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Learning Outcomes

This module is designed to help you learn about:
¢ Alternative designs to inheritance
¢ Using inheritance for code reuse
o Static Types, Expectations, Dynamic Types
e Polymorphism
(variable assignments, method arguments & return values)
e Dynamic Binding
o Type Casting
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Why Inheritance: A Motivating Example  |sono:

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.
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No Inheritance: ResidentStudent Class

I

LASSONDE

public class ResidentStudent {
private String name;
private Course[] courses; private int noc;

private double premiumRate; /+*

public ResidentStudent (String name) {
this.name = name;
this.courses = new Course[l0];

}

public void register(Course c) |
this.courses[this.noc]
this.noc ++;

}

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i]. fee;

}

‘ return tuition * this. premiumRate ;

cy

}

- 1
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No Inheritance: NonResidentStudent Clas

public class NonResidentStudent {
private String name;
private Course[] courses; private int noc;
private double discountRate; /* a

9]
[9)]

public NonResidentStudent (String name) {
this.name = name;
this.courses = new Course[1l0];

}

public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i]. fee;

}

return tuition * this. discountRate ;

}
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No Inheritance: Testing Student Classes  |.ssono:

public class Course {
private String title; private double fee;
public Course(String title, double fee) ({
this.title = title; this.fee = fee;

}

public class StudentTester {
public static void main(String[] args) {

Course cl = new Course("EECS2030", 500.00); /=
Course c2 = new Course ("EECS3311", 500.00); /= I
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(cl); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
jeremy.setDiscountRate(0.75);

jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + Jjeremy.getTuition());
}
}



No Inheritance: ‘i\%ﬁsom

Issues with the Student Classes

¢ Implementations for the two student classes seem to work.
But can you see any potential problems with it?

Hint. Maintenance of code
e The code of the two student classes share a lot in common.
o Duplicates of code make it hard to maintain your software!
o This means that when there is a change of policy on the common

part, we need modify more than one places.
o This violates the so-called single-choice design principle.
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No Inheritance: Maintainability of Code (1) |assonoe

What if the way for registering a course changes?
e.g.,

public void register(Course c) throws TooManyCoursesException {
if (this.noc >= MAX ALLOWANCE) {
throw new TooManyCoursesException("Too many courses");
}
else {
this.courses[this.noc] = c¢;
this.noc ++;
}
}

Changes needed for register method in both student classes!
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No Inheritance: Maintainability of Code (2) |.

What if the way for calculating the base tuition changes?
e.g.,

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {
tuition += this.courses[1i]. fee;

}

/x .

can pe p e or

Oor aiscoun

return tuition * inflationRate * ...;

Changes needed for get Tuition method in both student classes!
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No Inheritance: 5
A Collection of Various Kinds of Students

How can we define a class StudentManagement System that
contains a list of resident and non-resident students?

public class StudentManagementSystem {
private ResidentStudent|[] rss;
private NonResldsntStudent[] nrss;
private int nors; /x numk of re
private int nonrs; of dents #*,
public void addRS(ResidentStudent rs){ rss(norsl=rs; nors++; }
public void addNRS (NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++; }
public void registerAll (Course c) |
for (int 1 0; i < nors; 1 ++) { rss[i].register(c); }
for (int 1 0; i < nonrs; i ++) { nrss[i].register(c); }
}
}

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately!

A pOlymorpnic coliection of stuaents

Lot T



Visibility: Project, Packages, Classes
CollectionOfStuffs
animal [ ot ]
[ Dog ]
furniture [Chair ]
[ Desk ]
shape [ Circle ]
[ Square ]
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Visibility of Classes

Only one modifier for declaring visibility of classes: public.
Use of private is forbidden for declaring a class.
e.g.,

Visibility of a class may be declared using a modifier,
indicating that it is accessible:

private class Chair‘ is not allowed!!

1. Across classes within its residing package [ no modifier ]
e.g., Declare ’ class Chair { ... } ‘
2. Across packages [ public ]

e.g., Declare ’ public class Chair { ... } ‘

Consider class chair which resides in:

o package furniture
o project CollectionOfStuffs

IS Ei



Visibility of Classes: Across All Classes "%2’
Within the Resident Package (no modifier)

CollectionOfStuffs

animal [ Cat ]
[ Dog ]
ALV [ class Chair ]
[ Desk ]
shape [ Circle ]
[ Square ]




Visibility of Classes: Across All Classes Héo
Within the Resident Package (no modifier)

CollectionOfStuffs

animal
Cat

Dog

furniture public class Chair

Desk

Circle

Square




Visibility of Attributes/Methods:

Using Modifiers to Define Scopes

® Two modifiers for declaring visibility of attributes/methods: public and private
® Visibility of an attribute or a method may be declared using a modifier,
indicating that it is accessible:
1. Within its residing class (most restrictive) [ private ]
e.g., Declare attribute | private int 1i;

e.g., Declare method | private void m(){}; ‘
2. Across classes within its residing package [ no modifier ]

e.g., Declare attribute
e.g., Declare method | void m(){};

3. Across packages (least restrictive) [ public]

e.g., Declare attribute | public int i;

e.g., Declare method ’ public void m(){}; ‘
® Consider attributes i and m residing in:

Class chair; Package furniture; Project CollectionOfStuffs.



Visibility of Attr./Meth.: Across All Methods %
Within the Resident Class (private)

CollectionOfStuffs

animal [ cat ]

[ Dog ]

furniture Chair private i, m
[ Desk ]

shape [ Circle ]

[ Square ]

Lot T



Visibility of Attr./Meth.: Across All Classes %’
Within the Resident Package (no modifier)

CollectionOfStuffs

animal (cat )
( Dog )|
furniture (crar )
( Desk )
shape ( circle )
G )




Visibility of Attr./Meth.: Across All Packagle;%ssom
Within the Resident Project (public)

CollectionOfStuffs

animal
Cat

Dog

furni
urniture Chair public i, m

Desk

Circle

Square




Use of the protected Modifier :

e private attributes are not inherited to subclasses.

¢ package-level attributes (i.e., with no modifier) and
project-level attributes (i.e., public) are inherited.

e What if we want attributes to be:
o visible to sub-classes outside the current package, but still
o invisible to other non-sub-classes outside the current package?
Use protected!
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Visibility of Attr./Meth.: Across All Methods ‘%
Same Package and Sub-Classes (protected)

CollectionOfStuffs

animal
Cat

Chair  protected i, m

furniture

BubbleChair

Desk

shape RockingChair

Circle

I

Square




Visibility of Attributes/Methods LASSONDE

w CLass PACKAGE SUBCLASS SUBCLASS NON-SUBGCLASS
modifier (same pkg) (different pkg) (across Project)

public

protected

no modifier

private

For the rest of this lecture, for simplicity, we assume that:
All relevant parent/child classes are in the same package .
= Attributes with no modifiers (package-level visibility) suffice.
= Methods with no modifiers (package-level visibility) suffice.



Inheritance Architecture

Student

extends
extends

ResidentStudent NonResidentStudent

P3Ot il




Inheritance: The student Parent/Super Cla

T

class Student {

String name;

Course[] courses; int noc;
Student (String name) {
this.name name;
this.courses = new Course[l1l0];

}

void register(Course c) {
this.courses[this.noc] = ¢;
this.noc ++;

}

double getTuition() {

double tuition = 0;

for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i].fee;

}
return tuition; /* base

}

sZiae mmil




Inheritance:
The ResidentStudent Child/Sub Class

T
‘class ResidentStudent extends Student {

double premiumRate; /* there’s a mutator method for this x*/ ‘

ResidentStudent (Strlng name) { super (name); }

ited */

/;\ regis 1¢
double getTu1tlon() {
double base = super.getTuition();

‘ return base x premiumRate ;

OO NOOOhW N =

e L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L3 is as if calling Student (name)

e Use of super in L6 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
_




Inheritance:
The NonResidentStudent Child/Sub Class

class NonResidentStudent extends Student {
double discountRate; /+ there’s a mutator method for this x/
* reg %/

double getTu1tlon() {
double base = super.getTuition();
return base » discountRate ;

}

©CoOoNOOOR~WN =

—

T 1
NonR651dentStudent (String name) { super (name); }

e L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L3 is as if calling Student (name)

e Use of super in L6 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
_




Inheritance Architecture Revisited

et ae o

extends

Student

ResidentStudent

extends

NonResidentStudent

e The class that defines the common attributes and methods is
called the parent or super class.

e Each “extended” class is called a child or sub class.

Dot Tl




I

Using Inheritance for Code Reuse

Inheritance in Java allows you to:

o Define common atiributes and methods in a separate class.
e.g., the student class
o Define an “extended” version of the class which:
e inherits definitions of all attributes and methods
e.g., name, courses, noc
e.g., register
e.g., base amount calculation in getTuition
This means code reuse and elimination of code duplicates!
e defines new attributes and methods if necessary
e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent
e redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

PR o T
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Visualizing Parent/Child Objects (1) LASSONDE

e A child class inherits all non-private attributes from its parent
class.

= A child instance has at least as many attributes as an
instance of its parent class.

Consider the following instantiations:

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;

* How will these initial objects look like?

Y ot 111



Visualizing Parent/Child Objects (2)

B0 o T

o ONDE
(—’ Student
“Stella”
s
numberOfCourses 0 1 8 9
registeredCourses ‘ null ‘ null ‘ ‘ null null ‘
(—’ ResidentStudent
“Rachael”
rs
numberOfCourses 0 1 8 9
registeredCourses null ‘ null ‘ ‘ null null ‘
premiumRate
(—’ NonResidentStudent
“Nancy”
nrs
numberOfCourses 0 1 8 9
registeredCourses null ‘ null ‘ ‘ null null ‘

discountRate



TeStIng the TWO StUdent SUb-C|aSSGS LASSONDE

public class StudentTester {

public static void main(String[] args) {
Course cl = new Course("EECS2030", 500.00); /+ titl
Course c2 = new Course("EECS3311", 500.00); /# title and fee #/
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate (1.25);
jim.register(cl); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
jeremy.setDiscountRate(0.75);
jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

¢ The software can be used in the exact same way as before
(because we did not modify method headers).

» But now the internal structure of code has been made
maintainable using inheritance .

Cam mmil



Inheritance Architecture:
Static Types & Expectations

Student(String name) String name
void register(Course c) Student Course[] courses /* registered courses (rcs) */
double getTuition() int noc /* number of courses */

<

/% new attributes, new methods */ /% new attributes, new methods */
ResidentStudent(String name) ResidentStudent NonResidentStudent | |\ °nResidentStudent(String name)
double premiumRate double discountRate

void setPremiumRate(double r) void setDiscountRate(double r)

/* redefined/overridden methods */

/* redefined/overridden methods */
double getTuition()

double getTuition()

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;

l H name l rcs l noc l reg l getT H pr l setPR H dr l setDR

S. v X
rs. v v X
nrs. v X N




Polymorphism: Intuition (1)

I

LASSONDE

1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s = rs; /+ Is
5 |rs =s; /* Is
e Which one of L4 and L5 is valid? Which one is invalid?
¢ Hints:

o L1: What kind of address can s store? [ student ]

.. The context object s is expected to be used as:
e s.register (eecs2030) and s.getTuition ()

o L2: What kind of address can rs store? [ResidentStudent ]

.. The context object rs is expected to be used as:

e rs.register (eecs2030) and rs.getTuition ()

e rs.setPremiumRate (1.50) [increase premium rate]

B30T



Polymorphism: Intuition (2)

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate (1.25);

g~ wn =

e s =5 (L5) should be /nva//d

Student s

nnnnnnnn

» Since rs is declared of type Resident Student a subsequent

call rs.setPremiumRate (1.50) can be expected.

e rsis now pointing to a Student object.

e Then, what would happen to rs.setPremiumRate (1.50)7?
CRASH - rs.premiumRate is undefined!!

B4 ot 11



Polymorphism: Intuition (3) L

LASSONDE
1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s = rs; /+ Is d? */
5 |rs =s; /* Is d? */
s = rs (L4) should be valid:
Student s —
\:gmmamn: ] l -1 1
Residentstuﬁ
¢ Since s is declared of type student, a subsequent call
s.setPremiumRate (1.50) is never expected.
* sis now pointing to a ResidentStudent object.
* Then, what would happento s.getTuition ()?
OK -+ s.premiumRate is never directly used!!
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Dynamic Binding: Intuition (1)

I

’Course eecs2030 = new Course("EECS2030",

Student s;

1
2

3

4

5 | rs.setPremiumRate (1.25);
6 | nrs.setDiscountRate(0.75);
7

8

100.0);

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");
rs.register(eecs2030);

nrs.register(eecs2030);

|

s = rs; System.out.println( s .getTuition()); /*
s = nrs; System.out.println( s .getTuition()); /+*
After s = rs (L7), s points to @ ResidentStudent oObject.

= Calling s .getTuition () applies the premiumRate.

ResidentStudent rs Residentstudent

name
/ registeredCourses

Student s

o 1 2 28 29

NonResidentStudent nrs
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Dynamic Binding: Intuition (2)

I

’Course eecs2030 = new Course("EECS2030",

Student s;

nrs.setDiscountRate(0.75);

1
2

3

4

5 | rs.setPremiumRate (1.25);
6

7 SR=NES)

8

System.out.println( s .getTuition()); /+*

100.0);

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");
rs.register(eecs2030);

nrs.register(eecs2030);

|

S = nrs;

System.out.println( s .getTuition()); /+*

After s =
= Calling

BZ ot 111

nrs (L8), s points to a NonResidentstudent Object.
s .getTuition () applies the discountRate.

ResidentStudent

ResidentStudent rs

name
registeredCourses
numberOfCourses

premiumRate

Student s

28 29

NonResidentStudent nrs NonResidentStudent

registeredCourses
numberOfCourses l l
discountRate




Multi-Level Inheritance Architecture

ttttttt

DomesticStudent ForeignStudent




Multi-Level Inheritance Hierarchy: LASSONDE
Smart Phones

dial /* basic method */
surfWeb /* basic method */

SmartPhone

surfWeb /* overridden using safari */
facetime /* new method */

Android surfWeb /* overridden using firefox */

skype /* new method */

/* cinematic mode */
quickTake sideSync /* new method */

‘ IPhoneSE ‘ ‘ IPhone13Pro ‘ m

/* dual-matrix camera */
zoomage

| e || ; || s || s |
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Inheritance Forms a Type Hierarchy LASSONDE

e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:
o (Implicit) Root of the hierarchy is 0bject.
o Each extends declaration corresponds to an upward arrow.
o The extends relationship is transitive: when A extends B and B
extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: 2 itself and all classes that
A directly, or indirectly, extends.
o A inherits all code (attributes and methods) from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.
o The descendant classes of a class A are: 2 itself and all classes
that directly, or indirectly, extends a.
e Code defined in A is inherited to all its descendant classes.

an ot 1110




Inheritance Accumulates Code for Reuse  |iassono:
® The lower a class is in the type hierarchy, the more code it accumulates
from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
o Declare new attributes
¢ Define new methods
e Redefine / Override inherited methods
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).
o Given a reference variable, expected to store the address of an object of
a particular class, we may substitute it with ( re-assign it to) an object of
any of its descendant classes.
o e.g., When expecting a SmartPhone object, we may
substitute it with either a ITPhonel3Pro or a Samsung object.
o Justification: A descendant class contains at least as many methods
as defined in its ancestor classes (but not vice versal).
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Static Types Determine Expectations
¢ A reference variable’s static type is what we declare it to be.

o declares jim’'s ST as Student.

o ] SmartPhone myPhone \ declares myPhone’s ST as SmartPhone.

o The static type of a reference variable never changes .

¢ For a reference variable v, its static type defines the
expected usages of v as a context object .

e Amethod call v.m(...) is compilable if mis defined in .

o e.g., After declaring , we

e may call register and getTuition on jim
e may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim
o e.g., After declaring ] SmartPhone myPhone \ we
e may call dial and surfWeb on myPhone
e may not call facetime (specific to an I0S phone) or skype (specific
to an Android phone) on myPhone




Substitutions via Assignments LASSONDE

e By declaring c1 v1, reference variable 1 will store the
address of an object “of class c1” at runtime.

e By declaring c2 v2, reference variable 2 will store the
address of an object “of class c2” at runtime.

* Assignment copies address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [ object alias |

%

c1 vl \: ,
—_———————————»]
c2 v2 | ,

e In such assignment vl = v2, we say that we substitute an
object of (sfatic) type c1 by an object of (static) type C2.

e Substitutions are subject to rules!
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Rules of Substitution
When expecting an object of static type A:
o ltis safe to substitute it with an object whose static type is any
of the descendant class of a (including 2).

o .- Each descendant class of n, being the new substitute, is
guaranteed to contain all (non-private) attributes/methods defined in A.
¢ e.g., When expecting an 10s phone, you can substitute it with either
an IPhoneSE Or IPhonel3Pro.
o ltis unsafe to substitute it with an object whose static type is
any of the ancestor classes of A’s parent (excluding 2).
o - Class A may have defined new methods that do not exist in any of its
parent’s ancestor classes .
¢ e.g., When expecting 10s phone, unsafe to substitute it with a
SmartPhone - facetime not supported in Android phone.
o ltis also unsafe to substitute it with an object whose static type
is neither an ancestor nor a descendant of A.

¢ e.g., When expecting 10s phone, unsafe to substitute it with a
HuaweiP50Pro . facetime not supported in Android phone.
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Reference Variable: Dynamic Type LASSONDE

A reference variable’s dynamic type is the type of object that
it is currently pointing to at runtime.
o The dynamic type of a reference variable may change

whenever we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.
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Visualizing Static Type vs. Dynamic Type |issono

(_’ ResidentStudent
name

Student s

“Rachael”

numberOfCourses

registeredCourses

premiumRate

e Each segmented box denotes a runtime object.

¢ Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

¢ Title of box indicates type of runtime object, which denotes the

dynamic type of the variable (ResidentStudent).



Reference Variable: e enDe

Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

(e}

Substitution Principle ‘: the new object’s class must be a

descendant class of the reference variable’s static type.
o e.g., ’ Student jim = new ResidentStudent(...) ‘
changes the dynamic type of jimto ResidentStudent.

o e.g., ’ jim = new NonResidentStudent(...) ‘
changes the dynamic type of jim to NonResidentStudent.

o e.g.,’ResidentStudent jeremy = new Student(...) ‘

is illegal because studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).
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Reference Variable: e enDe

Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is

referenced by another variable other (i.e.,[v = other]):

Substitution Principle ‘: the static type of other must be a

o

descendant class of v's static type.
o e.g., Say we declare

Student jim = new Student(...);
ResidentStudent rs = new ResidentStudnet(...);

NonResidentStudnet nrs = new NonResidentStudent(...);
e | jim = rs v
changes the dynamic type of jim to the dynamic type of rs

o}
H
n

e | jim = v
changes the dynamic type of jim to the dynamic type of nrs

e |rs = jim X

° nrs = X

ax ot 110
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Polymorphism and Dynamic Binding (1) LASSONDE

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).

o Consequently, there are multiple possible versions of each
method that may be called.

¢ e.g., A Student variable may have the dynamic type of Student,
ResidentStudent, or NonResidentStudent,

e This means that there are ‘ three possible versions ‘ of the
getTuition () that may be called.

e Dynamic binding : When a method m is called on an object

variable, the version of m corresponding to its “current shape”

(i.e., one defined in the dynamic type of m) will be called.

Student jim = new ResidentStudent (.. ),
jim.getTuition(); /* version in ResidentStudent =*/
jim = new NonResidentStudent(...);

jim.getTuition(); /* version in NonResidentStudent =*/
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Polymorphism and Dynamic Binding (2.1)  |ssonoe

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTesterl {
public static void main(String[] args) {
Student jim = new Student ("J. Davis");
Reszdentstudent rs = new ResidentStudent ("J. Davis");
jim = rs; / * /
rs = jim; /~*

NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");

/ /

jim = nrs; /* lec */
nrs = jim; /% */
}
}



I

Polymorphism and Dynamic Binding (2.2) |.ssonoe

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course ("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent ("J. Davis");
rs.setPremiumRate(1.5);

‘ jim = rs ; ‘

NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");
nrs.setDiscountRate(0.5);

‘ System.out.println( jim.getTuition() ); /* 750.0 =/

‘ jim = nrs ; ‘

‘ System.out.println( jim.getTuition() ); /* 250.0 +*/

}




Polymorphism and Dynamic Binding (3.1)  |ssonoe

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

" surfWeb /* overridden using firefox */
Android
skype /* new method */

/* cinematic mode */
quickTake sideSync /* new method */

‘ IPhoneSE ‘ ‘ IPhone13Pro ‘ m

/* dual-matrix camera */
zoomage

‘ HuaweiPSoPro ‘ ‘ ; H ) H ‘
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Polymorphism and Dynamic Binding (3.2) |.assonoe

class SmartPhoneTestl {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneSE();
Samsung ss = new GalaxyS21Plus();
myPhone = ip; /+ legal #*/
myPhone Ss; /* 1 ‘

IOS presentForHeeyeon;
presentForHeeyeon = ip; /+
presentForHeeyeon = ss; / *

X mEil
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Polymorphism and Dynamic Binding (3.3) |.assonoe

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhonel3Pro();
myPhone = ip;

myPhone. surflieb (); /% version c

Samsung ss = new GalaxyS21();
myPhone = ss;
myPhone. surfWeb (); /+*
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Reference Type Casting: Motivation (1.1)  |ssonoe

1 Student jim = new ResidentStudent ("J. Davis");
2 | ResidentStudent rs = jim;
3 | rs.setPremiumRate(1.5);
® L1is /egal: ResidentStudent is a descendant class of the static type of
jim (i.e., Student).
® L2is jllegal: yim’'s ST (i.e., Student) is not a descendant class of rs’'s ST
(i.e., ResidentStudent).
Java compiler is unable to inferthat jim’'s dynamic type in L2 is

ResidentStudent!
® Force the Java compiler to believe so via a cast in L2:
’ ResidentStudent rs = (ResidentStudent) Jjim;

e The cast| (ResidentStudent) jim ‘ creates for jim a temporary alias
whose ST corresponds to the cast type (ResidentStudent).
e Alias rs of ST ResidentStudent is then created via an assignment.
Note. jim's ST always remains Student.
® dynamic binding : After the cast , L3 will execute the correct version of

setPremiumRate (.- DT of rs is ResidentStudent).

LW R




Reference Type Casting: Motivation (1.2)

I

ST: ResidentStudent valid substitution ST: Student
—— — =
ResidentStudent rs = (ResidentStudent) jim ;

an alias whose ST is ResidentStudent

[e]

Variable rs is declared of static type (ST) ResidentStudent.
Variable 7im is declared of ST Student.

The cast ] (ResidentStudent) jim \ creates for §im a temporary alias,
whose ST corresponds to the cast type (ResidentStudent).

= Such a cast makes the assignment valid.

-~ RHS’s ST (ResidentStudent) is a descendant of LHS’'s ST
(ResidentStudent).

= The assignment creates an alias rs with ST ResidentStudent.

No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.
o After the assignment, jim's ST remains Student.

o

o

[e]
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Reference Type Casting: Motivation (2.1)  |ssonoe

1 SmartPhone aPhone = new IPhonel3Pro();
2 | IPhonel3Pro forHeeyeon = aPhone;
3 | forHeeyeon. facetime (1.5);

® L1is /egal: IPhonel3Pro is a descendant class of the static type of
aPhone (i.e., SmartPhone).
® L2is jllegal: aPhone’s ST (i.e., SmartPhone) is nof a descendant class of
forHeeyeon’s ST (i.e., IPhonel3Pro).
Java compiler is unable to infer that aPhone’s dynamic type in L2 is

IPhonel3Prol
® Force the Java compiler to believe so via a cast in L2:
IPhonel3Pro forHeeyeon = (IPhonel3Pro) aPhone;

e The cast| (IPhone13Pro) aPhone ‘creates for aPhone a temporary alias

whose ST corresponds to the cast type (IPhone13Pro).
e Alias forHeeyeon of ST IPhonel3Pro is then created via an assignment.
Note. aPhone’s ST always remains SmartPhone.

® dynamic binding : After the cast , L3 will execute the correct version of

facetime (.- DT of forHeeyeon iS IPhonel3Pro).
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Reference Type Casting: Motivation (2.2)  |issonoe

ST: IPhonel3Pro valid substitution ST: SmartPhone
o — e
IPhone13Pro forHeeyeon = (IPhonel3Pro) aPhone ;

an alias whose ST is IPhonel3Pro

o Variable forHeeyeon is declared of static type (ST) IPhonel3Pro.

o Variable aPhone is declared of ST SmartPhone.

o The cast ’ (IPhone13Pro) aPhone ‘ creates for aPhone a temporary alias,
whose ST corresponds to the cast type (IPhonel3Pro).

= Such a cast makes the assignment valid.
-+ RHS’s ST (1Phonel3Pro) is a descendant of LHS’s ST (IPhonel3Pro).

= The assignment creates an alias forHeeyeon with ST IPhonel3Pro.
o No new object is created.
Only an alias forHeeyeon with a different ST (IPhonel3Pro) is created.

o After the assignment, aPhone’s ST remains SmartPhone.

i muil



Type Cast: Named or Anonymous

I

Named Cast: Use intermediate variable to store the cast result.

SmartPhone aPhone = new IPhonel3Pro();
IOS forHeeyeon = (IPhonel3Pro) aPhone;
forHeeyeon. facetime () ;

Anonymous Cast: Use the cast result directly.

SmartPhone aPhone = new IPhonel3Pro();
( (IPhonel3Pro) aPhone) .facetime();

_

Common Mistake:

SmartPhone aPhone = new IPhonel3Pro();

2 | (IPhonel3Pro) aPhone.facetime();
L2 z[ (IPhonel3Pro) (aPhone.facetime()) \: Call, then cast.
= This does not compile - facetime () is not declared in the
static type of aPhone (SmartPhone).



-
—

Notes on Type Cast (1)

o Given variable v of static type ST,, itis compilable to cast v to
C ,aslong as C is an ancestor or descendant of ST,.

o Without cast, we can only call methods defined in ST, on v.

o Casting vto C creates for v an alias with ST C .
= All methods that are defined in C can be called.

Andr01d myPhone new GalaxySZlPlusU

n Android on e
] : Jo Y sideSync X
SmartPhone sp = (SmartPhone) myPhone;
,/' N

* SmartPhone is an ancestor class of Android

X */

GalaxySZlPlus ga = (GalaxyS21Plus) myPhone,
- GalaxyS21Plus is a descendant class of Android
: widened to GalaxySZlPlus

e Vox/
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Reference Type Casting: Danger (1)
1 ’Student jim = new NonResidentStudent ("J. Davis");
2 ‘Residentstudent rs = (ResidentStudent) Jjim;

3 ‘rs.setPremiumRate(l.B);

e L1is /egal: NonResidentStudent is a descendant of the
static type of jim (Student).

e L2 is legal (where the cast type is ResidentStudent):
o cast type is descendant of jim’s ST (Student).
o cast type is descendant of rs’s ST (ResidentStudent).

e L3is legal - setPremiumRate isin rs’ ST
ResidentStudent.

e Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.

e Executing L2 will resultina ClassCastException.
-+ Attribute premiumRate (expected from a ResidentStudent)

is undefined on the NonResidentStudent object being cast.
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Reference Type Casting: Danger (2)
1 ’SmartPhone aPhone = new GalaxyS21Plus(); ‘
2 ‘IPhonel3Pro forHeeyeon = (IPhonel3Pro) aPhone; ‘

3 ‘ forHeeyeon.quickTake(); ‘

e L1is /egal: GalaxyS21P1lus is a descendant of the static
type of aPhone (SmartPhone).

e L2 is /egal (where the cast type is Iphone6sPlus):
o cast type is descendant of aPhone’s ST (SmartPhone).
o cast type is descendant of forHeeyeon’s ST (IPhonel3Pro).

e L3is legal - quickTake isin forHeeyeon’ ST
IPhonel3Pro.

e Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually GalaxyS21P1us.

e Executing L2 will resultina ClassCastException.
- Methods facetime, quickTake (expected from an
IPhone13Pro) is undefined on the GalaxyS21Plus object

aRGing cast.
e
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Notes on Type Cast (2.1)

Given a variable v of static type ST, and dynamic type DT,:

o is compilable if c is ST,’s ancestor or descendant.
o Casting v to C’s ancestor/descendant narrows/widens expectations.

o However, being compilable does not guarantee runtime-error-free!

: Galaxyszlplus is a descendant clas

hods declared

n GalaxyS21Plus

ga.sideSync v ox/

* Type castin L3 is compilable .

1 SmartPhone myPhone = new Samsung();

2 one 1is SmartPhone; DT of m o1 is Samsung x*/

3 = (GalaxyS21Plus) myPhone;

4 f SmartPhone
5

6

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS21Plus (e.g., sideSync).
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Notes on Type Cast (2.2) ¥

Given a variable v of static type ST, and dynamic type DT,:

o is compilable if c is ST,’s ancestor or descendant.
o Casting v to C’s ancestor/descendant narrows/widens expectations.

o However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 | /*x ST of m one is SmartPhone; DT of m is Samsung x*/
3 | IPhonel3Pro ip = (IPhonel3Pro) myPhone;
4 | /+ C s OK - IPhonel3Pro is a descendant class of SmartPhone
5 : W C nethods declared in IPhonel3Pro on ip
6 ‘ * ip.dial, 1ip.st b, 1p ime, N4
L

* Type castin L3 is compilable .

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhonel3Pro (e.9., quickTake).
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Notes on Type Cast (2.3)

A cast is compilable and runtime-error-free if C is
located along the ancestor path of DT,.

e.g., Given ’ Android myPhone = new Samsung();

o Cast myPhone to a class along the ancestor path of its DT
Samsung.

o Casting myPhone to a class with more expectations than its DT
Samsung (e.g., GalaxyS21P1lus) will cause
ClassCastException.

o Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate40Pro) will cause ClassCastException.
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Required Reading:

Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/~jackie/teaching/
lectures/2024/F/EECSZ2030/notes/EECS20350 FZ24
Notes Static Types Cast.pdf
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https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Notes_Static_Types_Cast.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Notes_Static_Types_Cast.pdf

I

Compilable Cast vs. Exception-Free Cast  |issono

class A { }

class B extends A
class C extends B
class D extends A

—_ -

}
}
}

B b new C();
D d (D) b;

After L1:

o STofbisB

o DT of bisC

Does L2 compile? [No]
-+ cast type D is neither an ancestor nor a descendant of b’s ST B

Would[D d = (D) ((&) b)|fix L2? [ YES]
-+ cast type D is an ancestor of b’s cast, temporary ST A

* ClassCastException when executing this fixed L2? [ YES ]

-+ cast type D is not an ancestor of b’s DT C
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Reference Type Casting: Runtime Check (1) f;fééggsonos

’Student jim = new NonResidentStudent ("J. Davis");
‘if (jim instanceof ResidentStudent ) {

1 |
2 |
3 ‘ ResidentStudent rs = ( ResidentStudent ) jim; ‘
4 ‘ rs.setPremiumRate (1.5); ‘
5 |}

e L1is /egal: NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

e L2 checks if jim’s DT is a descendant of ResidentStudent.
FALSE - 5im’s dynamic type is NonResidentStudent!
e L3is legal: jim’s cast type (i.e., ResidentStudent)is a
descendant class of rs’s ST (i.e., ResidentStudent).

e L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!
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Reference Type Casting: Runtime Check (2)|.ssonoe

SmartPhone aPhone = new GalaxyS21Plus();
if (aPhone instanceof IPhonel3Pro ) {

IOS forHeeyeon = ( IPhonel3Pro ) aPhone;
forHeeyeon. facetime () ;

}

abrwN =

e L1is /egal: GalaxyS21P1lus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

e L2 checks if aPhone’s DT is a descendant of TPhonel3Pro.
FALSE - aPhone’s dynamic type is GalaxyS21Plus!
e L3 is legal: aPhone’s cast type (i.e., TPhonel13Pro)is a
descendant class of forHeeyeon’s static type (i.e., 103).

¢ L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!
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NOteS on the instanceof Opel‘ator (1) LASSONDE

Given a reference variable v and a class ¢, you write

’v instanceof C‘

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that| (C) v |is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Andr01d),

/* true °° Samsung 1is a des ant of A id =/
println(myPhone instanceof Samsung),

/% true °' Samsung 1s a descendant of Samsung #*/
println(myPhone instanceof GalaxyS21);

/% false *° Sams is not a descendant of GalaxyS21 */

println(myPhone 1nstanceof I0s);

/% false * Samsung is not a descendant of IOS */
println(myPhone 1nstanceof IPhone13Pro)
/+ false ' Samsung 1s not a descer t of IPhonel3Pro */

= Samsung is the most specific type which myPhone can be
safely cast to.



Notes on the instanceof Opel‘ator (2) :A§SONDE

I

Given a reference variable v and a class ¢,
|v instanceof C|checks if the dynamic type of v, at the
moment of being checked, is a descendant class of C.

SmartPhone myPhone = new Samsung();

/+* ST of myPhone is SmartPhone; DT of n

if (myPhone instanceof Samsung) {
Samsung samsung = (Samsung) myPhone;

}

if (myPhone instanceof GalaxyS21Plus) {
GalaxyS21Plus galaxy = (GalaxyS21Plus)

}

if (myphone instanceof HuaweiMate40Pro)
Huawei hw = (HuaweiMate4OPro) myPhone;

}

O OVWONOOORAWN =

—_

is Samsung */

myPhone;

{

e L3 evaluates to frue.
e L6 and L9 evaluate to ralse.

[safe to cast]
[unsafe to cast]

This prevents L7 and L10, causing ClassCastException if

executed, from being executed.
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Static Types, Casts, Polymorphism (1.1)

class SmartPhone {
void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS {
void quickTake() { ... }

}

T 1

1 SmartPhone sp = new IPhonel3Pro(); N
2 |sp.dial(); v

3 | sp.facetimel(); X

4 | sp.quickTake(); X

Static type of spis SmartPhone

= can only call methods defined in SmartPhone on sp
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Static Types, Casts, Polymorphism (1.2)

class SmartPhone {
void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS {
void quickTake() { ... }

}

1 IOS ip = new IPhonel3Pro(); Vv
2 |ip.dial(); Vg

3 | ip.facetime(); v

4 | ip.quickTake(); X

Static type of ipis 10S

= can only call methods defined in T0s on ip
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Static Types, Casts, Polymorphism (1.3)

class SmartPhone {
void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS ({
void quickTake() { ... }

}

T 1

1 IPhonel3Pro ip6sp = new IPhonel3Pro(); v
2 | ip6sp.dial(); v

3 | ip6sp. facetime(); v

4 | ip6sp.quickTake(); Ng

Static type of ip6spis IPhonel3Pro

= can call all methods defined in ITPhonel3Pro on jp6sp



Static Types, Casts, Polymorphism (1.4)

class SmartPhone {
void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS ({
void quickTake() { ...}

}

T

1 ‘ SmartPhone sp = new IPhonel3Pro(); v

2 | ( (IPhone13Pro) sp).dial(); v |

3 ‘( (IPhonel3Pro) sp).facetime(); ‘

4 ‘ ( (IPhonel3Pro) sp).quickTake(); N4 ‘
|

L

L4 is equivalent to the following two lines:

r
‘IPhonelSPro ip6sp = (IPhonel3Pro) sp; ‘

‘ip6sp.quickTake();
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Static Types, Casts, Polymorphism (2)
Given a reference variable declaration
e |

(e]

Static type of reference variable v is class C

A method call is valid if mis a method defined in class C.
Despite the dynamic type of v, you are only allowed to call
methods that are defined in the static type C on v.

If you are certain that v’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.

[e]

[e]

o

Course eecs2030 = new Course ("EECS2030", 500.0);
Student s = new ResidentStudent ("Jim");
s.register(eecs2030);

if (s instanceof ResidentStudent) ({

| ( (ResidentStudent) s).setPremiumRate(1.75); |

System.out.println(( (ResidentStudent) s).getTuition());
}
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Polymorphism: Method Parameters (1)
1 |class StudentManagementSystem {

2 Student [] ss; /* ss[i] has static type Student =/ int c;

3 void addRS(Res:.dentStudent rs) { sslc] = rs; c ++; }

4 void addNRS (NonResidentStudent nrs) { ss[c] = nrs; c++; }

5 void addStudent (Student s) { ss[c] = s; c++; } }

e L3: ss[c] = rsisvalid. - RHS's ST ResidentStudent is a

descendant class of LHS’s ST student.
e Say we have a StudentManagementSystem object sms:
sms.addRS (o) ‘attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:

o

’ rs = 0y
o Whether this argument passing is valid depends on o’s static type.
¢ In the signature of a method m, if the type of a parameter is
class c, then we may call method m by passing objects whose

static types are C’s descendants.

Lot T
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Polymorphism: Method Parameters (2.1)  |.ssono:

In the studentManagementSystemTester:

Student sl = new Student();

Student s2 = new ResidentStudent () ;

Student s3 = new NonResidentStudent () ;

ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent () ;
StudentManagementSystem sms = new StudentManagementSystem();

sms.addRS (s1) ; X
sms.addRS (s2) ; X
sms.addRS (s3); x
sms.addRS(rs);

sms.addRS (nrs) ;

sms.addStudent (s
sms.addStudent (s
sms.addStudent (s
sms.addStudent (rs) ;
sms.addStudent (nrs) ;
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Polymorphism: Method Parameters (2.2)

In the studentManagementSystemTester:

Student s = new Student ("Stella");

/* s’ ST: Student; s’ DT: Student =/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(s); X

AW

o L4 compiles with a cast: [ sms.addrs ( (ResidentStudent) s) |

e Valid cast .- (ResidentStudent) is adescendant of s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) is now a

descendant class of addRsS’s parameter rs’ ST (ResidentStudent).

o But, there willbe a ClassCastException atruntime!
+ s’ DT (Student) is not a descendant of ResidentStudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ( (ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.



I

Polymorphism: Method Parameters (2.3)

In the studentManagementSystemTester:

Student s = new NonResidentStudent ("Nancy");

/* s’ ST: Student; s’ DT: NonResidentStudent x+/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); x

AW

o L4 compiles with a cast: [ sms.addrs ( (ResidentStudent) s) |

e Valid cast .- (ResidentStudent) is adescendant of s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) is now a

descendant class of addRsS’s parameter rs’ ST (ResidentStudent).

o But, there willbe a ClassCastException atruntime!
"+ s’ DT (NonResidentStudent) hOt descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ( (ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.



Polymorphism: Method Parameters (2.4)

I

In the StudentManagementSystemTester:

Student s = new ResidentStudent ("Rachael");

/+* s’ ST: Student; s’ DT: ResidentStudent x/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

AW =

o L4 compiles with a cast: [ sms.addrs ( (ResidentStudent) s) |

e Valid cast-.r (ResidentStudent) is adescendantof s’ ST.
o Valid call -+ s’ temporary ST (ResidentStudent) isS now a

descendant class of addRs’s parameter rs’ ST (ResidentStudent).

o And, there willbe no ClassCastException atruntime!
.+ s’ DT (ResidentStudent) is descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ( (ResidentStudent) s);
}

The instanceof expression will evaluate to frue, meaning it is

safe to cast.
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Polymorphism: Method Parameters (2.5)  |ssonoe

In the studentManagementSystemTester:

NonResidentStudent nrs = new NonRe51dentStudent(),

1St

sident

*/

Vl“\r‘\A St C
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(nrs); X

A WND =

Will L4 with a cast compile?
sms.addRS ( (ResidentStudent) nrs)

NO -- (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).
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Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?

class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent (Student s)
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i1 < numberOfStudents; 1 ++) {
students|[1i].register(c)
}
}
}
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Polymorphism and Dynamic Binding: e sous
A Polymorphic Collection of Students (1)

1 | ResidentStudent rs = new ResidentStudent ("Rachael");

2 | rs.setPremiumRate(1.5);

3 | NonResidentStudent nrs = new NonResidentStudent ("Nancy");
4 | nrs.setDiscountRate(0.5);

5 StudentManagementSystem sms = new StudentManagementSystem() ;
6 | sms.addStudent ( rs ); /+ rphi

7 | sms.addStudent ( nrs ); /+ polj yé

8 | Course eecs2030 = new Course("EECS2030", 500.0);

9 | sms.registerAll (eecs2030);

10 | for(int i = 0; i < sms.numberOfStudents; i ++) {

11 /x I ic Bindi :

12 # / f getTuition will be called =/

13 ‘ System.out.println(sms.students[1i]. getTuition() );
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Polymorphism and Dynamic Binding: ‘i%%s%som
A Polymorphic Collection of Students (2)

At runtime, attribute is a polymorphic array:

e Static type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(’ ss e [ nun | nun | nun | nun | nun | nun [ nun | nun ]

sms

“EECS52030”

Bo ot 110




I

Polymorphism: Return Types (1) LASSONDE
1 |class StudentManagementSystem {

2 Student[] ss; int c;

3 void addStudent (Student s) { ss[ec] = s; c++; }

4 Student getStudent (int i) {

5 Student s = null;

6 if(i <0 || 1 >= ¢) |

7 throw new InvalidStudentIndexException("Invalid index.");
8 }

9 else {
10 s = ssl[i];
11 }
12 return s;
13 } o}

L4: student is static type of get Student’s return value.
L10: ss[i]’s ST (student) is descendant of s’ ST (student).
Question: What can be the dynamic type of s after L10?

Answer: All descendant classes of Student.



Polymorphism: Return Types (2) LASSONDE

Course eecs2030 = new Course("EECS2030", 500);
ResidentStudent rs = new ResidentStudent ("Rachael");
rs.setPremiumRate(1.5); rs.register(eecs2030);
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;
nrs.setDiscountRate(0.5); nrs.register(eecs2030);
StudentManagementSystem sms = new StudentManagementSystem();
sms.addStudent (rs); sms.addStudent (nrs);
Student s = sms.getStudent(0) V"

-

static return type: Student

9 | print (s instanceof Student && s instanceof ResidentStudent);/+truex)

ONO OO~ WN =

ot

<

=
o}
(0]
o]
L)
)
*
~

10 | print (s instanceof NonResidentStudent)' /+ false %/

11 ‘print( s.getTuition() ) sion in ResidentStudent called:750%/
12 | ResidentStudent rs2 = sms. getStudent(O) X

13 | s = sms.getStudent(1) e type of s? #/

_
static return type: Student
14 | print (s instanceof Student && s instanceof NonResidentStudent);/*trliex/

15 | print (s instanceof ReSLdentStudent), /* false */

16 ‘print( s.getTuition() );/+Version in NonResidentStudent /

17 ’NonRe51dentStudent nrs2 = sms.getStudent (1); x ‘
EZsm



Polymorphism: Return Types (3) LASSONDE

At runtime, attribute is a polymorphic array:
e Static type of each item is as declared: Student

e Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
( ss s [ [ rur | own [ nur | oun | eun | nun | oun | aun |

sms c
sms. getStudent (0)

(—’ ResidentStudent (—>
“Rachael”

rs

sms.getStudent (1)

NonResidentStudent

0 1 0o 1 8 9

numberOfCourses I8}

numberOfCourses [RSE
registeredCourses

registeredCourses

premiumRate discountRate

Course

title “EECS2030"
eecs2030
fee
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Static Type vs. Dynamic Type: ‘i\%ﬁsom
When to consider which?

e Whether or not Java code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Java code being executed at runtime (e.g.,

which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).
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Summary: Type Checking Rules
I CODE | ConDITION TO BE TYPE CORRECT |
X =y Is y's ST a descendant of x's ST?

Is method m defined in x’s ST?

x.m(y) Is y’'s ST a descendant of m’s parameter's ST?
Is method m defined in x’s ST?
z = x.m(y) Is y’'s ST a descendant of m’'s parameter's ST?
Is ST of m’s return value a descendant of z's ST?
(C) y Is ¢ an ancestor or a descendant of y's ST?
x= () y Is ¢ an ancestor or a descendant of y's ST?

Is ¢ a descendant of x’s ST?

Is ¢ an ancestor or a descendant of y's ST?
x.m((C) vy) Is method m defined in x’s ST?

Is ¢ a descendant of m’s parameter’s ST?

Evenif| (c) y|compiles OK, there will be a runtime

ClassCastException if C is not an ancestor of y's DT!



I

Root of the Java Class Hierarchy

e Implicitly:
o Every class is a child/sub class of the Object class.
o The oObject class is the parent/super class of every class.
e There are two useful accessor methods that every class
inherits from the object class:
o boolean equals (Object other)

Indicates whether some other object is “equal to” this one.
e The default definition inherited from Object

boolean equals (Object other) {
return (this == other); }

o String toString()
Returns a string representation of the object.
» Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and

toString.



I

Overriding and Dynamic Binding (1) LASSONDE

Object is the common parent/super class of every class.

o Every class inherits the default version of equals
o Say a reference variable v has dynamic type D:
e Case 1 D overrides equals
= v.equals (...) invokes the overridden version in D
e Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
= v.equals (...) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
= v.equals (...) invokes default version inherited from Object.

o Same principle applies to the tostring method, and all
overridden methods in general.

b9 ot 11
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Overriding and Dynamic Binding (2.1) LASSONDE
. boolean equals (Object obj) {
Object return this == obj;
}
—
A
class C extends B {
Y W / * 21s not over
}
B 1 |Object cl1 = new C();
2 |Object c2 = new C();
I — 3 |println(cl.equals(c2));
— L3 calls which version of
C equals? [ Object ]
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Overriding and Dynamic Binding (2.2) L

LASSONDE
boolean equals (Object obj) {
Object return this == obj; class 4 {
} LS 1 en+*/
—
" / riddenx*/
}
A class C extends B {
boolean equals (Object obj) {
Y W / verridden n */
}
— }
B
1 |Object cl = new C();
— 2 |Object c2 = new C();
3 |printin(cl.equals(c2));
boolean equals (Object obj) { L3 calls which version of
C /* overridden version */

Srw el

}

equals? [c]




Overriding and Dynamic Binding (2.3)

Object

b5 ot 11

boolean equals (Object obj) {
return this == obj;
}

boolean equals (Object obj) {
/* overridden version */
}

class A {

class B extends A {
boolean equals(object Obj)

{

Object cl = new C();
Object c2 = new C();
printlin(cl.equals(c2));

L3 calls which version of

[B]

equals?




BehaViOUI‘ Of Inherlted toStrlng MethOd (1}LASSONDE

Point pl = new Point(2, 4);
System.out.println(pl);

Point@677327b6

e Implicitly, the toSt ring method is called inside the print1ln
method.

» By default, the address stored in p1 gets printed.

e We need to redefine / override the tostring method,
inherited from the ob ject class, in the Point class.
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Behaviour of Inherited toString Method (2).assonoe

class Point {

double x;
double y;
public String toString() {
return " (" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the t oSt ring method:

Point pl = new Point(2, 4);
System.out.println(pl);

(2, 4)
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BehaViOUI‘ Of Inherlted toStrlng MethOd (3} LASSONDE

Exercise: Override the equals and toSt ring methods for
the ResidentStudent and NonResidentStudent classes.

SHE MRl
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Beyond this lecture. .. LASSONDE

¢ Implement the inheritance hierarchy of Students and
reproduce all lecture examples.

e Implement the inheritance hierarchy of Smart Phones and
reproduce all lecture examples.
Hints. Pay attention to:
o Valid? Compiles?
o ClassCastException?

e Study the ExampleTypeCasts example: draw the
inheritance hierarchy and experiment with the various
substitutions and casts.
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[Cearning Oufcomes|
[Why Tnherifance: A Mofivating Example|
[Why Tnherifance: A Motivating Examplel
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