Administrative Issues

EECS3101 E: Design and Analysis of Algorithms Fall 2025

CHEN-WEI WANG

Instructor

- How may you call me?
 "Jackie" (most preferred),
 "Professor Jackie", "Professor", "Professor Wang", "Sir", "Hey", "Hi", "Hello"
- When you need advice on the course, speak to me!
- Throughout the semester, feel free to suggest ways for helping your learning.

If You Are Not Enrolled Yet

- Send me an email ASAP requesting access to the course eClass site, with your name, student number, Passport York ID.
- Still keep up with lectures & study items (e.g., notes, tutorials).
- Still complete labs & tests (*no extension*).

Class Protocol

- If you ever had to act as a presenter, you would just agree that any of the following exhibitions from the audience gives you <u>unpleasant</u> and <u>disrespectful</u> feelings.
 - Talking
 I am easily distracted by noise (even when it's whispering).
 It is then unfair to your fellow students who want to learn.
 ⇒ Only one person talking at a time in the room please.
 - Using your laptop to do tasks <u>unrelated</u> to the current lecture
 ⇒ I'd rather that you do it <u>elsewhere</u>.
 - Using mobile phones ⇒ Please keep it to a *minimum*!
- Slides are **self-contained**, so I may **not** just read them off.
- I will focus on explaining core concepts with examples.
- Your *engagement* is the key: ask *questions*!

Writing E-Mails to Your Instructor

- Think of me as your colleague who is happy to help you learn.
 - formality is unnecessary
 - courtesy is expected
- This sounds *very rude* (and may be delayed, if not ignored):

```
On the link you sent us for our mark my mark for lab0 did not appear on it and i submitted lab0 during my lab session
```

• This sounds much nicer:

```
Hello Jackie, the link you sent didn't work. I did submit my lab0. Could you please look into this? Thanks! Jim
```

in-person communication may be the most effective
 Slow/No responses to your email inquiries ⇒
 Jackie is happy to help during office hours and/or appointments.

Course Information

- A single eClass site:
 - LE/EECS 3101 E Design and Analysis of Algorithms (Fall 2025-2026)
 - Announcements
 - Assignment Instructions
 - · Written Part of Term Tests

[instructions & submissions]

Check your emails regularly!

Required Study Materials

 Lecture materials (recordings, iPad notes, slides, codes) will be posted for you to re-iterate concepts and examples:

```
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS3101_F25
```

- The course syllabus is posted in the above lectures site.
- Though Jackie <u>attempts</u> to record each lecture entirely:
 - Not meant to be a replacement for classes!
 - The purpose of recording is that you can focus on reaching maximum comprehension.
 - Ask questions!
 - Take (even *incomplete*) notes: they help when re-visiting lectures.
 - Review points which you need to re-iterate from the recordings.
 - olding It'd be your call to use the posted lecture recordings:
 - either as a way to **review** details not understood for the first time;
 - or as an excuse to skip classes!

Course Syllabus

Let's go over the *course syllabus*.

General Tips about Studying in a University LASSO

- To do well, *inspiration* is more important than *perspiration*.
- Hard work does not necessarily guarantee success, but no success is possible without *hard work*

 \Rightarrow

- Don't be too satisfied just by the fact that you work hard.
- Make sure you work hard both on mastering "ground stuffs" and, more importantly, on staying on top of what's being taught.
- Go beyond lectures (e.g., CodingBat, LeetCode).
- Be curious about why things work the way they do.
- Always reflect yourself on how things are connected.
- Be happy about doing work not associated with marks

Professional Engineers: Code of Ethics

- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- It is the duty of a practitioner to act at all times with,
 - fairness and loyalty to the practitioner's associates, employers, clients, subordinates and employees;
 - 2. fidelity (i.e., dedication, faithfulness) to public needs;
 - 3. devotion to *high ideals* of personal honour and professional integrity;
 - **4. knowledge** of developments in the area of professional engineering relevant to any services that are undertaken; and
 - competence in the performance of any professional engineering services that are undertaken.
- Consequence of misconduct?
 - suspension or termination of professional licenses
 - civil law suits

What is this course about?

• Data Structure

[WHAT]

Systematic way of organizing and accessing data e.g., arrays, linked-lists, stacks, queues, maps, trees, graphs, etc.

• Algorithm

[How]

Step-by-step procedure, using the appropriate data structure(s), for solving a computational problem e.g., inserting, deleting, sorting, searching

• Analysis

[How Good?]

Determining, mathematically, the $\underline{\text{correctness}}$ and $\underline{\text{efficiency}}$ of algorithms

Example (1): A Searching Problem

Problem: How would you save the records of a <u>megacity</u> with **10 million residents**? Given a particular resident's social insurance number (ID), how **fast** can you locate his/her record?

```
ResidentRecord find(int sin) {
  for(int i = 0; i < database.length; i ++) {
    if(database[i].sin == sin) {
     return database[i];
    }
  }
}</pre>
```

How many times will you have to run the loop?
Best case? [1]
Worst case? [10 million]

 You will learn about the appropriate data structure and algorithm to solve this problem (i.e., *searching*), in the *worst* case, within 24 iterations of a loop!

Example (2a): Flight Routing

Problem: Given the point-to-point connections of several airline companies, how do you plan an *itinerary* of flying from one city (origin) to another (destination)?

Example (2b): Car Routing

Problem: Plan a driving route which takes the *minimum* amount of time to arrive.

Example (3a): Program Optimization

Problem: Given a user-written program, *optimize* it for best runtime performance.

Example (3b): Program Translation

Problem: Given a user-written object-oriented program, *translate* it into SQL tables/queries for persistent storage in a relational database.

Index (1)

Instructor

If You Are Not Enrolled Yet

Class Protocol

Writing E-Mails to Your Instructor

Course Information

Required Study Materials

Course Syllabus

General Tips about Studying in a University

General Tips about Success

Professional Engineers: Code of Ethics

What is this course about?

18 of 19

Index (2)

Example (1): A Searching Problem

Example (2a): Flight Routing

Example (2b): Car Routing

Example (3a): Program Optimization

Example (3b): Program Translation