
Design by Contract
Modularity

Abstract Data Types (ADTs)

EECS3101 E:
Design and Analysis of Algorithms

Fall 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie


Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Methodology of Design by Contract (DbC)
2. Criterion of Modularity , Modular Design

3. Abstract Data Types ( ADTs )
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Terminology: Contract, Client, Supplier
● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.
○ The client is required to follow certain instructions to obtain the

service (e.g., supplier assumes that client powers on, closes
door, and heats something that is not explosive).

○ If instructions are followed, the client would expect that the
service does what is guaranteed (e.g., a lunch box is heated).

○ The client does not care how the supplier implements it.
● What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions

SUPPLIER assume instructions followed provide a service
● There is a contract between two parties, violated if:
○ The instructions are not followed. [ Client’s fault ]
○ Instructions followed, but service not satisfactory. [ Supplier’s fault ]
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Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */

} }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();]

m.heat(obj);

} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [ MicrowaveUser ]
○ Supplier: type of context object (or call target) m [ Microwave ]
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Client, Supplier, Contract in OOP (2)
class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */ } }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);

} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture
● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.

● If any of these fails, there is a contract violation.
● m.on or m.locked is false ⇒ MicrowaveUser’s fault.
● obj is an explosive ⇒ MicrowaveUser’s fault.

A fault from the client is identified ⇒ Method call will not start.
● Method executed but obj not properly heated ⇒ Microwave’s fault
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What is a Good Design?
● A “good” design should explicitly and unambiguously describe

the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .

● When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
○ Instructions to clients should not be unreasonable.

e.g., asking them to assemble internal parts of a microwave
○ Working conditions for suppliers should not be unconditional .

e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!

○ You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.

e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [ The input array is sorted. ]

○ Upon contract violation, there should be the fault of only one side.
○ This design process is called Design by Contract (DbC) .
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Modularity (1): Childhood Activity

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.org and https://www.wish.com
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Modularity (2): Daily Construction

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Source: https://usermanual.wiki/
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Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUs).

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: www.embeddedlinux.org.cn and https://en.wikipedia.org
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Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
. . . . . .

C1.m R E Sm
. . . . . .

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using 
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0 ).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0 ).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS 
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they 
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than 
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers 
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics 
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular 
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of 
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input 
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders, 
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may 
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the 
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which 
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover 
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Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they 
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expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].
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+---------+
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REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |
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+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |
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+------------+
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IF C1
IF C1.1 THEN F = R E S1
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...
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connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using 
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0 ).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0 ).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS 
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they 
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than 
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers 
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics 
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular 
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of 
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input 
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders, 
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may 
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the 
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which 
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover 

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3
10 of 19

https://plcopen.org/iec-61131-3


Modularity (5): Software Design

Software systems are composed of well-specified classes.
sorted­collections

SORTED_MAP_ADT [K, V]*
feature ­­ model 
    model: FUN[K, V] 
    sorted_keys: ARRAY [K]
 
feature ­­ commands
    extend (key: K; val: V) 
        require ¬has (key)         
         
    remove (key: K) 
        require has (key)        
 
feature ­­ queries 
    item(key:K): V 
    has (key: K): BOOLEAN 
         
invariant
    ∀i ∈ [1, model.count):  
      sorted_keys[i] < sorted_keys[i+1]
     
   sorted_keys.count = model.count 
 
   ∀k ∈ model.domain : k ∈ sorted_keys   
 
  

+ 
SORTED_MODEL_MAP [K, V]

+ 
SORTED_MAP_
CURSOR [K, V]

* 
SORTED_MAP_
DESIGN [K, V]

+ 
SORTED_RBT_ 
MAP [K, V]

+ 
SORTED_LINEAR_

MAP [K, V]

+ 
SORTED_BST_
MAP [K, V]

SORTED_ADT [K, V]*
feature ­­ model 
    model: SEQ [KV_PAIR[K,V]]
 
feature ­­ commands
    extend (a_item: TUPLE [key: K; value: V]) 
        require ¬has (a_item.key)  
 
    remove (a_key: K) 
        require has (a_key)
 
feature ­­ queries
    item alias "[]" (a_key: K): V 
        require has (a_key) 
 
    as_array: ARRAY[KV_PAIR[K,V]] 
 
invariant
    ∀i ∈ [1, model.count):  
      model[i].key < model[i+1].key
 
    ∀i ∈ [1, model.count]:  
      as_array[i] ~ model[i]
     

+ 
SORTED_

LINEAR [K, V]

+ 
SORTED_
TREE [K, V]

+ 
SORTED_
BST [K, V]

+ 
SORTED_
RBT [K, V]

new_cursor+

implementation

implementation

implementation

implementation

sorted­maps

student­design

ITERATION_CURSOR [G]*
item*: G 
forth* 
after*: BOOLEAN

new_cursor** 
ITERABLE [G]
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Design Principle: Modularity
● Modularity refers to a sound quality of your design:

1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.

2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
● The UNIX principle: Each command does one thing and does it well.
● In objected-oriented design (OOD), each class serves as a module.

3. Conquer original problem by assembling sub-solutions.
● In OOD, classes are assembled via client-supplier relations

(aggregations or compositions) or inheritance relations.
● A modular design satisfies the criterion of modularity and is:
○ Maintainable: fix issues by changing the relevant modules only.
○ Extensible: introduce new functionalities by adding new modules.
○ Reusable: a module may be used in different compositions

● Opposite of modularity: A superman module doing everything.
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Abstract Data Types (ADTs)
● Given a problem, decompose its solution into modules .
● Each module implements an abstract data type (ADT) :
○ filters out irrelevant details
○ contains a list of declared data and well-specified operations

2

Abstract Data Type – entity that consists of:
1)  data structure (DS)
2)  set of operation supported on the DS
3)  error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier’s Obligations:
○ Implement all operations
○ Choose the “right” data structure (DS)

● Client’s Benefits:
○ Correct output
○ Efficient performance

● The internal details of an implemented ADT should be hidden.
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Building ADTs for Reusability
● ADTs are reusable software components

e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs
● An ADT, once thoroughly tested, can be reused by:
○ Suppliers of other ADTs
○ Clients of Applications

● As a supplier, you are obliged to:
○ Implement given ADTs using other ADTs (e.g., arrays, linked lists,

hash tables, etc.)
○ Design algorithms that make use of standard ADTs

● For each ADT that you build, you ought to be clear about:
○ The list of supported operations (i.e., interface )
● The interface of an ADT should be more than method signatures and

natural language descriptions:
● How are clients supposed to use these methods? [ preconditions ]

● What are the services provided by suppliers? [ postconditions ]

○ Time (and sometimes space) complexity of each operation
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Why Java Interfaces ≈ ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
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Why Java Interfaces ≈ ADTs (2)
Methods described in a natural language can be ambiguous:

16 of 19



Beyond this lecture...

1. Q. Can you think of more real-life examples of leveraging the
power of modularity?

2. Visit the Java API page:
https://docs.oracle.com/javase/8/docs/api

Visit collection classes which you used in EECS2030 (e.g.,
ArrayList, HashMap) and EECS2011.
Q. Can you identify/justify some example methods which
illustrate that these Java collection classes are not true ADTs
(i.e., ones with well-specified interfaces)?

3. Constrast with the corresponding library classes and features in
EiffelStudio (e.g., ARRAYED LIST, HASH TABLE).
Q. Are these Eiffel features better specified w.r.t.
obligations/benefits of clients/suppliers?
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