You're Assumed to Know

 You will be required to *implement* Java classes and methods, and to test their correctness using JUnit.

Review them if necessary:

```
https://www.eecs.yorku.ca/~jackie/teaching/
lectures/index.html#EECS2030_F21
```

- Implementing classes and methods in Java [Weeks 1 2]
- Testing methods in Java
 [Week 4]
- Also, make sure you know how to trace programs using a debugger:

```
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch_w21
```

Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

Learning Outcomes

This module is designed to help you learn about:

- Notions of Algorithms and Data Structures
- Measurement of the "goodness" of an algorithm
- Measurement of the efficiency of an algorithm
- Experimental measurement vs. Theoretical measurement
- Understand the purpose of asymptotic analysis.
- Understand what it means to say two algorithms are:
 - equally efficient, asymptotically
 - one is more efficient than the other, asymptotically
- Given an algorithm, determine its asymptotic upper bound.

LASSONDE SCHOOL OF ENGINEERING

Algorithm and Data Structure

- A data structure is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its strengths and limitations
- A <u>well-specified</u> computational problem precisely describes the desired input/output relationship.
 - **Input:** A sequence of *n* numbers $(a_1, a_2, ..., a_n)$
 - Output: A permutation (reordering) $\langle a'_1, a'_2, \ldots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$
 - o An instance of the problem: (3, 1, 2, 5, 4)
- An algorithm is:
 - A solution to a <u>well-specified</u> computational problem
 - A <u>sequence of computational steps</u> that takes value(s) as <u>input</u> and produces value(s) as <u>output</u>
- An algorithm manipulates some chosen data structure(s).

Measuring "Goodness" of an Algorithm

1. Correctness:

- Does the algorithm produce the expected output?
- Use unit & regression testing (e.g., JUnit) to ensure this.

2. Efficiency:

- Time Complexity: processor time required to complete
- Space Complexity: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?

Measuring Efficiency of an Algorithm

- *Time* is more of a concern than is *storage*.
- Solutions (run on computers) should be as fast as possible.
- Particularly, we are interested in how *running time* depends on two *input factors*:
 - 1. size
 - e.g., sorting an array of 10 elements vs. 1m elements
 - 2. structure
 - e.g., sorting an already-sorted array vs. a hardly-sorted array
- Q. How does one determine the *running time* of an algorithm?
 - 1. Measure time via *experiments*
 - 2. Characterize time as a *mathematical function* of the input size

Measure Running Time via Experiments

- Once the algorithm is implemented (e.g., in Java):
 - Execute program on test inputs of various sizes & structures.
 - For each test, record the *elapsed time* of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.
- To make <u>sound</u> <u>statistical claims</u> about the algorithm's <u>running time</u>, the set of <u>test inputs</u> should be "<u>complete</u>".
 e.g., To experiment with the <u>RT</u> of a sorting algorithm:
 - Unreasonable: only consider small-sized and/or almost-sorted arrays
 - Reasonable: also consider large-sized, randomly-organized arrays

Experimental Analysis: Challenges

- **1.** An algorithm must be *fully implemented* (e.g., in Java) in order study its runtime behaviour **experimentally**.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a higher-level analysis to determine that one algorithm or data structure is more "superior" than others?
- Comparison of multiple algorithms is only meaningful when experiments are conducted under the <u>same</u> working environment of:
 - o Hardware: CPU, running processes
 - Software: OS, JVM version, Version of Compiler
- 3. Experiments can be done only on a limited set of test inputs.
 - What if worst-case inputs were not included in the experiments?
 - What if "important" inputs were not included in the experiments?

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running time) of algorithms should be one that:
 - Can be applied using a high-level description of the algorithm (without fully implementing it).
 - [e.g., Pseudo Code, Java Code (with "tolerances")]
 - Allows us to calculate the <u>relative efficiency</u> (rather than <u>absolute</u> elapsed time) of algorithms in a way that is *independent of* the hardware and software environment.
 - Considers all possible inputs (esp. the worst-case scenario).
- We will learn a better approach that contains 3 ingredients:
 - 1. Counting *primitive operations*
 - 2. Approximating running time as *a function of input size*
 - **3.** Focusing on the *worst-case* input (requiring most running time)

Counting Primitive Operations

- A primitive operation (POs) corresponds to a low-level instruction with a constant execution time.
 - (Variable) Assignment [e.g., x = 5;]
 Indexing into an array [e.g., a [i]]
 Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
 Accessing an attribute of an object [e.g., acc.balance]
 Returning from a method [e.g., return result;]

Q: Is a method call a primitive operation?

A: Not in general. It may be a call to:

- o a "cheap" method (e.g., printing Hello World), or
- an "expensive" method (e.g., sorting an array of integers)
- RT of an algorithm is approximated as the number of POs involved (despite the execution environment).

LASSONDE SCHOOL OF ENGINEERING

From Absolute RT to Relative RT

Each *primitive operation* (*PO*) takes approximately the <u>same</u>,
 <u>constant</u> amount of time to execute. [say t]

The absolute value of t depends on the execution environment.

Q. How do you relate the *number of POs* required by an algorithm and its *actual RT* on a specific working environment?

A. Number of POs should be proportional to the actual RT.

- e.g., findMax (int[] a, int n) has 7n 2 POs $RT = (7n - 2) \cdot t$
- e.g., Say two algorithms with RT (7n 2) · t and RT (10n + 3) · t:
 It suffices to compare their relative running time:

... To determine the *time efficiency* of an algorithm, we only focus on their *number of POs*.

Example: Approx. # of Primitive Operations LASSOND

 Given # of primitive operations counted <u>precisely</u> as 7n – 2, we view it as

$$7 \cdot n^1 - 2 \cdot n^0$$

- We say
 - *n* is the *highest power*
 - o 7 and 2 are the multiplicative constants
 - o 2 is the lower term
- When <u>approximating</u> a *function* [e.g., RT ≈ f(*n*)] (considering that *input size* may be very large):
 - o Only the highest power matters.
 - multiplicative constants and lower terms can be dropped.
 - \Rightarrow 7*n* 2 is approximately *n*

Exercise: Consider $7n + 2n \cdot log \ n + 3n^2$:

- highest power?
- multiplicative constants?
- lower terms?

 $[n^2]$

[7, 2, 3]

 $[7n, 2n \cdot log n]$

Approximating Running Time as a Function of Input Size

Given the **high-level description** of an algorithm, we associate it with a function f, such that $\frac{f(n)}{f(n)}$ returns the **number of primitive operations** that are performed on an **input of size** n.

$$\circ$$
 $f(n) = 5$

$$\circ$$
 $f(n) = log_2 n$

$$\circ$$
 $f(n) = 4 \cdot n$

$$\circ$$
 $f(n) = n^2$

$$\circ f(n) = n^3$$

$$\circ$$
 $f(n) = 2^n$

[constant]

[logarithmic]

[linear]

[quadratic]

[cubic]

[exponential]

Rates of Growth: Comparison

Focusing on the Worst-Case Input

- Average-case analysis calculates the <u>expected running time</u> based on the probability distribution of input values.
- worst-case analysis or best-case analysis?

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour towards the limit:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes <u>without</u> bound
 - e.g., Contrast: $RT_1(n) = n$ vs. $RT_2(n) = n^2$
- Allows us to compare the <u>relative</u> <u>performance</u> of <u>alternative</u> algorithms:
 - For large enough inputs, the <u>multiplicative constants</u> and lower-order terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n 100$ are considered **equally efficient**, **asymptotically**.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, **asymptotically**.

Three Notions of Asymptotic Bounds

We may consider three kinds of **asymptotic bounds** for the **running time** of an algorithm:

•	Asymptotic	upper	bound	[(0]
•	Asymptotic	[9	Ω]		
•	Asymptotic	tight bo	und	[(Э]

Asymptotic Upper Bound: Definition

- Let f(n) and g(n) be functions mapping pos. integers (input size) to pos. real numbers (running time).
 - f(n) characterizes the running time of some algorithm.
 - - denotes a collection of functions
 - consists of <u>all</u> functions that can be <u>upper bounded by g(n)</u>, starting at <u>some point</u>, using some <u>constant factor</u>
- $f(n) \in O(g(n))$ if there are:
 - A real constant c > 0
 - An integer constant n₀ ≥ 1
 such that:

$$f(n) \le c \cdot g(n)$$
 for $n \ge n_0$

- For each member function f(n) in O(g(n)), we say that:
 - ∘ $f(n) \in O(g(n))$ [f(n) is a member of "big-O of g(n)"]
 - \circ f(n) is O(g(n))

[f(n) is "big-O of g(n)"]

 \circ f(n) is order of g(n)

Asymptotic Upper Bound: Visualization

From n_0 , f(n) is upper bounded by $c \cdot g(n)$, so f(n) is O(g(n)).

Asymptotic Upper Bound: Proposition

If f(n) is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \cdots + a_d \cdot n^d$$

and a_0, a_1, \dots, a_d are integers, then f(n) is $O(n^d)$.

We prove by choosing

$$c = |a_0| + |a_1| + \cdots + |a_d|$$

 $n_0 = 1$

• We know that for $n \ge 1$:

$$n^0 \le n^1 \le n^2 \le \cdots \le n^d$$

• Upper-bound effect: $n_0 = 1$? $[f(1) \le (|a_0| + |a_1| + \dots + |a_d|) \cdot 1^d]$

$$a_0 \cdot 1^0 + a_1 \cdot 1^1 + \dots + a_d \cdot 1^d \le |a_0| \cdot 1^d + |a_1| \cdot 1^d + \dots + |a_d| \cdot 1^d$$

Upper-bound effect holds?

$$[f(\mathbf{n}) \le (|a_0| + |a_1| + \dots + |a_d|) \cdot n^d]$$

$$a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d \le |a_0| \cdot n^d + |a_1| \cdot n^d + \dots + |a_d| \cdot n^d$$

Prove: The function $f(n) = 5n^4 - 3n^3 + 2n^2 - 4n + 1$ is $O(n^4)$.

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$5n^4 + 3n^3 + 2n^2 + 4n + 1 \le c \cdot n^4$$

Using the proven **proposition**, choose:

$$\circ$$
 $c = |5| + |-3| + |2| + |-4| + |1| = 15$

$$\circ$$
 $n_0 = 1$

Asymptotic Upper Bound: Families

- If a function f(n) is upper bounded by another function g(n) of degree d, d ≥ 0, then f(n) is also upper bounded by all other functions of a strictly higher degree (i.e., d + 1, d + 2, etc.).
 - e.g., Family of O(n) contains all f(n) that can be **upper bounded** by $g(n) = n^1$:

```
n, 2n, 3n, \dots [functions with degree 1] n^0, 2n^0, 3n^0, \dots [functions with degree 0]
```

• e.g., Family of $O(n^2)$ contains all f(n) that can be **upper bounded** by $g(n) = n^2$:

```
n^2, 2n^2, 3n^2, \dots [functions with degree 2] n, 2n, 3n, \dots [functions with degree 1] n^0, 2n^0, 3n^0, \dots [functions with degree 0]
```

Consequently:

$$O(n^0) \subset O(n^1) \subset O(n^2) \subset \dots$$

Using Asymptotic Upper Bound Accurately

 Use the big-O notation to characterize a function (of an algorithm's running time) as closely as possible.

For example, say $f(n) = 4n^3 + 3n^2 + 5$:

- ∘ Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset ...$
- It is the *most accurate* to say that f(n) is $O(n^3)$.
- It is *true*, but not very useful, to say that f(n) is $O(n^4)$ and that f(n) is $O(n^5)$.
- It is *false* to say that f(n) is $O(n^2)$, O(n), or O(1).
- Do <u>not</u> include constant factors and lower-order terms in the big-O notation.

For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say f(n) is $O(4n^2 + 6n + 9)$.

Asymptotic Upper Bound: More Examples

•
$$5n^2 + 3n \cdot logn + 2n + 5$$
 is $O(n^2)$

$$[c = 15, n_0 = 1]$$

•
$$20n^3 + 10n \cdot logn + 5$$
 is $O(n^3)$

$$[c = 35, n_0 = 1]$$

•
$$3 \cdot logn + 2$$
 is $O(logn)$

$$[c = 5, n_0 = 2]$$

- Why can't n₀ be 1?
- Choosing $n_0 = 1$ means $\Rightarrow f(\boxed{1})$ is upper-bounded by $c \cdot log \boxed{1}$:
 - We have $f(1) = 3 \cdot log 1 + 2$, which is 2.
 - We have $c \cdot log \mid 1 \mid$, which is 0.

$$\Rightarrow f(1)$$
 is **not** upper-bounded by $c \cdot log 1$

[Contradiction!]

•
$$2^{n+2}$$
 is $O(2^n)$

$$[c = 4, n_0 = 1]$$

•
$$2n + 100 \cdot logn$$
 is $O(n)$

$$[c = 102, n_0 = 1]$$

upper bound	class	cost
<i>O</i> (1)	constant	cheapest
$\overline{O(log(n))}$	logarithmic	
<i>O</i> (<i>n</i>)	linear	
$O(n \cdot log(n))$	"n-log-n"	
$O(n^2)$	quadratic	
$O(n^3)$	cubic	
$O(n^k), k \ge 1$	polynomial	
$O(a^n), a > 1$	exponential	most expensive

Upper Bound of Algorithm: Example (1)

```
boolean containsDuplicate (int[] a, int n) {
  for (int i = 0; i < n; ) {
   for (int j = 0; j < n; ) {
     if (i != j && a[i] == a[j]) {
      return true; }
     j ++; }
  i ++; }
  return false; }</pre>
```

- Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$.
- That is, this is a *quadratic* algorithm.

Upper Bound of Algorithm: Example (2)

```
int sumMaxAndCrossProducts (int[] a, int n) {
  int max = a[0];
  for(int i = 1; i < n; i ++) {
    if (a[i] > max) { max = a[i]; }
  }
  int sum = max;
  for (int j = 0; j < n; j ++) {
    for (int k = 0; k < n; k ++) {
        sum += a[j] * a[k]; }
  return sum; }
</pre>
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1 , c_2 , c_3 , and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

Upper Bound of Algorithm: Example (3)

- # of primitive operations $\approx n + (n-1) + \cdots + 2 + 1 = \frac{n \cdot (n+1)}{2}$
- Therefore, the running time is $O(\frac{n^2+n}{2}) = O(n^2)$.
- That is, this is a *quadratic* algorithm.

Array Implementations: Stack and Queue

 When implementing stack and queue via arrays, we imposed a maximum capacity:

```
public class ArrayStack<E> implements Stack<E> {
   private final int MAX_CAPACITY = 1000;
   private E[] data;
   ...
   public void push(E e) {
    if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
    else { ... }
   }
   ...
}
```

```
public class ArrayQueue<E> implements Queue<E> {
   private final int MAX_CAPACITY = 1000;
   private E[] data;
   ...
   public void enqueue(E e) {
    if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
    else { ...
   }
   ...
}
```

This made the push and enqueue operations both cost O(1).

Dynamic Array: Constant Increments

Implement stack using a dynamic array resizing itself by a constant increment:

```
public class ArrayStack<E> implements Stack<E> 
 private int I;
 private int C:
 private int capacity;
 private E[] data;
 public ArravStack() {
   I = 1000; /* arbitrary initial size */
   C = 500; /* arbitrary fixed increment */
   capacity = I;
   data = (E[]) new Object[capacity];
   t = -1:
 public void push(E e) {
   if (size() == capacity)
    /* resizing by a fixed constant */
    E[] temp = (E[]) new Object[capacity + C];
    for (int i = 0; i < capacity; i ++) {
      temp[i] = data[i];
    data = temp:
    capacity = capacity + C
   data[t] = e;
```

- This alternative strategy resizes the array, whenever needed, by a constant amount.
- L17 L19 make push cost
 O(n), in the worst case.
- However, given that resizing only happens rarely, how about the average running time?
- We will refer L14 L22 as the <u>resizing</u> part and L23 – L24 as the <u>update</u> part.

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25 26

Dynamic Array: Doubling

Implement stack using a dynamic array resizing itself by doubling:

```
public class ArravStack<E> implements Stack<E> {
 private int I;
 private int capacity:
 private E[] data:
 public ArrayStack() {
   I = 1000; /* arbitrary initial size */
   capacity = I;
   data = (E[]) new Object[capacity];
   t = -1:
 public void push(E e) {
   if (size() == capacity) {
    /* resizing by doubling */
    E[] temp = (E[]) new Object[capacity * 2];
    for (int i = 0; i < capacity; i ++) {
      temp[i] = data[i];
    data = temp;
    capacity = capacity * 2
   t++;
   data[t] = e;
```

- This alternative strategy resizes the array, whenever needed, by doubling its current size.
- L15 L17 make push cost
 O(n), in the worst case.
- However, given that resizing only happens rarely, how about the average running time?
- We will refer L12 L20 as the resizing part and L21 – L22 as the update part.

10 11

12

13

14

16

17 18

19

20

21

22

23 24

Avg. RT: Const. Increment vs. Doubling

 Without loss of generality, assume: There are n push operations, and the last push triggers the last resizing routine.

	Constant Increments	Doubling	
RT of exec. update part for n pushes	<i>O</i> (<i>n</i>)		
RT of executing 1st resizing	1		
RT of executing 2nd resizing	I+C	2 · 1	
RT of executing 3rd resizing	1 + 2 · C	4 · /	
RT of executing 4th resizing	I + 3 · C	8 · /	
RT of executing kth resizing	$I+(k-1)\cdot C$	2 ^{k-1} · /	
RT of executing last resizing	n		
# of resizing needed (solve k for $RT = n$)	<i>O</i> (<i>n</i>)	$O(log_2n)$	
Total RT for <i>n</i> pushes	$O(n^2)$	<i>O</i> (<i>n</i>)	
Amortized/Average RT over <i>n</i> pushes	O(n)	O(1)	

Over n push operations, the amortized average running time of the doubling strategy is more efficient.

Index (1)

What You're Assumed to Know **Learning Outcomes** Algorithm and Data Structure Measuring "Goodness" of an Algorithm Measuring Efficiency of an Algorithm **Measure Running Time via Experiments Experimental Analysis: Challenges Moving Beyond Experimental Analysis** Counting Primitive Operations From Absolute RT to Relative RT Example: Approx. # of Primitive Operations

33 of 35

Index (2)

Approximating Running Time as a Function of Input Size

Rates of Growth: Comparison

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

Asymptotic Upper Bound: Definition

Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Proposition

Asymptotic Upper Bound: Example

Asymptotic Upper Bound: Families

Index (3)

Using Asymptotic Upper Bound Accurately

Asymptotic Upper Bound: More Examples

Classes of Functions

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)

Upper Bound of Algorithm: Example (3)

Array Implementations: Stack and Queue

Dynamic Array: Constant Increments

Dynamic Array: Doubling

Avg. RT: Const. Increment vs. Doubling