Recursion

EECS2030 B & G: Advanced
Object Oriented Programming
' Fall 2025

CHEN-WEI WANG

\wy

LASSONDE

ooooooooooooooooo

Learning Outcomes

This module is designed to help you learn about:

1. How to solve problems recursively

2. Example recursions on string and arrays

3. Some more advanced example (if time permitted)

_

LASSONDE

ooooooooooooooooo

Beyond this lecture ...

¢ Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2

e The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

e

Recursion: Principle LAs
e Recursion is useful in expressing solutions to problems that

can be recursively defined:
o Base Cases: Small problem instances immediately solvable.
o Recursive Cases:
o Large problem instances not immediately solvable.
e Solve by reusing solution(s) to strictly smaller problem instances.
¢ Similar idea learnt in high school: [mathematical induction |
¢ Recursion can be easily expressed programmatically in Java:

o In the body of a method m, there might be a call or calls to m itself.

o Each such self-call is said to be a recursive call .
o_Inside the execution of m(/), a recursive call m(j) must be that j < i.

_

Tracing Method Calls via a Stack s

ooooooooooooooooo

¢ When a method is called, it is activated (and becomes active)
and pushed onto the stack.
¢ When the body of a method makes a (helper) method call, that

(helper) method is activated (and becomes active) and
pushed onto the stack.

= The stack contains activation records of all active methods.
o Top of stack denotes the ’ current point of execution ‘
o Remaining parts of stack are (temporarily) suspended.

¢ When entire body of a method is executed, stack is popped .

= The ’ current point of execution ‘ is returned to the new fop
of stack (which was suspended and just became active).

e Execution terminates when the stack becomes empty .

5 of 37

Recursion: Factorial (1) o

ooooooooooooooooo

¢ Recall the formal definition of calculating the n factorial:

ol - 1 ifn=0
" |n-(n-1)-(n-2)-----3.2.1 ifn>1
¢ How do you define the same problem recursively?

1 ifn=0
n =
n-(n-1)! ifn>1

 To solve n!, we combine n and the solution to (n - 7)!.
T 1

int factorial (int n) {
int result;

if(n == 0) { / result = 1; }
else { /+ recursive cas)
result = n = factorial (n - 1);

}

return result;

}

6 of 37,

Common Errors of Recursive Methods
¢ Missing Base Case(s).

LASSONDE

ooooooooooooooooo

r
|int factorial (int n) { |

return n « factorial (n - 1); ‘

)

Base case(s) are meant as points of stopping growing the
runtime stack.

¢ Recursive Calls on Non-Smaller Problem Instances.

T 1

int factorial (int n) {

if(n == 0) { /# base case */ return 1; }
else { /+ recursive case

+/ return n * factorial (n); } ‘

i

Recursive calls on strictly smaller problem instances are
meant for moving gradually towards the base case(s).

¢ In both cases, a stackOverflowException will be thrown.

Recursion: Factorial (2) LASSONDE

ooooooooooooooooo

. N
return 4 x 6 = 24
factorial(4) ' \
factorial(3)
return 2 x 1 =2
returnl*ll
:

ﬂ return 1
factorial(0)

8 of 37,

Recursion: Factorial (3) LASSONDE Recursion: Fibonacci Sequence (1) LASSONDE

¢ Can you identify the pattern of a Fibonacci sequence?
F=1,1,2,3,5,8,13,21,34,55,89, ...

o When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.

o When running factorial(4), a recursive call factorial(3) is made. * Here is the formal, recursive definition of calculating the ny,
Call to factorial(4) suspended until factorial(3) returns a value. number in a Fibonacci sequence (denoted as f):
. 1 ifn=1

o factorial(0) returns 1 back to suspended call factorial(1). E, =11 fn_o

o factorial(1) receives 1 from factorial(0), multiplies 1 to it, and
returns 1 back to the suspended call factorial(2).
o factorial(2) receives 1 from factorial(1), multiplies 2 to it, and | ‘

Fn_1 + Fn_z ifn>2

) int fib (int n) {
returns 2 back to the suspended call factorial(3). int result;
o factorial(3) receives 2 from factorial(1), multiplies 3 to it, and if(n == 1) { /x bas > +/ result = 1;]
returns 6 back to the suspended call factorial(4). else if(n == 2) { case w/ result = i)
. else { /+ recursive case +*
o factorial(4) receives 6 from factorial(3), multiplies 4 to it, and _ = , .
. result = fib (n - 1) + fib (n - 2);
returns 24 back to the suspended call factorial(5).)
o factorial(5) receives 24 from factorial(4), multiplies 5 to it, and return result;
returns 120 as the result. }

9 of 37 11 of 37,

Recursion: Factorial (4) LASSONDE Recursion: Fibonacci Sequence (2) LASSONDE
fib (5)
= { fib(5) = fib(4) + fib(3); push(fib(5)); suspe : (fib(5)); active: fib(4) }
¢ When the execution of a method (e.g., factorial(5)) leads to a SO + b (3) - ‘ ‘ ‘
t d th d || f torial(4) = { fib(4) = fib(3) + fib(2); suspended: (fib(4), fib(5)); active: fib(3) }
nes e me O Ca (eg! aCO Ia() " (fib(3) + fib(2))+f1b(3)
o The execution of the current method (i.e., factorial(5)) is - é(£ib(3) = fib(2) : fibm;)mpmrzf: (£ib(3), £ib(4), £ib(5)); active: £ib(2) }
. . fib(2) + fib (1))+ fib(2)) + £ib(3)
suspended, and a structure known as an activation record or = { fib(2) returns 1; suspended: (fib(3), £ib(4), £ib(5)); active: £ib(1) }
activation frame is created to store information about the _ i(- I * £0(2)) £15 () (1005), iy, time)); e
progress of that method (e.g., values of parameters and local ((141)+ £ib(2)) + £ib(3) ' ' '
Varlables) = { fib(3) returns 1 + 1; pop(); suspended: (fib(4), fib(5));
. . (2+ fib(2))+ £fib(3)
o The nested methods (e.g., factorial(4)) may call other nested = { £ib(2) returns 1; suspended: (fib(4), £ib(5)); active: £ib(4) }
. 2+1 fib (3)
methOdS (factor/a/(3)). . . = 5 ;ib)(:) returns 2 + 1; pop(); suspended: (£ib(5)); e: f£ib(3) }
o When all nested methods complete, the activation frame of the 3+ £ib(3)
latest suspended method is re-activated, then continue its = ;f(ibf(i)(; —fi‘_?(l*))fib”“ suspended: (£ib(3),£ib(5)); active: £ib(2) }
exeCUtlon = { £ib(2) returns 1; suspended: (fib(3), £ib(5)); active: fib(l) }
. 3 1 1
e What kind of data structure does this activation-suspension - ff(ibﬁf bf)) 1; suspended: (£ib(3), £ib(5)); active: £ib(3) }
3+(1+1)
process Correspond to? [LIFO StaCk] = {+fibJ(r3) returns 1 + 1; pop() ; suspended: (fib(5)); active: fib(5) }
3+2
fib(5) returns 3 + 2; sus

Java Library: String

LASSONDE

ooooooooooooooooo

public class StringTester {

public static void main(String[] args) {
String s = "abcd";

System out.println(s.isEmpty()); /+*

lex range [0, O0)
String tO = s.substring(0, 0);
System out. prlntln(tO) /

I ters in 1ir

lex ra

Strlng tl = s. substrlng(o

System.out. prlntln(tl) /% */

/* Charac index range 3)

String t2 = s. substrlng(l 3);
System.out.println(t2); /+ "bc" #

String t3 = s.substring(0, 2) + s. substrlng(Z 4);
System.out. println(s equals (t3)); /x true #*/
for(int i = 0; i < s.length(); 1 ++) {

System.out.print (s.charAt (1));
}
System.out.println();
}
}

[13 of 37|

Recursion: Palindrome (1)

LASSONDE

ooooooooooooooooo

Problem: A palindrome is a word that reads the same forwards

and backwards. Write a method that takes a string and

determines whether or not it is a palindrome.

System.out.println(isPalindrome ("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome ("madam")); true
System.out.println(isPalindrome (" racecar")) true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string — Return frue immediately.

Base Case 2: String of length 1 — Return frue immediately.

Recursive Case: String of length >2 —

o 1st and last characters match, and
o the rest (i.e., middle) of the string is a palindrome .

Recursion: Palindrome (2)

T

boolean isPalindrome (String word) {
if (word. length() == 0 || word.length() == 1) {
/+ base case #,
return true;
}
else {

char firstChar word.charAt (0) ;

char lastChar = word.charAt (word.length() - 1);
String middle = word.substring (1, word.length() - 1);
return

flrstchar == lastChar

the API of

See

&& 1sPalindrome (middle) ;

[15 of 37]

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.

System.out.println(reverseOf ("")); /» "" x
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf ("ab")); "ba"
System.out.println(reverseOf ("abc")); "cbha"
System.out.println(reverseof ("abcd")); "dcba"

Base Case 1: Empty string — Return empty string.

Base Case 2: String of length 1 — Return that string.
Recursive Case: String of length >2 —

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 2) and 1).

[16 of 37]

LASSONDE

ooooooooooooooooo

Recursion: Reverse of a String (2)

T 1
String reverseOf (String s) {
if (s.isEmpty()) { /* base case
return "";
}
else if (s.length() == 1) { /% base case 2
return s;
}
else { /+ recursive case #*/
String tail = s.substring(l, s.length());

String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

LASSONDE

ooooooooooooooooo

Recursion: Number of Occurrences (1)

Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of cin s.

System.out.println(occurrencesOf("", "a’));
System.out.println(occurrencesOf("a", "a’))
System.out.println(occurrencesOf ("b", "a’)
System.out.println(occurrencesOf ("baaba",
(
(

)
’
’
’

[\

System.out.println(occurrencesOf ("baaba",
System.out.println(occurrencesOf ("baaba",

2
’
a
b
(o}

Base Case: Empty string — Return 0.
Recursive Case: String of length >1 —
1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) ({
if(s.isEmpty()) {
return 0;
}
else {
char head = s.charAt(0);
String tail = s.substring(l, s.length());
if (head == c) {
return 1 + occurrencesOf (tail, c);
}
else {
return 0 + occurrencesOf (tail, c);
}
}
}

[19 of 37]

Making Recursive Calls on an Array
¢ Recursive calls denote solutions to smaller sub-problems.
o Naively, explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /+ b
else if (a.length == 1) /)
else {
int[] sub = new int[a.length - 1];
for(int i = [1]; i < a.length; i ++) { subli - 1] = alil; }
m(sub) } }

For efficiency, we pass the reference of the same array and
specify the range of indices to be considered:

void m(int[] a, int from, int to) {
if (from > to) { /% base case */
else if (from == to) { /* base case */ }

L
m(a, 0, a.length - 1)
e m(a, 1, a.length - 1)
m(a, a.length-1, a.length-1)

|
[Initial call; entire array]
[1str.c. on array of size a.length-1]
[Lastr.c. on array of size 1]

200f37] °®

Recursion: All Positive (1)

EASS0NDE
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /+ true
System.out.println(allPositive ({1, 2, 3, 4, 5})); . true
System.out.println(allPositive ({1, 2, -3, 4, 5})); /* false

Base Case: Empty array — Return frue immediately.

The base case is frue - we can not find a counter-example
(i.e., a number not positive) from an empty array.

Recursive Case: Non-Empty array —

o 1st element positive, and

o the rest of the array is all positive .

Exercise: Write a method boolean somePostive (int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
-~ No witness (i.e., a positive number) from an empty array

21 of 37]

Recursion: All Positive (2)

LASSONDE

ooooooooooooooooo

’boolean allPositive(int[] a) {

}

}

return allPositiveHelper (a,

‘boolean allPositiveHelper (int[] a, int from, int to) {
if (from > to) { /+ 1se 1 pt} /

}

else if (from == to) { /+ base case 2: range of one element =/

}

else { /* rec ive case */

}

0, a.length - 1);

base case 1: emg y range

return true;
return alfrom] > 0;

return a[from] > 0 && allPositiveHelper (a, from + 1, to);

22 of 37]

Recursion: Is an Array Sorted? (1)

LASSONDE

ooooooooooooooooo

Problem: Determine if an array of integers are sorted in a
non-descending order.

System.out.println(isSorted({}));
System.out.println(isSorted({1, 2, 2, 3,

System.out.println(isSorted({1, 2, 2, 1, false

Base Case: Empty array — Return frue immediately.

The base case is frue - we can not find a counter-example

(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array —

o 1st and 2nd elements are sorted in a non-descending order, and

o the rest of the array, starting from the 2nd element,
are sorted in a non-descending order .

S——

Recursion: Is an Array Sorted? (2)

LASSONDE

ooooooooooooooooo

’boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (
if (from > to) { S
return true;
}
else if (from == to) { /% base case 2:
return true;
}

int[] a, int from, int to) {
/* base case 1: empty range x/

range of one el

else {
return al[from] <= a[from + 1]
‘ && 1isSortedHelper (a, from + 1, to);

LASSONDE

ooooooooooooooooo

Tower of Hanoi: Specification

e Given: A tower of 8 disks, initially
stacked in decreasing size on
one of 3 pegs

* Rules:

o Move only one disk at a time.
o Never move a larger disk onto a
smaller one.

¢ Problem: Transfer the entire
tower to one of the other pegs.

e

LASSONDE

ooooooooooooooooo

Tower of Hanoi: Lengend

Brahmins at a temple in Benares, India
have been carrying out movement of
“Sacred Tower of Brahma’,

consisting of sixty-four golden disks,
according to the same rules as in the
Tower of Hanoi game, and that

the completion of the tower would lead
to the end of the world.

e

LASSONDE

ooooooooooooooooo

Tower of Hanoi: A Recursive Solution

The general, a recursive solution requires 3 steps:

1. Transfer the n - 1 smallest disks to a second peg.
2. Move the largest peg to the third peg (free of disks).
3. Transfer the n - 1 smallest disks back onto the largest disk.

[27 of 37]

LASSONDE

ooooooooooooooooo

Tower of Hanoi in Java (1)

void towerOfHanoi (String[] disks) {
tohHelper (disks, 0, disks.length - 1, 1, 3);

}

void tohHelper(String[] disks, int from, int to, int ori, int des) {
if (from > to) { }

else if(from == to) {
print("move " + disks[to] + " from " + ori + " to " + des);
}
else {
int intermediate = 6 - ori - des;
‘ tohHelper (disks, from, to - 1, ori, intermediate);
‘ print ("move " + disks[to] + " from " + ori + " to " + des);

‘ tohHelper (disks, from, to - 1, intermediate, des);

}
}

° ’ tohHelper (disks, from, to, ori, des) |moves disks
{disks[from], disks[from + 1],.. ., disks[to]} from peg ori to peg des.
® Pegid’s are 1, 2, and 3 = The intermediate one is 6 — ori — des.

S

Tower of Hanoi in Java (2) LASSONDE Running Time: Tower of Hanoi (1) Mot

ooooooooooooooooo

—

ooooooooooooooooo

e Generalize the problem by considering n disks.

e Let T(n) denote the number of moves required to to transfer n
disks from one to another under the rules.

Say ds (disks) is {A, B, C}, where A< B< C.

tohH(ds, 0,0, p1,p3) = ove A: e) .
o, 0.0,p1. %) = { [e * Recall the general solution pattern:
(A P
tohH(ds, 0.1 .p1,p2) = | Move B: pi to p2 1. Transfer the n - 1 smallest dISk.S to a second peg.
e tohH(ds, 0,0, p3, p2) :{ P - 2. Move the largest peg to the third peg (free of disks).
o 3. Transfer the n - 1 smallest disks back onto the largest disk.
tohH(ds, 0,2 ,p1,p3) =) [Move C: pl o p3 » We end up with the following recurrence relation that allows us
(48,0} tohH(ds, 0,0, P2, P1) ={ oo a: p2 co p to compute T(n) for any n we like:
{A}
tohH(ds, 0,1 ,p2,p3) = Move B: p2 to p3 T(1) — 1
——
A8 whH(ds’&g’m’pS):{ Move A: pl to p3 T(n) = 2.T(n-1)+1 wheren>0

{A}

¢ To solve this recurrence relation, we study the pattern of T(n)

and observe how it reaches the base case(s).
129 of 37| 31 of 37]

Tower of Hanoi in Java (3) o Running Time: Tower of Hanoi (2) e
T(n) = 2 xT(n-1)+ 1
—— ——
1 term 1 term
= 2x(2xT(n-2)+ 1)+1
— —
2 terms 2 terms
= 2x(2x(2xT(n-3)+1)+1)+1
~— N~—
3 terms 3 terms
[‘“"”E‘ [’“"H"”E"“’B‘”’"‘"‘"""a’] T(n — (n,‘]))
—~

= 2x(2x@2x(-x@2x T(A) +1)+...)+1)+1)+1

n-1 terms n-1 terms

= 214 (n-1)
- T(n)is O(2")

30 of 37, 32 of 37,

LASSONDE

ooooooooooooooooo

Tower of Hanoi: Lengend

Brahmins at a temple in Benares, India
have been carrying out movement of
“Sacred Tower of Brahma’,

consisting of sixty-four golden disks,
according to the same rules as in the
Tower of Hanoi game, and that

the completion of the tower would lead
to the end of the world.

Say one disk can be moved in one second.
Q. How long does it take to finish moving 64 disks (n = 64)?
A. 2%% seconds «~ 585 billion years (>> 5 billion centries)!

33 of 37,

LASSONDE

ooooooooooooooooo

Beyond this lecture ...

¢ Recursions on Arrays: Lab Exercise from EECS2030-F19

¢ Notes on Recursion:
http://www.eecs.yorku.ca/~jackie/teaching/
lectures/2025/F/EECS2030/notes/EECS2030_F25_
Notes_Recursion.pdf

e APl for string
https://docs.oracle.com/javase/8/docs/api/
java/lang/String.html

¢ Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion—2

e The best approach to learning about recursion is via a
functional programming language:

Haskell Tutorial: https://www.haskell.org/tutorial/
B4of37

|
Index (1)

LASSONDE

ooooooooooooooooo

|[Learning Outcomes|

|[Beyond this lecture .. .|

[Recursion:

Principle|

[Tracing Method Calls via a Stack|

|[Recursion:

Factorial (1)|

mmon Errors of R

rsive Meth

|[Recursion:

Factorial (2)|

[Recursion:

Factorial (3)|

[Recursion:

Factorial (4)|

[Recursion:

Fibonacci Sequence (1)|

|[Recursion:

Fibonacci Sequence (2)|

35 of 37,

Index (2)

LASSONDE

ooooooooooooooooo

|Java Library: String|

[Recursion:

Palindrome (1)|

|[Recursion:

Palindrome (2)|

|[Recursion:

Reverse of a String (1)|

[Recursion:

Reverse of a String (2)|

[Recursion:

Number of Occurrences (1)|

|[Recursion:

Number of Occurrences (2)|

[Making Recursive Calls on an Array|

[Recursion: All Positive (1))

[Recursion: All Positive (2)|

|[Recursion:

Is an Array Sorted? (1)|

36 of 37,

Index (3) LASsONDE
|[Recursion: Is an Array Sorted? (2)|

[Tower of Hanoi: Specification|

|Tower of Hanoi: Legend|

[Tower of Hanoi: A Recursive Solution|

[Tower of Hanoi in Java (1)|

[Tower of Hanoi in Java (2)|

[Tower of Hanoi in Java (3)|

[Running Time: Tower of Hanoi (1)|

[Running Time: Tower of Hanoi (2)|

|Tower of Hanoi: Legend|

|Beyond this lecture . . .|

