Design by Contract
Modularity

Abstract Data Types (ADTs)

EECS3101 E:
Design and Analysis of Algorithms

Y O R K ' Fall 2025
U N R S T
U N S

| VE I E
Y 1 TY CHEN-WEI WANG

LASSONDE

ooooooooooooooooooo

Learning Objectives

Upon completing this lecture, you are expected to understand:
1. Methodology of Design by Contract (DbC)
2. Criterion of Modularity , Modular Design

3. Abstract Data Types (ADTs)

2 of 19)

Terminology: Contract, Client, Supplier
e A supplier implements/provides a service (e.g., microwave).

LASSONDE

ooooooooooooooooooo

e A client uses a service provided by some supplier.
o The client is required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).
o If instructions are followed, the client would that the

service does what is guaranteed (e.g., a lunch box is heated).
o The client does not care how the supplier implements it.

What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service

e There is a contract between two parties, violated if:
o The instructions are not followed. [Client’s fault]

o_Instructions followed, but service not satisfactory. [Supplier’s fault]
3 of 19

Client, Supplier, Contract in OOP (1)

ooooooooooooooooooo

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}

T
‘class MicrowaveUser {
|
|
void heat (Object stuff) { ‘
/ or d */ ‘

public static void main(...) {
Microwave m = new Microwave() ;

Object obj = ;

1
|
|
|
|
m.power (); m.lock();] ‘
|

m. heat (obj);
b}

b}

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call [MicrowaveUser]
o Supplier: type of context object (or call target) m [Microwave]

4 of 19

Client, Supplier, Contract in OOP (2)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

class MicrowaveUser {
public static void main(...) {

Microwave m = new Microwave();

Object obj = [222];

1
\
|
m.power(); m.lock(); ‘
m. heat (obj); ‘

\
\
|
\
ol Sy P b}
e The contract is honoured if:
’ Right before the method call ‘:
e State of mis as assumed: m.on==true and m. locked==ture
e The input argument ob 7 is valid (i.e., not explosive).
’ Right after the method call ‘: ob 7 is properly heated.
e If any of these fails, there is a contract violation.
e m.on Orm.lockedis false = MicrowaveUser’s fault.
e ob7j is an explosive = MicrowaveUser’s fault.
A fault from the client is identified = Method call will not start.
e Method executed but ob 5 not properly heated = Microwave'’s fault

LASSONDE

What is a Good Design? |Lssonee

¢ A “good” design should explicitly and unambiguously describe
the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .

¢ When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
o Instructions to clients should not be unreasonable.
e.g., asking them to assemble internal parts of a microwave
o Working conditions for suppliers should not be unconditional.
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!
o You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]
o Upon contract violation, there should be the fault of only one side.

o This design process is called Design by Contract (DbC) .

Modularity (1): Childhood Activity

LASSONDE

ooooooooooooooooo

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.orglandhttps://www.wish.com

7 of 19)

Modularity (2): Daily Construction

LASSONDE

ooooooooooooooooo

—
()
<]

SR

4x 2x 36x 18x 18x

@

@

3
£
o [
x €
by
»
b

1x 1x 1x

(INTERFAGE) SPEGIFICATION ||

8 of 19)

(ASSEMBLY) ARCHITECTURE

Source: https://usermanual .wiki/

LASSONDE

ooooooooooooooooo

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUSs).

SuperlO
Rear Fan DIMM DDR2 Chip 24-pin ATX

Power Connector
Floppy Connector
IDE Connector (x1)

Chasis Fan
Connector

@—V Clock_In

Addr_0| Connector Memory Slots (x2)
CPU Fan CPU Socket N
Connector (LGATTS) g
-Bi 4-pin
- }\?:I: . B ATX Connector
PIO_1 ress Bus
Switch_1 S '
ResetWDT \ ‘
Control Reset_In reeer) \ -
Data_0| g 1/O Panel 1
-
_—

SATA
;. Connectors (x4)

W Panel Header
USB Headers
Southbridge
(without heatsink)
Northbridge Chipset
CMOS Battery
& PClSiots (x2)

Front Audio
Header
Integrated HD-Audio
codec chip

— 8-Bit Connectors
Data Bus
Serial {—» Recv Data_7|

Integrated Ethernet
Port |<e—|xmit Read chi

PCI Express x16
Write| Control Slot
ChipSelect 0— [Lines
_[—{end ChipSelect 1f—p-

Power Supply —|Pwr

PCl Express x1|
Slof

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: |www . embeddedlinux.org.cnandhttps://en.wikipedia.or
= = = -

LASSONDE

ooooooooooooooooo

Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.

(+ DECLARATION *)
Fommmmm + (+ Function block body in FBD language *)
| nIMITS_ | HIGH_ALARM
| ALARM e
| HYSTERESIS
REAL-- |H QH|--BOOL Koo e *m [P o
REAL--|X o|--BooL. || s wz| | |
Hommmmmmmmmmmmme | = | mmmmem XIN2
REAL--|L QL | --BOOL - ! |
REAL-- | EPS | [— |
JFR T 1 |EPS [—
w o~ e 1 [S T | >=1 |
FUNCTION_BLOCK LIMITS_ALARM EPS --| / |--| | |--@
VAR_INPUT M (QH=1(TRUE) 2.0 --| [LOW_ALARM . |
H REAL; (+ High limit v o] [| I [R [—
x =) MHEPSEE - NG(No change)\ | +---+ w3| | mysrEmEsis | |
- ;T GH-aFASLE) Lo |+ [=mmen [XKINL Q-—tmmmmmmmnmee on
END_ [|
var QL=o(FALSE) b - |xIN2
vaz_ Ligpd] ‘
Qi : BOOL; hoflag . / S |
o B ' wersay NC(Nochange) |\ ([|EPS
oL : ag « L e ey
END_vaR aL-1RuE)
END_FUNCTION_BLOCK vE

(INTERFACE) SPECIFICATION H (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.

ITERATION_CURSOR [G]*

SORTED_ADT [K, V]*

feature - model
model: SEQ [KV_PAIRIK.V]]

Design Principle: Modularity

e Modularity refers to a sound quality of your design:
1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.
2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
e The UNIX principle: Each command does one thing and does it well.
o In objected-oriented design (OOD), each class serves as a module.
Conquer original problem by assembling sub-solutions.
¢ In OOD, classes are assembled via client-supplier relations
(aggregations or compositions) or inheritance relations.
modular design satisfies the criterion of modularity and is:
Maintainable: fix issues by changing the relevant modules only.
Extensible: introduce new functionalities by adding new modules.
Reusable: a module may be used in different compositions
1posite of modularity: A superman module doing everything.

1 d

[]
o >

o

b

Abstract Data Types (ADTs) A

e Given a problem, decompose its solution into modules .

e Each module implements an abstract data type (ADT) :
o filters out irrelevant details
o contains a list of declared data and well-specified operations

ADT
Interface |_ request
Data add() S
Structure remove() " result
find()

e Supplier’s Obligations:

o Implement all operations

o Choose the “right” data structure (DS)
e Client’s Benefits:

o Correct output

o Efficient performance

e The internal details of an implemented ADT should be hidden.

Building ADTs for Reusability

e ADTs are reusable software components
e.g., Stacks, Queues, Lists, Dictionaries, Trees, Graphs

¢ An ADT, once thoroughly tested, can be reused by:
o Suppliers of other ADTs
o Clients of Applications

As a supplier, you are obliged to:

o Implement given ADTs using other ADTs (e.g., arrays, linked lists,
hash tables, etc.)

o Design algorithms that make use of standard ADTs
For each ADT that you build, you ought to be clear about:
o The list of supported operations (i.e., interface)

e The interface of an ADT should be more than method signatures and
natural language descriptions:

e How are clients supposed to use these methods?
o What are the services provided by suppliers?

[preconditions]
[postconditions]

o Time (and sometimes space) complexity of each operation

Why Java Interfaces ~ ADTs (1) e

Interface List<E>
‘E - the type of elements in this list'

All Superinterfaces:

Collection<E>, Iterable<E>
All Known Implementing Classes:

AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArraylList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

‘An ordered collection (also known as a sequence].’ he user of this interface has precise control over where in the list each element is
nserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of
elements are parameterized as E.

¢ A reasonably intuitive overview of the ADT.

Java 8 List API

Why Java Interfaces ~ ADTs (2) e

Methods described in a natural language can be ambiguous:

E set(int index, E element)

Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation).)

Parameters:

index - index of the element to replace

element - element to be stored at the specified position

Returns:

the element previously at the specified position

Throws:

UnsupportedOperationException - if the set operation is not supported by this list
ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBuundsException - if the index is out of range (index < @ || index >= slze[)))

Beyond this lecture... LASSONDE Index (2) LASSONDE

Abstract Data Types (ADTSs)
[Building ADTSs for Reusability|

1. Q. Can you think of more real-life examples of leveraging the
power of modularity?

2. Visit the Java API page: |Why Java Interfaces ~ ADTs (1)]
https://docs.oracle.com/javase/8/docs/api (Why Java Interfaces ~ ADTSs (2)|
Visit collection classes which you used in EECS2030 (e.qg., (Beyond this lecture...|

ArrayList, HashMap) and EECS2011.

Q. Can you identify/justify some example methods which
illustrate that these Java collection classes are not true ADTs
(i.e., ones with well-specified interfaces)?

3. Constrast with the corresponding library classes and features in
EiffelStudio (e.g., ARRAYED LIST, HASH TABLE).

Q. Are these Eiffel features better specified w.r.t.

obligations/benefits of clients/suppliers?

Index (1) :AssoNDE

|[Learning Objectives|

[Terminology: Contract, Client, Supplier|
[Client, Supplier, Contract in OOP (1)|
[Client, Supplier, Contract in OOP (2)|
|What is a Good Design?|

[Modularity (1): Childhood Activity|
[Modularity (2): Daily Construction|

[Modularity (3): Computer Architecture|

[Modularity (4): System Development|

[Modularity (5): Software Design|

[Design Principle: Modularity|

