Inheritance

EECS2030 B & G: Advanced
Object Oriented Programming

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Outcomes

This module is designed to help you learn about:
¢ Alternative designs to inheritance
¢ Using inheritance for code reuse
o Static Types, Expectations, Dynamic Types
e Polymorphism
(variable assignments, method arguments & return values)
e Dynamic Binding
o Type Casting

P ot Tl

I

Why Inheritance: A Motivating Example |sono:

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

I

Why Inheritance: A Motivating Example |sono:

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

No Inheritance: ResidentStudent Class

I

LASSONDE

public class ResidentStudent {
private String name;
private Course[] courses; private int noc;

private double premiumRate; /+*

public ResidentStudent (String name) {
this.name = name;
this.courses = new Course[l0];

}

public void register(Course c) |
this.courses[this.noc]
this.noc ++;

}

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i]. fee;

}

‘ return tuition * this. premiumRate ;

cy

}

- 1

W mEil

No Inheritance: NonResidentStudent Clas

public class NonResidentStudent {
private String name;
private Course[] courses; private int noc;
private double discountRate; /* a

9]
[9)]

public NonResidentStudent (String name) {
this.name = name;
this.courses = new Course[1l0];

}

public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i]. fee;

}

return tuition * this. discountRate ;

}

.ot 1110

I

No Inheritance: Testing Student Classes |.ssono:

public class Course {
private String title; private double fee;
public Course(String title, double fee) ({
this.title = title; this.fee = fee;

}

public class StudentTester {
public static void main(String[] args) {

Course cl = new Course("EECS2030", 500.00); /=
Course c2 = new Course ("EECS3311", 500.00); /= I
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(cl); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
jeremy.setDiscountRate(0.75);

jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + Jjeremy.getTuition());
}
}

No Inheritance: ‘i\%ﬁsom

Issues with the Student Classes

¢ Implementations for the two student classes seem to work.
But can you see any potential problems with it?

Hint. Maintenance of code
e The code of the two student classes share a lot in common.
o Duplicates of code make it hard to maintain your software!
o This means that when there is a change of policy on the common

part, we need modify more than one places.
o This violates the so-called single-choice design principle.

R ot 1110

I

No Inheritance: Maintainability of Code (1) |assonoe

What if the way for registering a course changes?
e.g.,

public void register(Course c) throws TooManyCoursesException {
if (this.noc >= MAX ALLOWANCE) {
throw new TooManyCoursesException("Too many courses");
}
else {
this.courses[this.noc] = c¢;
this.noc ++;
}
}

Changes needed for register method in both student classes!

I

No Inheritance: Maintainability of Code (2) |.

What if the way for calculating the base tuition changes?
e.g.,

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {
tuition += this.courses[1i]. fee;

}

/x .

can pe p e or

Oor aiscoun

return tuition * inflationRate * ...;

Changes needed for get Tuition method in both student classes!

0 ot T

No Inheritance: 5
A Collection of Various Kinds of Students

How can we define a class StudentManagement System that
contains a list of resident and non-resident students?

public class StudentManagementSystem {
private ResidentStudent|[] rss;
private NonResldsntStudent[] nrss;
private int nors; /x numk of re
private int nonrs; of dents #*,
public void addRS(ResidentStudent rs){ rss(norsl=rs; nors++; }
public void addNRS (NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++; }
public void registerAll (Course c) |
for (int 1 0; i < nors; 1 ++) { rss[i].register(c); }
for (int 1 0; i < nonrs; i ++) { nrss[i].register(c); }
}
}

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately!

A pOlymorpnic coliection of stuaents

Lot T

Visibility: Project, Packages, Classes
CollectionOfStuffs
animal [ot]
[Dog]
furniture [Chair]
[Desk]
shape [Circle]
[Square]

2 ot 111

I

Visibility of Classes

Only one modifier for declaring visibility of classes: public.
Use of private is forbidden for declaring a class.
e.g.,

Visibility of a class may be declared using a modifier,
indicating that it is accessible:

private class Chair‘ is not allowed!!

1. Across classes within its residing package [no modifier]
e.g., Declare ’ class Chair { ... } ‘
2. Across packages [public]

e.g., Declare ’ public class Chair { ... } ‘

Consider class chair which resides in:

o package furniture
o project CollectionOfStuffs

IS Ei

Visibility of Classes: Across All Classes "%2’
Within the Resident Package (no modifier)

CollectionOfStuffs

animal [Cat]
[Dog]
ALV [class Chair]
[Desk]
shape [Circle]
[Square]

Visibility of Classes: Across All Classes Héo
Within the Resident Package (no modifier)

CollectionOfStuffs

animal
Cat

Dog

furniture public class Chair

Desk

Circle

Square

Visibility of Attributes/Methods:

Using Modifiers to Define Scopes

® Two modifiers for declaring visibility of attributes/methods: public and private
® Visibility of an attribute or a method may be declared using a modifier,
indicating that it is accessible:
1. Within its residing class (most restrictive) [private]
e.g., Declare attribute | private int 1i;

e.g., Declare method | private void m(){}; ‘
2. Across classes within its residing package [no modifier]

e.g., Declare attribute
e.g., Declare method | void m(){};

3. Across packages (least restrictive) [public]

e.g., Declare attribute | public int i;

e.g., Declare method ’ public void m(){}; ‘
® Consider attributes i and m residing in:

Class chair; Package furniture; Project CollectionOfStuffs.

Visibility of Attr./Meth.: Across All Methods %
Within the Resident Class (private)

CollectionOfStuffs

animal [cat]

[Dog]

furniture Chair private i, m
[Desk]

shape [Circle]

[Square]

Lot T

Visibility of Attr./Meth.: Across All Classes %’
Within the Resident Package (no modifier)

CollectionOfStuffs

animal (cat)
(Dog)|
furniture (crar)
(Desk)
shape (circle)
G)

Visibility of Attr./Meth.: Across All Packagle;%ssom
Within the Resident Project (public)

CollectionOfStuffs

animal
Cat

Dog

furni
urniture Chair public i, m

Desk

Circle

Square

Use of the protected Modifier :

e private attributes are not inherited to subclasses.

¢ package-level attributes (i.e., with no modifier) and
project-level attributes (i.e., public) are inherited.

e What if we want attributes to be:
o visible to sub-classes outside the current package, but still
o invisible to other non-sub-classes outside the current package?
Use protected!

PO o T

Visibility of Attr./Meth.: Across All Methods ‘%
Same Package and Sub-Classes (protected)

CollectionOfStuffs

animal
Cat

Chair protected i, m

furniture

BubbleChair

Desk

shape RockingChair

Circle

I

Square

Visibility of Attributes/Methods LASSONDE

w CLass PACKAGE SUBCLASS SUBCLASS NON-SUBGCLASS
modifier (same pkg) (different pkg) (across Project)

public

protected

no modifier

private

For the rest of this lecture, for simplicity, we assume that:
All relevant parent/child classes are in the same package .
= Attributes with no modifiers (package-level visibility) suffice.
= Methods with no modifiers (package-level visibility) suffice.

Inheritance Architecture

Student

extends
extends

ResidentStudent NonResidentStudent

P3Ot il

Inheritance: The student Parent/Super Cla

T

class Student {

String name;

Course[] courses; int noc;
Student (String name) {
this.name name;
this.courses = new Course[l1l0];

}

void register(Course c) {
this.courses[this.noc] = ¢;
this.noc ++;

}

double getTuition() {

double tuition = 0;

for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i].fee;

}
return tuition; /* base

}

sZiae mmil

Inheritance:
The ResidentStudent Child/Sub Class

T
‘class ResidentStudent extends Student {

double premiumRate; /* there’s a mutator method for this x*/ ‘

ResidentStudent (Strlng name) { super (name); }

ited */

/;\ regis 1¢
double getTu1tlon() {
double base = super.getTuition();

‘ return base x premiumRate ;

OO NOOOhW N =

e L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L3 is as if calling Student (name)

e Use of super in L6 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
_

Inheritance:
The NonResidentStudent Child/Sub Class

class NonResidentStudent extends Student {
double discountRate; /+ there’s a mutator method for this x/
* reg %/

double getTu1tlon() {
double base = super.getTuition();
return base » discountRate ;

}

©CoOoNOOOR~WN =

—

T 1
NonR651dentStudent (String name) { super (name); }

e L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L3 is as if calling Student (name)

e Use of super in L6 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
_

Inheritance Architecture Revisited

et ae o

extends

Student

ResidentStudent

extends

NonResidentStudent

e The class that defines the common attributes and methods is
called the parent or super class.

e Each “extended” class is called a child or sub class.

Dot Tl

I

Using Inheritance for Code Reuse

Inheritance in Java allows you to:

o Define common atiributes and methods in a separate class.
e.g., the student class
o Define an “extended” version of the class which:
e inherits definitions of all attributes and methods
e.g., name, courses, noc
e.g., register
e.g., base amount calculation in getTuition
This means code reuse and elimination of code duplicates!
e defines new attributes and methods if necessary
e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent
e redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

PR o T

I

Visualizing Parent/Child Objects (1) LASSONDE

e A child class inherits all non-private attributes from its parent
class.

= A child instance has at least as many attributes as an
instance of its parent class.

Consider the following instantiations:

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;

* How will these initial objects look like?

Y ot 111

Visualizing Parent/Child Objects (2)

B0 o T

o ONDE
(—’ Student
“Stella”
s
numberOfCourses 0 1 8 9
registeredCourses ‘ null ‘ null ‘ ‘ null null ‘
(—’ ResidentStudent
“Rachael”
rs
numberOfCourses 0 1 8 9
registeredCourses null ‘ null ‘ ‘ null null ‘
premiumRate
(—’ NonResidentStudent
“Nancy”
nrs
numberOfCourses 0 1 8 9
registeredCourses null ‘ null ‘ ‘ null null ‘

discountRate

TeStIng the TWO StUdent SUb-C|aSSGS LASSONDE

public class StudentTester {

public static void main(String[] args) {
Course cl = new Course("EECS2030", 500.00); /+ titl
Course c2 = new Course("EECS3311", 500.00); /# title and fee #/
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate (1.25);
jim.register(cl); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
jeremy.setDiscountRate(0.75);
jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

¢ The software can be used in the exact same way as before
(because we did not modify method headers).

» But now the internal structure of code has been made
maintainable using inheritance .

Cam mmil

Inheritance Architecture:
Static Types & Expectations

Student(String name) String name
void register(Course c) Student Course[] courses /* registered courses (rcs) */
double getTuition() int noc /* number of courses */

<

/% new attributes, new methods */ /% new attributes, new methods */
ResidentStudent(String name) ResidentStudent NonResidentStudent | |\ °nResidentStudent(String name)
double premiumRate double discountRate

void setPremiumRate(double r) void setDiscountRate(double r)

/* redefined/overridden methods */

/* redefined/overridden methods */
double getTuition()

double getTuition()

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;

l H name l rcs l noc l reg l getT H pr l setPR H dr l setDR

S. v X
rs. v v X
nrs. v X N

Polymorphism: Intuition (1)

I

LASSONDE

1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s = rs; /+ Is
5 |rs =s; /* Is
e Which one of L4 and L5 is valid? Which one is invalid?
¢ Hints:

o L1: What kind of address can s store? [student]

.. The context object s is expected to be used as:
e s.register (eecs2030) and s.getTuition ()

o L2: What kind of address can rs store? [ResidentStudent]

.. The context object rs is expected to be used as:

e rs.register (eecs2030) and rs.getTuition ()

e rs.setPremiumRate (1.50) [increase premium rate]

B30T

Polymorphism: Intuition (2)

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate (1.25);

g~ wn =

e s =5 (L5) should be /nva//d

Student s

nnnnnnnn

» Since rs is declared of type Resident Student a subsequent

call rs.setPremiumRate (1.50) can be expected.

e rsis now pointing to a Student object.

e Then, what would happen to rs.setPremiumRate (1.50)7?
CRASH - rs.premiumRate is undefined!!

B4 ot 11

Polymorphism: Intuition (3) L

LASSONDE
1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s = rs; /+ Is d? */
5 |rs =s; /* Is d? */
s = rs (L4) should be valid:
Student s —
\:gmmamn:] l -1 1
Residentstuﬁ
¢ Since s is declared of type student, a subsequent call
s.setPremiumRate (1.50) is never expected.
* sis now pointing to a ResidentStudent object.
* Then, what would happento s.getTuition ()?
OK -+ s.premiumRate is never directly used!!

35 o 11

Dynamic Binding: Intuition (1)

I

’Course eecs2030 = new Course("EECS2030",

Student s;

1
2

3

4

5 | rs.setPremiumRate (1.25);
6 | nrs.setDiscountRate(0.75);
7

8

100.0);

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");
rs.register(eecs2030);

nrs.register(eecs2030);

|

s = rs; System.out.println(s .getTuition()); /*
s = nrs; System.out.println(s .getTuition()); /+*
After s = rs (L7), s points to @ ResidentStudent oObject.

= Calling s .getTuition () applies the premiumRate.

ResidentStudent rs Residentstudent

name
/ registeredCourses

Student s

o 1 2 28 29

NonResidentStudent nrs

36 ot T

Dynamic Binding: Intuition (2)

I

’Course eecs2030 = new Course("EECS2030",

Student s;

nrs.setDiscountRate(0.75);

1
2

3

4

5 | rs.setPremiumRate (1.25);
6

7 SR=NES)

8

System.out.println(s .getTuition()); /+*

100.0);

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");
rs.register(eecs2030);

nrs.register(eecs2030);

|

S = nrs;

System.out.println(s .getTuition()); /+*

After s =
= Calling

BZ ot 111

nrs (L8), s points to a NonResidentstudent Object.
s .getTuition () applies the discountRate.

ResidentStudent

ResidentStudent rs

name
registeredCourses
numberOfCourses

premiumRate

Student s

28 29

NonResidentStudent nrs NonResidentStudent

registeredCourses
numberOfCourses l l
discountRate

Multi-Level Inheritance Architecture

ttttttt

DomesticStudent ForeignStudent

Multi-Level Inheritance Hierarchy: LASSONDE
Smart Phones

dial /* basic method */
surfWeb /* basic method */

SmartPhone

surfWeb /* overridden using safari */
facetime /* new method */

Android surfWeb /* overridden using firefox */

skype /* new method */

/* cinematic mode */
quickTake sideSync /* new method */

‘ IPhoneSE ‘ ‘ IPhone13Pro ‘ m

/* dual-matrix camera */
zoomage

| e || ; || s || s |

I

Inheritance Forms a Type Hierarchy LASSONDE

e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:
o (Implicit) Root of the hierarchy is 0bject.
o Each extends declaration corresponds to an upward arrow.
o The extends relationship is transitive: when A extends B and B
extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: 2 itself and all classes that
A directly, or indirectly, extends.
o A inherits all code (attributes and methods) from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.
o The descendant classes of a class A are: 2 itself and all classes
that directly, or indirectly, extends a.
e Code defined in A is inherited to all its descendant classes.

an ot 1110

Inheritance Accumulates Code for Reuse |iassono:
® The lower a class is in the type hierarchy, the more code it accumulates
from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
o Declare new attributes
¢ Define new methods
e Redefine / Override inherited methods
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).
o Given a reference variable, expected to store the address of an object of
a particular class, we may substitute it with (re-assign it to) an object of
any of its descendant classes.
o e.g., When expecting a SmartPhone object, we may
substitute it with either a ITPhonel3Pro or a Samsung object.
o Justification: A descendant class contains at least as many methods
as defined in its ancestor classes (but not vice versal).

ay ot 110

I

Static Types Determine Expectations
¢ A reference variable’s static type is what we declare it to be.

o declares jim’'s ST as Student.

o] SmartPhone myPhone \ declares myPhone’s ST as SmartPhone.

o The static type of a reference variable never changes .

¢ For a reference variable v, its static type defines the
expected usages of v as a context object .

e Amethod call v.m(...) is compilable if mis defined in .

o e.g., After declaring , we

e may call register and getTuition on jim
e may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim
o e.g., After declaring] SmartPhone myPhone \ we
e may call dial and surfWeb on myPhone
e may not call facetime (specific to an I0S phone) or skype (specific
to an Android phone) on myPhone

Substitutions via Assignments LASSONDE

e By declaring c1 v1, reference variable 1 will store the
address of an object “of class c1” at runtime.

e By declaring c2 v2, reference variable 2 will store the
address of an object “of class c2” at runtime.

* Assignment copies address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

%

c1 vl \: ,
—_———————————»]
c2 v2 | ,

e In such assignment vl = v2, we say that we substitute an
object of (sfatic) type c1 by an object of (static) type C2.

e Substitutions are subject to rules!

I

Rules of Substitution
When expecting an object of static type A:
o ltis safe to substitute it with an object whose static type is any
of the descendant class of a (including 2).

o .- Each descendant class of n, being the new substitute, is
guaranteed to contain all (non-private) attributes/methods defined in A.
¢ e.g., When expecting an 10s phone, you can substitute it with either
an IPhoneSE Or IPhonel3Pro.
o ltis unsafe to substitute it with an object whose static type is
any of the ancestor classes of A’s parent (excluding 2).
o - Class A may have defined new methods that do not exist in any of its
parent’s ancestor classes .
¢ e.g., When expecting 10s phone, unsafe to substitute it with a
SmartPhone - facetime not supported in Android phone.
o ltis also unsafe to substitute it with an object whose static type
is neither an ancestor nor a descendant of A.

¢ e.g., When expecting 10s phone, unsafe to substitute it with a
HuaweiP50Pro . facetime not supported in Android phone.

I

Reference Variable: Dynamic Type LASSONDE

A reference variable’s dynamic type is the type of object that
it is currently pointing to at runtime.
o The dynamic type of a reference variable may change

whenever we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.

as ot 1110

Visualizing Static Type vs. Dynamic Type |issono

(_’ ResidentStudent
name

Student s

“Rachael”

numberOfCourses

registeredCourses

premiumRate

e Each segmented box denotes a runtime object.

¢ Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

¢ Title of box indicates type of runtime object, which denotes the

dynamic type of the variable (ResidentStudent).

Reference Variable: e enDe

Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

(e}

Substitution Principle ‘: the new object’s class must be a

descendant class of the reference variable’s static type.
o e.g., ’ Student jim = new ResidentStudent(...) ‘
changes the dynamic type of jimto ResidentStudent.

o e.g., ’ jim = new NonResidentStudent(...) ‘
changes the dynamic type of jim to NonResidentStudent.

o e.g.,’ResidentStudent jeremy = new Student(...) ‘

is illegal because studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).

a7 ot 110

Reference Variable: e enDe

Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is

referenced by another variable other (i.e.,[v = other]):

Substitution Principle ‘: the static type of other must be a

o

descendant class of v's static type.
o e.g., Say we declare

Student jim = new Student(...);
ResidentStudent rs = new ResidentStudnet(...);

NonResidentStudnet nrs = new NonResidentStudent(...);
e | jim = rs v
changes the dynamic type of jim to the dynamic type of rs

o}
H
n

e | jim = v
changes the dynamic type of jim to the dynamic type of nrs

e |rs = jim X

° nrs = X

ax ot 110

.
5 I
!

Polymorphism and Dynamic Binding (1) LASSONDE

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).

o Consequently, there are multiple possible versions of each
method that may be called.

¢ e.g., A Student variable may have the dynamic type of Student,
ResidentStudent, or NonResidentStudent,

e This means that there are ‘ three possible versions ‘ of the
getTuition () that may be called.

e Dynamic binding : When a method m is called on an object

variable, the version of m corresponding to its “current shape”

(i.e., one defined in the dynamic type of m) will be called.

Student jim = new ResidentStudent (..),
jim.getTuition(); /* version in ResidentStudent =*/
jim = new NonResidentStudent(...);

jim.getTuition(); /* version in NonResidentStudent =*/

ag ot 1110

I

Polymorphism and Dynamic Binding (2.1) |ssonoe

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTesterl {
public static void main(String[] args) {
Student jim = new Student ("J. Davis");
Reszdentstudent rs = new ResidentStudent ("J. Davis");
jim = rs; / * /
rs = jim; /~*

NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");

/ /

jim = nrs; /* lec */
nrs = jim; /% */
}
}

I

Polymorphism and Dynamic Binding (2.2) |.ssonoe

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course ("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent ("J. Davis");
rs.setPremiumRate(1.5);

‘ jim = rs ; ‘

NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");
nrs.setDiscountRate(0.5);

‘ System.out.println(jim.getTuition()); /* 750.0 =/

‘ jim = nrs ; ‘

‘ System.out.println(jim.getTuition()); /* 250.0 +*/

}

Polymorphism and Dynamic Binding (3.1) |ssonoe

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

" surfWeb /* overridden using firefox */
Android
skype /* new method */

/* cinematic mode */
quickTake sideSync /* new method */

‘ IPhoneSE ‘ ‘ IPhone13Pro ‘ m

/* dual-matrix camera */
zoomage

‘ HuaweiPSoPro ‘ ‘ ; H) H ‘

I

Polymorphism and Dynamic Binding (3.2) |.assonoe

class SmartPhoneTestl {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneSE();
Samsung ss = new GalaxyS21Plus();
myPhone = ip; /+ legal #*/
myPhone Ss; /* 1 ‘

IOS presentForHeeyeon;
presentForHeeyeon = ip; /+
presentForHeeyeon = ss; / *

X mEil

I

Polymorphism and Dynamic Binding (3.3) |.assonoe

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhonel3Pro();
myPhone = ip;

myPhone. surflieb (); /% version c

Samsung ss = new GalaxyS21();
myPhone = ss;
myPhone. surfWeb (); /+*

b4 ot 11

I

Reference Type Casting: Motivation (1.1) |ssonoe

1 Student jim = new ResidentStudent ("J. Davis");
2 | ResidentStudent rs = jim;
3 | rs.setPremiumRate(1.5);
® L1is /egal: ResidentStudent is a descendant class of the static type of
jim (i.e., Student).
® L2is jllegal: yim’'s ST (i.e., Student) is not a descendant class of rs’'s ST
(i.e., ResidentStudent).
Java compiler is unable to inferthat jim’'s dynamic type in L2 is

ResidentStudent!
® Force the Java compiler to believe so via a cast in L2:
’ ResidentStudent rs = (ResidentStudent) Jjim;

e The cast| (ResidentStudent) jim ‘ creates for jim a temporary alias
whose ST corresponds to the cast type (ResidentStudent).
e Alias rs of ST ResidentStudent is then created via an assignment.
Note. jim's ST always remains Student.
® dynamic binding : After the cast , L3 will execute the correct version of

setPremiumRate (.- DT of rs is ResidentStudent).

LW R

Reference Type Casting: Motivation (1.2)

I

ST: ResidentStudent valid substitution ST: Student
—— — =
ResidentStudent rs = (ResidentStudent) jim ;

an alias whose ST is ResidentStudent

[e]

Variable rs is declared of static type (ST) ResidentStudent.
Variable 7im is declared of ST Student.

The cast] (ResidentStudent) jim \ creates for §im a temporary alias,
whose ST corresponds to the cast type (ResidentStudent).

= Such a cast makes the assignment valid.

-~ RHS’s ST (ResidentStudent) is a descendant of LHS’'s ST
(ResidentStudent).

= The assignment creates an alias rs with ST ResidentStudent.

No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.
o After the assignment, jim's ST remains Student.

o

o

[e]

bb ot T

I

Reference Type Casting: Motivation (2.1) |ssonoe

1 SmartPhone aPhone = new IPhonel3Pro();
2 | IPhonel3Pro forHeeyeon = aPhone;
3 | forHeeyeon. facetime (1.5);

® L1is /egal: IPhonel3Pro is a descendant class of the static type of
aPhone (i.e., SmartPhone).
® L2is jllegal: aPhone’s ST (i.e., SmartPhone) is nof a descendant class of
forHeeyeon’s ST (i.e., IPhonel3Pro).
Java compiler is unable to infer that aPhone’s dynamic type in L2 is

IPhonel3Prol
® Force the Java compiler to believe so via a cast in L2:
IPhonel3Pro forHeeyeon = (IPhonel3Pro) aPhone;

e The cast| (IPhone13Pro) aPhone ‘creates for aPhone a temporary alias

whose ST corresponds to the cast type (IPhone13Pro).
e Alias forHeeyeon of ST IPhonel3Pro is then created via an assignment.
Note. aPhone’s ST always remains SmartPhone.

® dynamic binding : After the cast , L3 will execute the correct version of

facetime (.- DT of forHeeyeon iS IPhonel3Pro).

I

Reference Type Casting: Motivation (2.2) |issonoe

ST: IPhonel3Pro valid substitution ST: SmartPhone
o — e
IPhone13Pro forHeeyeon = (IPhonel3Pro) aPhone ;

an alias whose ST is IPhonel3Pro

o Variable forHeeyeon is declared of static type (ST) IPhonel3Pro.

o Variable aPhone is declared of ST SmartPhone.

o The cast ’ (IPhone13Pro) aPhone ‘ creates for aPhone a temporary alias,
whose ST corresponds to the cast type (IPhonel3Pro).

= Such a cast makes the assignment valid.
-+ RHS’s ST (1Phonel3Pro) is a descendant of LHS’s ST (IPhonel3Pro).

= The assignment creates an alias forHeeyeon with ST IPhonel3Pro.
o No new object is created.
Only an alias forHeeyeon with a different ST (IPhonel3Pro) is created.

o After the assignment, aPhone’s ST remains SmartPhone.

i muil

Type Cast: Named or Anonymous

I

Named Cast: Use intermediate variable to store the cast result.

SmartPhone aPhone = new IPhonel3Pro();
IOS forHeeyeon = (IPhonel3Pro) aPhone;
forHeeyeon. facetime () ;

Anonymous Cast: Use the cast result directly.

SmartPhone aPhone = new IPhonel3Pro();
((IPhonel3Pro) aPhone) .facetime();

_

Common Mistake:

SmartPhone aPhone = new IPhonel3Pro();

2 | (IPhonel3Pro) aPhone.facetime();
L2 z[(IPhonel3Pro) (aPhone.facetime()) \: Call, then cast.
= This does not compile - facetime () is not declared in the
static type of aPhone (SmartPhone).

-
—

Notes on Type Cast (1)

o Given variable v of static type ST,, itis compilable to cast v to
C ,aslong as C is an ancestor or descendant of ST,.

o Without cast, we can only call methods defined in ST, on v.

o Casting vto C creates for v an alias with ST C .
= All methods that are defined in C can be called.

Andr01d myPhone new GalaxySZlPlusU

n Android on e
] : Jo Y sideSync X
SmartPhone sp = (SmartPhone) myPhone;
,/' N

* SmartPhone is an ancestor class of Android

X */

GalaxySZlPlus ga = (GalaxyS21Plus) myPhone,
- GalaxyS21Plus is a descendant class of Android
: widened to GalaxySZlPlus

e Vox/

il ot 111

I

Reference Type Casting: Danger (1)
1 ’Student jim = new NonResidentStudent ("J. Davis");
2 ‘Residentstudent rs = (ResidentStudent) Jjim;

3 ‘rs.setPremiumRate(l.B);

e L1is /egal: NonResidentStudent is a descendant of the
static type of jim (Student).

e L2 is legal (where the cast type is ResidentStudent):
o cast type is descendant of jim’s ST (Student).
o cast type is descendant of rs’s ST (ResidentStudent).

e L3is legal - setPremiumRate isin rs’ ST
ResidentStudent.

e Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

e Executing L2 will resultina ClassCastException.
-+ Attribute premiumRate (expected from a ResidentStudent)

is undefined on the NonResidentStudent object being cast.

I

Reference Type Casting: Danger (2)
1 ’SmartPhone aPhone = new GalaxyS21Plus(); ‘
2 ‘IPhonel3Pro forHeeyeon = (IPhonel3Pro) aPhone; ‘

3 ‘ forHeeyeon.quickTake(); ‘

e L1is /egal: GalaxyS21P1lus is a descendant of the static
type of aPhone (SmartPhone).

e L2 is /egal (where the cast type is Iphone6sPlus):
o cast type is descendant of aPhone’s ST (SmartPhone).
o cast type is descendant of forHeeyeon’s ST (IPhonel3Pro).

e L3is legal - quickTake isin forHeeyeon’ ST
IPhonel3Pro.

e Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually GalaxyS21P1us.

e Executing L2 will resultina ClassCastException.
- Methods facetime, quickTake (expected from an
IPhone13Pro) is undefined on the GalaxyS21Plus object

aRGing cast.
e

I

Notes on Type Cast (2.1)

Given a variable v of static type ST, and dynamic type DT,:

o is compilable if c is ST,’s ancestor or descendant.
o Casting v to C’s ancestor/descendant narrows/widens expectations.

o However, being compilable does not guarantee runtime-error-free!

: Galaxyszlplus is a descendant clas

hods declared

n GalaxyS21Plus

ga.sideSync v ox/

* Type castin L3 is compilable .

1 SmartPhone myPhone = new Samsung();

2 one 1is SmartPhone; DT of m o1 is Samsung x*/

3 = (GalaxyS21Plus) myPhone;

4 f SmartPhone
5

6

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS21Plus (e.g., sideSync).

I

Notes on Type Cast (2.2) ¥

Given a variable v of static type ST, and dynamic type DT,:

o is compilable if c is ST,’s ancestor or descendant.
o Casting v to C’s ancestor/descendant narrows/widens expectations.

o However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 | /*x ST of m one is SmartPhone; DT of m is Samsung x*/
3 | IPhonel3Pro ip = (IPhonel3Pro) myPhone;
4 | /+ C s OK - IPhonel3Pro is a descendant class of SmartPhone
5 : W C nethods declared in IPhonel3Pro on ip
6 ‘ * ip.dial, 1ip.st b, 1p ime, N4
L

* Type castin L3 is compilable .

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhonel3Pro (e.9., quickTake).

I

Notes on Type Cast (2.3)

A cast is compilable and runtime-error-free if C is
located along the ancestor path of DT,.

e.g., Given ’ Android myPhone = new Samsung();

o Cast myPhone to a class along the ancestor path of its DT
Samsung.

o Casting myPhone to a class with more expectations than its DT
Samsung (e.g., GalaxyS21P1lus) will cause
ClassCastException.

o Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate40Pro) will cause ClassCastException.

o ot 110

Required Reading:

Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/~jackie/teaching/
lectures/2024/F/EECSZ2030/notes/EECS20350 FZ24
Notes Static Types Cast.pdf

bb ot 110

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Notes_Static_Types_Cast.pdf

I

Compilable Cast vs. Exception-Free Cast |issono

class A { }

class B extends A
class C extends B
class D extends A

—_ -

}
}
}

B b new C();
D d (D) b;

After L1:

o STofbisB

o DT of bisC

Does L2 compile? [No]
-+ cast type D is neither an ancestor nor a descendant of b’s ST B

Would[D d = (D) ((&) b)|fix L2? [YES]
-+ cast type D is an ancestor of b’s cast, temporary ST A

* ClassCastException when executing this fixed L2? [YES]

-+ cast type D is not an ancestor of b’s DT C

I

Reference Type Casting: Runtime Check (1) f;fééggsonos

’Student jim = new NonResidentStudent ("J. Davis");
‘if (jim instanceof ResidentStudent) {

1 |
2 |
3 ‘ ResidentStudent rs = (ResidentStudent) jim; ‘
4 ‘ rs.setPremiumRate (1.5); ‘
5 |}

e L1is /egal: NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

e L2 checks if jim’s DT is a descendant of ResidentStudent.
FALSE - 5im’s dynamic type is NonResidentStudent!
e L3is legal: jim’s cast type (i.e., ResidentStudent)is a
descendant class of rs’s ST (i.e., ResidentStudent).

e L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

bR ot 110

Reference Type Casting: Runtime Check (2)|.ssonoe

SmartPhone aPhone = new GalaxyS21Plus();
if (aPhone instanceof IPhonel3Pro) {

IOS forHeeyeon = (IPhonel3Pro) aPhone;
forHeeyeon. facetime () ;

}

abrwN =

e L1is /egal: GalaxyS21P1lus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

e L2 checks if aPhone’s DT is a descendant of TPhonel3Pro.
FALSE - aPhone’s dynamic type is GalaxyS21Plus!
e L3 is legal: aPhone’s cast type (i.e., TPhonel13Pro)is a
descendant class of forHeeyeon’s static type (i.e., 103).

¢ L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

Y ot 110

I

NOteS on the instanceof Opel‘ator (1) LASSONDE

Given a reference variable v and a class ¢, you write

’v instanceof C‘

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that| (C) v |is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Andr01d),

/* true °° Samsung 1is a des ant of A id =/
println(myPhone instanceof Samsung),

/% true °' Samsung 1s a descendant of Samsung #*/
println(myPhone instanceof GalaxyS21);

/% false *° Sams is not a descendant of GalaxyS21 */

println(myPhone 1nstanceof I0s);

/% false * Samsung is not a descendant of IOS */
println(myPhone 1nstanceof IPhone13Pro)
/+ false ' Samsung 1s not a descer t of IPhonel3Pro */

= Samsung is the most specific type which myPhone can be
safely cast to.

Notes on the instanceof Opel‘ator (2) :A§SONDE

I

Given a reference variable v and a class ¢,
|v instanceof C|checks if the dynamic type of v, at the
moment of being checked, is a descendant class of C.

SmartPhone myPhone = new Samsung();

/+* ST of myPhone is SmartPhone; DT of n

if (myPhone instanceof Samsung) {
Samsung samsung = (Samsung) myPhone;

}

if (myPhone instanceof GalaxyS21Plus) {
GalaxyS21Plus galaxy = (GalaxyS21Plus)

}

if (myphone instanceof HuaweiMate40Pro)
Huawei hw = (HuaweiMate4OPro) myPhone;

}

O OVWONOOORAWN =

—_

is Samsung */

myPhone;

{

e L3 evaluates to frue.
e L6 and L9 evaluate to ralse.

[safe to cast]
[unsafe to cast]

This prevents L7 and L10, causing ClassCastException if

executed, from being executed.

I

Static Types, Casts, Polymorphism (1.1)

class SmartPhone {
void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS {
void quickTake() { ... }

}

T 1

1 SmartPhone sp = new IPhonel3Pro(); N
2 |sp.dial(); v

3 | sp.facetimel(); X

4 | sp.quickTake(); X

Static type of spis SmartPhone

= can only call methods defined in SmartPhone on sp

I

Static Types, Casts, Polymorphism (1.2)

class SmartPhone {
void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS {
void quickTake() { ... }

}

1 IOS ip = new IPhonel3Pro(); Vv
2 |ip.dial(); Vg

3 | ip.facetime(); v

4 | ip.quickTake(); X

Static type of ipis 10S

= can only call methods defined in T0s on ip

I

Static Types, Casts, Polymorphism (1.3)

class SmartPhone {
void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS ({
void quickTake() { ... }

}

T 1

1 IPhonel3Pro ip6sp = new IPhonel3Pro(); v
2 | ip6sp.dial(); v

3 | ip6sp. facetime(); v

4 | ip6sp.quickTake(); Ng

Static type of ip6spis IPhonel3Pro

= can call all methods defined in ITPhonel3Pro on jp6sp

Static Types, Casts, Polymorphism (1.4)

class SmartPhone {
void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS ({
void quickTake() { ...}

}

T

1 ‘ SmartPhone sp = new IPhonel3Pro(); v

2 | ((IPhone13Pro) sp).dial(); v |

3 ‘((IPhonel3Pro) sp).facetime(); ‘

4 ‘ ((IPhonel3Pro) sp).quickTake(); N4 ‘
|

L

L4 is equivalent to the following two lines:

r
‘IPhonelSPro ip6sp = (IPhonel3Pro) sp; ‘

‘ip6sp.quickTake();

5 ot T

I

Static Types, Casts, Polymorphism (2)
Given a reference variable declaration
e |

(e]

Static type of reference variable v is class C

A method call is valid if mis a method defined in class C.
Despite the dynamic type of v, you are only allowed to call
methods that are defined in the static type C on v.

If you are certain that v’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.

[e]

[e]

o

Course eecs2030 = new Course ("EECS2030", 500.0);
Student s = new ResidentStudent ("Jim");
s.register(eecs2030);

if (s instanceof ResidentStudent) ({

| ((ResidentStudent) s).setPremiumRate(1.75); |

System.out.println(((ResidentStudent) s).getTuition());
}

IZb ot 111

-
=

Polymorphism: Method Parameters (1)
1 |class StudentManagementSystem {

2 Student [] ss; /* ss[i] has static type Student =/ int c;

3 void addRS(Res:.dentStudent rs) { sslc] = rs; c ++; }

4 void addNRS (NonResidentStudent nrs) { ss[c] = nrs; c++; }

5 void addStudent (Student s) { ss[c] = s; c++; } }

e L3: ss[c] = rsisvalid. - RHS's ST ResidentStudent is a

descendant class of LHS’s ST student.
e Say we have a StudentManagementSystem object sms:
sms.addRS (o) ‘attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:

o

’ rs = 0y
o Whether this argument passing is valid depends on o’s static type.
¢ In the signature of a method m, if the type of a parameter is
class c, then we may call method m by passing objects whose

static types are C’s descendants.

Lot T

I

Polymorphism: Method Parameters (2.1) |.ssono:

In the studentManagementSystemTester:

Student sl = new Student();

Student s2 = new ResidentStudent () ;

Student s3 = new NonResidentStudent () ;

ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent () ;
StudentManagementSystem sms = new StudentManagementSystem();

sms.addRS (s1) ; X
sms.addRS (s2) ; X
sms.addRS (s3); x
sms.addRS(rs);

sms.addRS (nrs) ;

sms.addStudent (s
sms.addStudent (s
sms.addStudent (s
sms.addStudent (rs) ;
sms.addStudent (nrs) ;

B ot T

I

Polymorphism: Method Parameters (2.2)

In the studentManagementSystemTester:

Student s = new Student ("Stella");

/* s’ ST: Student; s’ DT: Student =/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(s); X

AW

o L4 compiles with a cast: [sms.addrs ((ResidentStudent) s) |

e Valid cast .- (ResidentStudent) is adescendant of s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) is now a

descendant class of addRsS’s parameter rs’ ST (ResidentStudent).

o But, there willbe a ClassCastException atruntime!
+ s’ DT (Student) is not a descendant of ResidentStudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.

I

Polymorphism: Method Parameters (2.3)

In the studentManagementSystemTester:

Student s = new NonResidentStudent ("Nancy");

/* s’ ST: Student; s’ DT: NonResidentStudent x+/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); x

AW

o L4 compiles with a cast: [sms.addrs ((ResidentStudent) s) |

e Valid cast .- (ResidentStudent) is adescendant of s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) is now a

descendant class of addRsS’s parameter rs’ ST (ResidentStudent).

o But, there willbe a ClassCastException atruntime!
"+ s’ DT (NonResidentStudent) hOt descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.

Polymorphism: Method Parameters (2.4)

I

In the StudentManagementSystemTester:

Student s = new ResidentStudent ("Rachael");

/+* s’ ST: Student; s’ DT: ResidentStudent x/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

AW =

o L4 compiles with a cast: [sms.addrs ((ResidentStudent) s) |

e Valid cast-.r (ResidentStudent) is adescendantof s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) isS now a

descendant class of addRs’s parameter rs’ ST (ResidentStudent).

o And, there willbe no ClassCastException atruntime!
.+ s’ DT (ResidentStudent) is descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to frue, meaning it is

safe to cast.

I

Polymorphism: Method Parameters (2.5) |ssonoe

In the studentManagementSystemTester:

NonResidentStudent nrs = new NonRe51dentStudent(),

1St

sident

*/

Vl“\r‘\A St C
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(nrs); X

A WND =

Will L4 with a cast compile?
sms.addRS ((ResidentStudent) nrs)

NO -- (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

BRI ot 110

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?

class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent (Student s)
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i1 < numberOfStudents; 1 ++) {
students|[1i].register(c)
}
}
}

RIot 110

Polymorphism and Dynamic Binding: e sous
A Polymorphic Collection of Students (1)

1 | ResidentStudent rs = new ResidentStudent ("Rachael");

2 | rs.setPremiumRate(1.5);

3 | NonResidentStudent nrs = new NonResidentStudent ("Nancy");
4 | nrs.setDiscountRate(0.5);

5 StudentManagementSystem sms = new StudentManagementSystem() ;
6 | sms.addStudent (rs); /+ rphi

7 | sms.addStudent (nrs); /+ polj yé

8 | Course eecs2030 = new Course("EECS2030", 500.0);

9 | sms.registerAll (eecs2030);

10 | for(int i = 0; i < sms.numberOfStudents; i ++) {

11 /x I ic Bindi :

12 # / f getTuition will be called =/

13 ‘ System.out.println(sms.students[1i]. getTuition());

B4 ot 111

Polymorphism and Dynamic Binding: ‘i%%s%som
A Polymorphic Collection of Students (2)

At runtime, attribute is a polymorphic array:

e Static type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(’ ss e [nun | nun | nun | nun | nun | nun [nun | nun]

sms

“EECS52030”

Bo ot 110

I

Polymorphism: Return Types (1) LASSONDE
1 |class StudentManagementSystem {

2 Student[] ss; int c;

3 void addStudent (Student s) { ss[ec] = s; c++; }

4 Student getStudent (int i) {

5 Student s = null;

6 if(i <0 || 1 >= ¢) |

7 throw new InvalidStudentIndexException("Invalid index.");
8 }

9 else {
10 s = ssl[i];
11 }
12 return s;
13 } o}

L4: student is static type of get Student’s return value.
L10: ss[i]’s ST (student) is descendant of s’ ST (student).
Question: What can be the dynamic type of s after L10?

Answer: All descendant classes of Student.

Polymorphism: Return Types (2) LASSONDE

Course eecs2030 = new Course("EECS2030", 500);
ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate(1.5); rs.register(eecs2030);
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;
nrs.setDiscountRate(0.5); nrs.register(eecs2030);
StudentManagementSystem sms = new StudentManagementSystem();
sms.addStudent (rs); sms.addStudent (nrs);
Student s = sms.getStudent(0) V"

-

static return type: Student

9 | print (s instanceof Student && s instanceof ResidentStudent);/+truex)

ONO OO~ WN =

ot

<

=
o}
(0]
o]
L)
)
*
~

10 | print (s instanceof NonResidentStudent)' /+ false %/

11 ‘print(s.getTuition()) sion in ResidentStudent called:750%/
12 | ResidentStudent rs2 = sms. getStudent(O) X

13 | s = sms.getStudent(1) e type of s? #/

_
static return type: Student
14 | print (s instanceof Student && s instanceof NonResidentStudent);/*trliex/

15 | print (s instanceof ReSLdentStudent), /* false */

16 ‘print(s.getTuition());/+Version in NonResidentStudent /

17 ’NonRe51dentStudent nrs2 = sms.getStudent (1); x ‘
EZsm

Polymorphism: Return Types (3) LASSONDE

At runtime, attribute is a polymorphic array:
e Static type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(ss s [[rur | own [nur | oun | eun | nun | oun | aun |

sms c
sms. getStudent (0)

(—’ ResidentStudent (—>
“Rachael”

rs

sms.getStudent (1)

NonResidentStudent

0 1 0o 1 8 9

numberOfCourses I8}

numberOfCourses [RSE
registeredCourses

registeredCourses

premiumRate discountRate

Course

title “EECS2030"
eecs2030
fee

B ot 110

Static Type vs. Dynamic Type: ‘i\%ﬁsom
When to consider which?

e Whether or not Java code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Java code being executed at runtime (e.g.,

which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

BY ot 111

I

Summary: Type Checking Rules
I CODE | ConDITION TO BE TYPE CORRECT |
X =y Is y's ST a descendant of x's ST?

Is method m defined in x’s ST?

x.m(y) Is y’'s ST a descendant of m’s parameter's ST?
Is method m defined in x’s ST?
z = x.m(y) Is y’'s ST a descendant of m’'s parameter's ST?
Is ST of m’s return value a descendant of z's ST?
(C) y Is ¢ an ancestor or a descendant of y's ST?
x= () y Is ¢ an ancestor or a descendant of y's ST?

Is ¢ a descendant of x’s ST?

Is ¢ an ancestor or a descendant of y's ST?
x.m((C) vy) Is method m defined in x’s ST?

Is ¢ a descendant of m’s parameter’s ST?

Evenif| (c) y|compiles OK, there will be a runtime

ClassCastException if C is not an ancestor of y's DT!

I

Root of the Java Class Hierarchy

e Implicitly:
o Every class is a child/sub class of the Object class.
o The oObject class is the parent/super class of every class.
e There are two useful accessor methods that every class
inherits from the object class:
o boolean equals (Object other)

Indicates whether some other object is “equal to” this one.
e The default definition inherited from Object

boolean equals (Object other) {
return (this == other); }

o String toString()
Returns a string representation of the object.
» Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and

toString.

I

Overriding and Dynamic Binding (1) LASSONDE

Object is the common parent/super class of every class.

o Every class inherits the default version of equals
o Say a reference variable v has dynamic type D:
e Case 1 D overrides equals
= v.equals (...) invokes the overridden version in D
e Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
= v.equals (...) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
= v.equals (...) invokes default version inherited from Object.

o Same principle applies to the tostring method, and all
overridden methods in general.

b9 ot 11

I

Overriding and Dynamic Binding (2.1) LASSONDE
. boolean equals (Object obj) {
Object return this == obj;
}
—
A
class C extends B {
Y W / * 21s not over
}
B 1 |Object cl1 = new C();
2 |Object c2 = new C();
I — 3 |println(cl.equals(c2));
— L3 calls which version of
C equals? [Object]

b3 ot T

Overriding and Dynamic Binding (2.2) L

LASSONDE
boolean equals (Object obj) {
Object return this == obj; class 4 {
} LS 1 en+*/
—
" / riddenx*/
}
A class C extends B {
boolean equals (Object obj) {
Y W / verridden n */
}
— }
B
1 |Object cl = new C();
— 2 |Object c2 = new C();
3 |printin(cl.equals(c2));
boolean equals (Object obj) { L3 calls which version of
C /* overridden version */

Srw el

}

equals? [c]

Overriding and Dynamic Binding (2.3)

Object

b5 ot 11

boolean equals (Object obj) {
return this == obj;
}

boolean equals (Object obj) {
/* overridden version */
}

class A {

class B extends A {
boolean equals(object Obj)

{

Object cl = new C();
Object c2 = new C();
printlin(cl.equals(c2));

L3 calls which version of

[B]

equals?

BehaViOUI‘ Of Inherlted toStrlng MethOd (1}LASSONDE

Point pl = new Point(2, 4);
System.out.println(pl);

Point@677327b6

e Implicitly, the toSt ring method is called inside the print1ln
method.

» By default, the address stored in p1 gets printed.

e We need to redefine / override the tostring method,
inherited from the ob ject class, in the Point class.

b ot 11

Behaviour of Inherited toString Method (2).assonoe

class Point {

double x;
double y;
public String toString() {
return " (" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the t oSt ring method:

Point pl = new Point(2, 4);
System.out.println(pl);

(2, 4)

b7z ot 11

I

BehaViOUI‘ Of Inherlted toStrlng MethOd (3} LASSONDE

Exercise: Override the equals and toSt ring methods for
the ResidentStudent and NonResidentStudent classes.

SHE MRl

I

Beyond this lecture. .. LASSONDE

¢ Implement the inheritance hierarchy of Students and
reproduce all lecture examples.

e Implement the inheritance hierarchy of Smart Phones and
reproduce all lecture examples.
Hints. Pay attention to:
o Valid? Compiles?
o ClassCastException?

e Study the ExampleTypeCasts example: draw the
inheritance hierarchy and experiment with the various
substitutions and casts.

b9 o 11

Index (1)

[Cearning Oufcomes|
[Why Tnherifance: A Mofivating Example|
[Why Tnherifance: A Motivating Examplel

NoInherifance: NonResidentClass
o Inheritance: Testing Student Classe
[No Inherifance:]

Issues with the Student Classes

O Innheritance: Viaintainapllity or Code

O Innheritance: Viaintainability or Code

0ot 110

Index (2)
No Inherifance: |

A_Collection of Various Kinds ot Students

[Visibility: Project, Packages, Classes|

/isiD =

I!ISIEIIIt! of Classes: Across All Classes]
[Within the Resident PacRage (no modifier)

I!ISIEIIIt! of Classes: Across All Classes |

ithin the Resident Package (no modifier

[Visibility of Attributes/Methods:]
isibility o r./Meth.: Across ethods |
Ithin the Residen ass (private

Index (3)

Visibility of Attr./Meth.: Across A asses

Within the Resident Package (no modifier)

isibility o r./Meth.: Across ackages |

Within the Resident Project (public)
Use O e protected Modifie

isibility o r./Meth.: Across ethods |
ithin the Resident Package and Sub-Classes (protected

Inheritance Architecture

nneritance: e Student Parent/super Clas

Inherifance: -
[The ResidentStudent ChIIA/SUb Class

Index (4)

Inherifance:]
Child/Sub Class

Inheritance Architeciure Bevisited

Sing Inneritance ror Code heus
IVlsuallzmg Parent/Child Objects (1)
IVlsuallzmg Parent/Child Objects (2)

[Testing the Two Student Sub-Classes|
inheritance Architeciure:]
[tatic Types & Expectations|

Polymorplilsm: Intuition z |I
Polymorplilsm: Intuition IZI

Index (5) :A§SCE>MF\ABNE

Polymorphism: Tntuition (3)
[Dynamic Binding: Intuition (1)

[Dynamic Binding: Intuition (2)

Multi-Level Inheritance Architecture

I\Ilultl-LeveI Inheritance Hierarchy: |

>mart Phones

Inheritance Forms a Type Hierarchyl

Inheritance Accumulates Code for Beuse

[Static Types Determine Expectations
[Substitutions via Ksmgnmen[a

Rules of Substitufion

Index (6) :A§SCE>MF\ABNE

[Reference Variable: Dynamic 1yp€e

isualizing Static Type vs. Dynamic 1yp

Beference Variable:]
[Changing Dynamic Type (1)

Beference Variable:]
[Changing Dynamic Type (2}

olymorpnism an ynamic 5indaing

olymorpnism an ynamic binding (2.

olymorphnism an ynamic bindin

olymorphnism an ynamic bBindin

olymorphnism an ynamic bindin

105 ot 110

Index (7)

olymorpnism an vynamic bindin
ype LCast: Named or Anonymou
INotes on Type Cast (1)
Feference Type Casting: Danger (1)
Feference Type Casting: Danger (2]
Notes on Type Cast (21

INotes on Type Cast(2.2)

10 ot 110

Index (8) :A§SCE>MF\ABNE

[Notes on Type Cast (2.3)

[Required Reading:]
Stafic Types, Dynamic Types, Casts

[Compilable Cast vs. Exception-Free Cas{
[Reference Type Cashng: Runitime Check (1)
[Reference Type Cashng: Runtime Check (2)

[Notes on the instanceof Operator (1)

[Notes on the instanceof Operator (2)

atic_lypes, Casts, Folymorpnism (1.

[Static Types, Casts, Polymorphism (1.2)

atic_lypes, Casts, Folymorpnism (1.

0z ot 110

Index (9)
Bfahc Iypes, Cas[s, Polymorpﬁlsm i |.ZI

atic_lypes, Casts, Folymorpnism

olymorphnism: vietno arameters

olymorpnism: nvetno arameters (<.

olymorphnism: vietno arameiters (<.

olymorphnism: nvietno arameters (<.

olymorphnism: viethod Farameters (<.

olymorphism: Method Parameters (2.
[Why Tnheritance:]
[APolymorphic Collection of Students|

[Polymorphism and Dynamic Binding:]

[A"Polymorphic Collection of Students (1)

Index (1 0) :_Agsgurgig“s

Polymorphlsm and Dynamic Blndlng: |

[A"Polymorphic Collection of Students (2)
[Polymorphism: Return Types (1)
Polymorphism: Return Types (2)

Polymorphism: Return Types (3)
tatic Type vs. Dynamic lype: |

Summary: Type Cliecklng Rules

oot o € Java Class nierarc

verriding an ynamic bindin

verriding an ynamic bindin

09 ot 110

Index (11)

verriding an ynamic bindin
[Overriding and Dynamic Binding (2.3)
[Behaviour of Tnherited toString Method (T)
[Behaviour of Inherited toString Method (2)
[Behaviour of Inherited toString Method (3)
Beyond this Tecture.__]

ot 110

	Learning Outcomes
	Why Inheritance: A Motivating Example
	Why Inheritance: A Motivating Example
	No Inheritance: ResidentStudent Class
	No Inheritance: NonResidentClass
	No Inheritance: Testing Student Classes
	No Inheritance: Issues with the Student Classes
	No Inheritance: Maintainability of Code (1)
	No Inheritance: Maintainability of Code (2)
	No Inheritance: A Collection of Various Kinds of Students
	Visibility: Project, Packages, Classes
	Visibility of Classes
	Visibility of Classes: Across All Classes Within the Resident Package (no modifier)
	Visibility of Classes: Across All Classes Within the Resident Package (no modifier)
	Visibility of Attributes/Methods: Using Modifiers to Define Scopes
	Visibility of Attr./Meth.: Across All Methods Within the Resident Class (private)
	Visibility of Attr./Meth.: Across All Classes Within the Resident Package (no modifier)
	Visibility of Attr./Meth.: Across All Packages Within the Resident Project (public)
	Use of the protected Modifier
	Visibility of Attr./Meth.: Across All Methods Within the Resident Package and Sub-Classes (protected)
	Visibility of Attr./Meth.
	Inheritance Architecture
	Inheritance: The Student Parent/Super Class
	Inheritance: The ResidentStudent Child/Sub Class
	Inheritance: The NonResidentStudent Child/Sub Class
	Inheritance Architecture Revisited
	Using Inheritance for Code Reuse
	Visualizing Parent/Child Objects (1)
	Visualizing Parent/Child Objects (2)
	Testing the Two Student Sub-Classes
	Inheritance Architecture: Static Types & Expectations
	Polymorphism: Intuition (1)
	Polymorphism: Intuition (2)
	Polymorphism: Intuition (3)
	Dynamic Binding: Intuition (1)
	Dynamic Binding: Intuition (2)
	Multi-Level Inheritance Architecture
	Multi-Level Inheritance Hierarchy: Smart Phones
	Inheritance Forms a Type Hierarchy
	Inheritance Accumulates Code for Reuse
	Static Types Determine Expectations
	Substitutions via Assignments
	Rules of Substitution
	Reference Variable: Dynamic Type
	Visualizing Static Type vs. Dynamic Type
	Reference Variable: Changing Dynamic Type (1)
	Reference Variable: Changing Dynamic Type (2)
	Polymorphism and Dynamic Binding (1)
	Polymorphism and Dynamic Binding (2.1)
	Polymorphism and Dynamic Binding (2.2)
	Polymorphism and Dynamic Binding (3.1)
	Polymorphism and Dynamic Binding (3.2)
	Polymorphism and Dynamic Binding (3.3)
	Reference Type Casting: Motivation (1.1)
	Reference Type Casting: Motivation (1.2)
	Reference Type Casting: Motivation (2.1)
	Reference Type Casting: Motivation (2.2)
	Type Cast: Named or Anonymous
	Notes on Type Cast (1)
	Reference Type Casting: Danger (1)
	Reference Type Casting: Danger (2)
	Notes on Type Cast (2.1)
	Notes on Type Cast (2.2)
	Notes on Type Cast (2.3)
	Required Reading: Static Types, Dynamic Types, Casts
	Compilable Cast vs. Exception-Free Cast
	Reference Type Casting: Runtime Check (1)
	Reference Type Casting: Runtime Check (2)
	Notes on the instanceof Operator (1)
	Notes on the instanceof Operator (2)
	Static Types, Casts, Polymorphism (1.1)
	Static Types, Casts, Polymorphism (1.2)
	Static Types, Casts, Polymorphism (1.3)
	Static Types, Casts, Polymorphism (1.4)
	Static Types, Casts, Polymorphism (2)
	Polymorphism: Method Parameters (1)
	Polymorphism: Method Parameters (2.1)
	Polymorphism: Method Parameters (2.2)
	Polymorphism: Method Parameters (2.3)
	Polymorphism: Method Parameters (2.4)
	Polymorphism: Method Parameters (2.5)
	Why Inheritance: A Polymorphic Collection of Students
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (1)
	Polymorphism and Dynamic Binding: A Polymorphic Collection of Students (2)
	Polymorphism: Return Types (1)
	Polymorphism: Return Types (2)
	Polymorphism: Return Types (3)
	Static Type vs. Dynamic Type: When to consider which?
	Summary: Type Checking Rules
	Root of the Java Class Hierarchy
	Overriding and Dynamic Binding (1)
	Overriding and Dynamic Binding (2.1)
	Overriding and Dynamic Binding (2.2)
	Overriding and Dynamic Binding (2.3)
	Behaviour of Inherited toString Method (1)
	Behaviour of Inherited toString Method (2)
	Behaviour of Inherited toString Method (3)
	Beyond this lecture…

