Inheritance

EECS2030 B & G: Advanced
Object Oriented Programming

YORKHE s
35:3’52::15 CHEN-WEI WANG
Learning Outcomes e

This module is designed to help you learn about:
¢ Alternative designs to inheritance
¢ Using inheritance for code reuse
o Siatic Types, Expectations, Dynamic Types
e Polymorphism
(variable assignments, method arguments & return values)
e Dynamic Binding
e Type Casting

Why Inheritance: A Motivating Example LASSONDE

ooooooooooooooooo

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

Why Inheritance: A Motivating Example LASSONDE

ooooooooooooooooo

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to

register a course and calculate their tuition fee.

e el

HooL oF

No Inheritance: ResidentStudent Class

public class ResidentStudent {
private String name;
private Coursel]

courses; private int noc;

private double premiumRate; /* a:

public ResidentStudent (String name) ({
this.name = name;
this.courses = new Course[l1l0];

}

public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses|[i]. fee;

}

| return tuition x this. premiumRate ;

-1

}
}

Sussonoe

CrooL OF b

No Inheritance: NonResidentStudent Clas

public class NonResidentStudent ({
private String name;
private Coursel]

courses; private int noc;

Qv

private double discountRate; /+ as

public NonResidentStudent (String name) {
this.name = name;
this.courses = new Course[l0];

}

public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {

tuition += this.courses[i]. fee;

}

return tuition * this. discountRate ;

No Inheritance: Testing Student Classes

L'y

LSSoNDE

public class Course {
private String title; private double fee;
public Course(String title, double fee) ({
this.title = title; this.fee = fee;
}
}

public class StudentTester {
public static void main(String[] args) {

Course cl = new Course("EECS2030", 500.00); /* ti
Course c2 = new Course("EECS3311", 500.00); /+ title ar
ResidentStudent jim = new ResidentStudent ("J. Davis");
jim.setPremiumRate (1.25);
jim.register(cl); jim.register(c2);
NonResidentStudent jeremy =

jeremy.setDiscountRate (0.75) ;

jeremy.register(cl); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

new NonResidentStudent ("J. Gibbons")

7 of 110]

No Inheritance:

Issues with the Student Classes

¢ Implementations for the two student classes seem to work.
But can you see any potential problems with it?
Hint. Maintenance of code

e The code of the two student classes share a lot in common.
o Duplicates of code make it hard to maintain your software!

o This means that when there is a change of policy on the common

part, we need modify more than one places.
o This violates the so-called single-choice design principle.

8 of 110)

No Inheritance: Maintainability of Code (1)

LASSONDE

ooooooooooooooooo

What if the way for registering a course changes?
e.g.,

if (this.noc >= MAX ALLOWANCE) {
throw new TooManyCoursesException("Too many courses");
}
else {
this.courses[this.noc] = c;
this.noc ++;
}
}

public void register(Course c) throws TooManyCoursesException {

Changes needed for register method in both student classes!

No Inheritance: Maintainability of Code (2)

LASSONDE

ooooooooooooooooo

What if the way for calculating the base tuition changes?
e.g.,

public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; 1 ++) {
tuition += this.courses[1i]. fee;

},

remiumgrartce or Aais

return tuition * inflationRate =

Changes needed for get Tuition method in both student classes!

10 of 110 _

No Inheritance:
A Collection of Various Kinds of Students

LASSONDE

ooooooooooooooooo

How can we define a class StudentManagementSystem that

contains a list of resident and non-resident students?

public class StudentManagementSystem {
private ResidentStudent[] rss;
private NonResidentStudent[] nrss;
private int nors; umb
private int nonrs; + number of non-resident nts #
public void addRS(ResidentStudent rs){ rss[nors]=rs; nors++; }
public void addNRS(NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++;
public void registerAll(Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; 1 ++) { nrssl[i].register(c); }
}
}

f resider

}

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately!

|a polymorphic collection of students|

11 of 110 _

Visibility: Project, Packages, Classes

LASSONDE

ooooooooooooooooo

CollectionOfStuffs

animal (cat]
(bog]
furniture [Chair]
=)
shape [p—]
G)

12 of 110 _

Visibility of Classes o

ke

¢ Only one modifier for declaring visibility of classes: public.
e Use of private is forbidden for declaring a class.

e.g., ’private class Chair‘ is not allowed!!

e Visibility of a class may be declared using a modifier,
indicating that it is accessible:

1. Across classes within its residing package
e.g., Declare ’ class Chair { ... } ‘

2. Across packages
e.g., Declare ’ public class Chair { ... } ‘

[no modifier]

[public]

e Consider class chair which resides in:

o package furniture
o project CollectionOfStuffs

LSSoNDE

Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)

CollectionOfStuffs

animal [Cat]
[Dog]
furniture [class Chair]
[Desk]
shape [Circle]
[Square]

Visibility of Classes: Across All Classes o T
Within the Resident Package (no modifier)

CollectionOfStuffs

animal
Cat

Dog

furniture

public class Chair

Desk

Circle

Square

LSSoNDE

Visibility of Attributes/Methods:
Using Modifiers to Define Scopes

* Two modifiers for declaring visibility of attributes/methods: public and private
® Visibility of an attribute or a method may be declared using a modifier,
indicating that it is accessible:
1. Within its residing class (most restrictive)
e.g., Declare attribute | private int 1i;

[private]

e.g., Declare method ’ private void m(){};
2. Across classes within its residing package
e.g., Declare attribute
e.g., Declare method | void m () {};
3. Across packages (least restrictive)
e.g., Declare attribute | public int i;

[no modifier]

[public]

e.g., Declare method ’ public void m(){}; ‘
e Consider attributes i and m residing in:
Class chair; Package furniture; Project CollectionOfStuffs.

Visibility of Attr./Meth.: Across All Methods e Visibility of Attr./Meth.: Across All Packages e
Within the Resident Class (private) Within the Resident Project (public)
CollectionOfStuffs CollectionOfStuffs
animal [Cat] Clallutt Cat
[Dog] Dog
furniture furniture Chair public i, m
[Desk] Desk
shape [Circle] Circle
[Square] Square

Visibility of Attr./Meth.: Across All Classes |issow: Use of the protected Modifier o
Within the Resident Package (no modifier)

CollectionOfStuffs

animal (cat) « private attributes are not inherited to subclasses.
e package-level attributes (i.e., with no modifier) and
(oo) . . . ' no mocitie
project-level attributes (i.e., public) are inherited.
P ¢ What if we want attributes to be:
[Chair iy m] o visible to sub-classes outside the current package, but still
[Desk] o invisible to other non-sub-classes outside the current package?
Use protected!
shape [Circle]
[Square]

18 of 110

Visibility of Attr./Meth.: Across All Methods

Same Package and Sub-Classes (protected)

LSSoNDE

CollectionOfStuffs

animal
Cat

furniture 3
Chair

BubbleChair

Desk

protected i, m

shape RockingChair
Circle

Square

Inheritance Architecture LASSONDE
Student
extends
extends
ResidentStudent NonResidentStudent

Visibility of Attributes/Methods

LSSoNDE

SUBCLASS

NON-SUBCLASS

SUBCLASS
(same pkg)

PACKAGE

scope
modifier

(different pkg)

(across Project)

public

protected

no modifier

private

For the rest of this lecture, for simplicity, we assume that:
All relevant parent/child classes are in the same package .
= Attributes with no modifiers (package-level visibility) suffice.
= Methods with no modifiers (package-level visibility) suffice.

Inheritance: The student Parent/Super Clas

T
class Student {

String name;
Course|] courses;
Student (String name) {

this.name = name;
this.courses = new Course[l10];

int noc;

}

void register(Course c) {
this.courses[this.noc]
this.noc ++;

= c;

}

double getTuition() {
double tuition = 0;

for(int i = 0; i < this.noc;

tuition += this.courses[i].fee;

}
return tuition; /* b

i ++) {

LASSONDE

ooooooooooooooooo

Inheritance:
The Resident Student Child/Sub Class

class ResidentStudent extends Student {
double premiumRate; /+ there’s a mutator method for this

ster od 1s 1nherited

/% regic

doublé getTuition() {

T
ResidentStudent (String name) { super (name); }
double base = super.getTuition();

return base * premiumRate ;

}
}

OO N w N =

e L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L3 is as if calling Student (name)

e Use of super in L6 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
25 of 110] III

Inheritance:
The NonResidentStudent Child/Sub Class

ooooooooooooooooo

T
‘class NonResidentStudent extends Student {
‘ double discountRate; /+ there’s a m tor r 1 *

NonResidentStudent

1
/* register method is inherited =/

(String name) { super (name); }

double getTuition() |
double base = super.getTuition();
return base * discountRate ;
}
}

OCoOoONOOOPrWN =

e L1 declares that NonResident Student inherits all attributes and
methods (except constructors) from Student.

e There is no need to repeat the register method

e Use of super in L3 is as if calling Student (name)

e Use of super in L6 returns what getTuition () in Student returns.

o Use super to refer to attributes/methods defined in the super class:

super.name,’super.register(c)L
26 of 110] III

LASSONDE

ooooooooooooooooo

Inheritance Architecture Revisited

Student

extends
extends

ResidentStudent NonResidentStudent

e The class that defines the common attributes and methods is
called the parent or super class.

e Each “extended” class is called a child or sub class.
127 of 110)

LASSONDE

ooooooooooooooooo

Using Inheritance for Code Reuse

Inheritance in Java allows you to:

o Define common attributes and methods in a separate class.
e.g., the student class
o Define an “extended” version of the class which:
o inherits definitions of all attributes and methods
e.g., name, courses, noc
e.d., register
e.g., base amount calculation in get Tuition
This means code reuse and elimination of code duplicates!
o defines new attributes and methods if necessary
e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent
o redefines/overrides methods if necessary
e.g., compounded tuition for Resident Student
e.g., discounted tuition for NonResidentStudent

28 of 110]

Visualizing Parent/Child Objects (1) e Testing the Two Student Sub-Classes o

public class StudentTester {
public static void main(String[] args) {
Course cl = new Course("EECS2030", 500.00); /=
Course c2 = new Course("EECS3311", 500.00);
ResidentStudent jim = new ResidentStudent ("J. Davis");

¢ A child class inherits all non-private attributes from its parent

class. jim.setPremiumRate (1.25);
. . . jim.register(cl); jim.register(c2);

_=> A Chlld In_Stance haS at IeaSt as many attrIbUteS asan NonResidentStudent jeremy = new NonResidentStudent ("J. Gibbons")
instance of its parent class. jeremy.setDiscountRate (0.75) ;

. . . A) jeremy.register(cl); jeremy.register(c2);
Consider the following instantiations: System.out.printin("Jim pays " + jim.getTuition());
Student s - new Student ("Stella"); : System.out.println("Jeremy pays " + jeremy.getTuition());
ResidentStudent rs = new ResidentStudent ("Rachael"); }

NonResidentStudent nrs = new NonResidentStudent ("Nancy");

¢ The software can be used in the exact same way as before
(because we did not modify method headers).
¢ But now the internal structure of code has been made

maintainable using inheritance .

» How will these initial objects look like?

E
=

Visualizing Parent/Child Objects (2) e Inheritance Architecture: e
] Student Static Types & Expectations

Student(String name) String name

0 1 8 9

numberOfCourses void register(Course ¢) Student Course[] courses /* registered courses (rcs) */
registeredCourses null ‘ null ‘ ‘ null ‘ null ‘ double getTuition() int noc /* number of courses */

AN

/* new attributes, new methods */ C IIEIW lll‘liril?llslex,d"?w(glelhmh ¥
A ResidentStudent(String name) : ¢ NonResidentStudent(String name)
ResidentStudent domblo premium(Raie 2) ResidentStudent Nor double di Rate
void setPremiumRate(double r) void setDiscountRate(double r)
“Rachael” /* redefined/overridden methods */ /* redefined/overridden methods */
s numberOfCourses 0 1 8 9 double getTuition() double getTuition()

registeredCourses ‘ null ‘ null ‘ ‘ null ‘ null ‘

Student s = new Student ("Stella");
ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy");

NonResidentStudent
(—> H name [rcs [noc [reg [getT H pr [setPR H dr [setDR
nrs

numberOfCourses

premiumRate

registeredCourses

discountRate

Polymorphism: Intuition (1)

LASSONDE

1 |Student s = new Student ("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s = rs; d?
5 |rs = s; %/
¢ Which one of L4 and L5 is valid? Which one is invalid?
¢ Hints:

o L1: What kind of address can s store? [student]

.. The context object s is expected to be used as:
e s.register (eecs2030) and s.getTuition ()

o L2: What kind of address can rs store? [ResidentStudent]
.. The context object rs is expected to be used as:

e rs.register (eecs2030) and rs.getTuition ()
e rs.setPremiumRate (1.50) [increase premium rate]

Polymorphism: Intuition (2)

L SoNDE
1 |Student s = new Student("Stella");
2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate (1.25);
4 |s rs; /+ I d? *,
5 |rs = s; /+ Is this d? =/
e rs = s (L5) should be invalid:
Student s udent
////’__—‘_.u“.,..,s T T
‘ /\nu er u 1” lu l“ l“ l“
ResidentStudent rs Pl et e et e
e Since rsis declared of type ResidentStudent, a subsequent
call rs.setPremiumRate (1.50) can be expected.
e rsis now pointing to a Student object.
e Then, what would happen to rs. setPremiumRate (1.50)7?
CRASH -+ rs.premiumRate is undefined!!

Polymorphism: Intuition (3)

1 |Student s = new Student ("Stella");

2 |ResidentStudent rs = new ResidentStudent ("Rachael");
3 | rs.setPremiumRate(1.25);

4 |s = rs; */

5 |rs = s; /* Is ? %/

¢ s =rs (L4) should be valid:

Student s X%

udent
name
registe: <
numberofCourses
Residentstu®

xxxxxxxx

xxxxxxxx

s.setPremiumRate (1.50) is never expected.
* sis now pointing to @ ResidentStudent object.
e Then, what would happento s.getTuition ()?

OK -+ s.premiumRate is never directly used!l

Dynamic Binding: Intuition (1)

Course eecs2030 = new Course("EECS2030", 100.0);
Student s;

ResidentStudent rs new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;
rs.setPremiumRate (1.25); rs.register(eecs2030);
nrs.setDiscountRate(0.75); nrs.register(eecs2030);
s = rs; System.out.println(s .getTuition());

s = nrs; System.out.println(s .getTuition()); /*

o NoOOhhWwWN =

After s = rs (L7), s points o a ResidentStudent object.
= Calling s .getTuition () applies the premiumRate.

ResidentStudent rs

e

Student s

ResidentStudent

NonResidentStudent nrs

LASSONDE

ooooooooooooooooo

Dynamic Binding: Intuition (2)

Course eecs2030 = new Course ("EECS2030", 100.0);
Student s;

ResidentStudent rs = new ResidentStudent ("Rachael");
NonResidentStudent nrs = new NonResidentStudent ("Nancy") ;
rs.setPremiumRate (1.25); rs.register(eecs2030);
nrs.setDiscountRate(0.75); nrs.register(eecs2030);

s = rs; System.out.println(s .getTuition());

o NG wWN =

s = nrs; System.out.println(s .getTuition());

After s = nrs (L8), s points to a NonResidentStudent object.
= Calling s .getTuition () applies the discountRate.

ResidentStudent rs

=

Student s

NonResidentStudent nrs

37 of 110}

LASSONDE

ooooooooooooooooo

Multi-Level Inheritance Architecture

Student

AN
R [N

DomesticStudent

38 of 110}

Multi-Level Inheritance Hierarchy:
Smart Phones

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

/* cinematic mode */
quickTake

‘ IPhoneSE ‘ ‘ IPhone13Pro ‘

surfWeb /* overridden using firefox */
skype /* new method */

Android

sideSync /* new method */

/* dual-matrix camera */
zoomage

HuaweiP50Pro ‘ ‘

39 of 110]

Inheritance Forms a Type Hierarchy

e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:

o (Implicit) Root of the hierarchy is Object.
o Each extends declaration corresponds to an upward arrow.
o The extends relationship is fransitive: when A extends B and B
extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.
¢ A inherits all code (attributes and methods) from its ancestor classes.
. A's instances have a wider range of expected usages (i.e.,
attributes and methods) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends 2.

o Code defined in A is inherited to all its descendant classes.

Inheritance Accumulates Code for Reuse

® The lower a class is in the type hierarchy, the more code it accumulates
from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
o Declare new attributes
e Define new methods
e Redefine / Override inherited methods
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes and methods).
o Given a reference variable, expected to store the address of an object of
a particular class, we may substitute it with (re-assign it to) an object of
any of its descendant classes.
o e.g., When expecting a smartPhone object, we may
substitute it with either a TPhone13Pro or a Samsung object.
o Justification: A descendant class contains at least as many methods

as defined in its ancestor classes (but not vice versal).

LASSONDE

Static Types Determine Expectations |Lsson
* A reference variable’s static type is what we declare it to be.

o | Student jim|declares jim's ST as Student.

o ’ SmartPhone myPhone ‘ declares myPhone’s ST as SmartPhone.
o The static type of a reference variable never changes .

e For a reference variable v, its static type defines the
expected usages of v as a context object .

e Amethod call v.m(...) is compilable if mis defined in .

o e.g., After declaring | student jim|, we

e may call register and getTuition on jim
e may nof call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim
o e.g., After declaring ’ SmartPhone myPhone ‘, we
e may call dial and surfWeb on myPhone
e may nof call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on myPhone

LASSONDE

ooooooooooooooooo

Substitutions via Assighments

e By declaring c1 v1, reference variable v1 will store the
address of an object “of class c1” at runtime.

e By declaring c2 v2, reference variable v2 will store the
address of an object “of class c2” at runtime.

* Assignment copies address stored in v2 into v1.

o v1 will instead point to wherever v2 is pointing to. [object alias |

e In such assignment vl = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type c2.

e Substitutions are subject to rules!

LASSONDE

ooooooooooooooooo

Rules of Substitution
When expecting an object of static type A:
o Itis safeto substitute it with an object whose static type is any
of the descendant class of a (including 2).
e - Each descendant class of a, being the new substitute, is
guaranteed to contain all (non-private) attributes/methods defined in A.
¢ e.g., When expecting an 10s phone, you can substitute it with either
an IPhoneSE Oor IPhonel3Pro.
o Itis unsafe to substitute it with an object whose static type is
any of the ancestor classes of A’s parent (excluding 2).
o -~ Class 2 may have defined new methods that do not exist in any of its
parent’s ancestor classes .
e e.9., When expecting 10s phone, unsafe to substitute it with a
SmartPhone ' facetime not supported in Android phone.
o ltis also unsafe to substitute it with an object whose statfic type
is neither an ancestor nor a descendant of A.
e e.g., When expecting 10S phone, unsafe to substitute it with a
HuaweiP50Pro - facetime not supported in Android phone.

LSSoNDE

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that
it is currently pointing to at runtime.
o The dynamic type of a reference variable may change

whenever we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.

Visualizing Static Type vs. Dynamic Type

—

Student s

LSSoNDE

ResidentStudent

name “Rachael”

numberOfCourses

registeredCourses

premiumRate

e Each segmented box denotes a runtime object.

¢ Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static
type implicit (Student).

¢ Title of box indicates type of runtime object, which denotes the

dynamic type of the variable (ResidentStudent).

LSSoNDE

Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
Substitution Principle ‘: the new object’s class must be a

[e]

descendant class of the reference variable’s static type.
o e.g., ’ Student jim = new ResidentStudent(...) ‘
changes the dynamic type of §imto ResidentStudent.

o e.g., ’ jim = new NonResidentStudent(...) ‘
changes the dynamic type of §im to NonResidentStudent.

o e.g.,’ResidentStudent jeremy = new Student(...) ‘

is illegal because studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).

147 of 110]

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is

referenced by another variable other (i.e.,[v = other)):

o ’ Substitution Principle ‘: the static type of other must be a

™

B “
°z

o

g

descendant class of v's static type.
o e.g., Say we declare

Student jim = new Student(...);
ResidentStudent rs = new ResidentStudnet(...);
NonResidentStudnet nrs = new NonResidentStudent(...);

+ [oin = =] ‘
changes the dynamic type of jim to the dynamic type of rs
+ [Gin - neo] ‘

changes the dynamic type of jim to the dynamic type of nrs

e |[rs = jim X

:

® nrs =

o
o
3

X

48 of 110}

e
Polymorphism and Dynamic Binding (1)

LSSoNDE

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each
method that may be called.
e e.g., A Student variable may have the dynamic type of Student,
ResidentStudent, or NonResidentStudent,
e This means that there are | three possible versions ‘ of the
getTuition () that may be called.

e Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.

Student jim = new ResidentStudent(...);
Jjim.getTuition(); /* ve
jim = new NonResidentStudent (
jim.getTuition(); /* version

S10n

49 of 110]

Polymorphism and Dynamic Binding (2.1)

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTesterl {
public static void main(String[] args) {
Student jim = new Student ("J. Davis");
ResidentStudent rs = new ResidentStudent ("J. Davis");

jim = rs;

*/

egal */

rs = jim; /~*

NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");

jim = nrs; /+
nrs = jim; /*

Polymorphism and Dynamic Binding (2.2)

class Student {...}
class ResidentStudent extends Student {...}
class NonResidentStudent extends Student {...}

class StudentTester2 {
public static void main(String[] args) {

Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student ("J. Davis");
ResidentStudent rs = new ResidentStudent ("J. Davis");
rs.setPremiumRate (1.5);

‘ jim = rs ; ‘

‘ System.out.println(jim.getTuition()); /* 750.0 */

NonResidentStudnet nrs = new NonResidentStudent ("J. Davis");

nrs.setDiscountRate (0.5);

‘ jim = nrs ; ‘

‘ System.out.println(jim.getTuition()); /* 250.0 */

Polymorphism and Dynamic Binding (3.1)

dial /* basic method */

SmartPhone B
surfWeb /* basic method */

surfWeb /* overridden using firefox */

surfWeb /* overridden using safari */
Android

facetime /* new method */

skype /* new method */

/* cinematic mode */

quickTake sideSync /* new method */

‘ IPhoneSE ‘ ‘ IPhone13Pro ‘

/* dual-matrix camera */
zoomage

uorsore | ‘ Huawel H N e |

e
Polymorphism and Dynamic Binding (3.2)

LSSoNDE

class SmartPhoneTestl {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneSE();
Samsung ss = new GalaxyS21Plus();
myPhone = ip; /% 1 /
myPhone = ss; /%

IOS presentForHeeyeon;
presentForHeeyeon = 1ip; / *
presentForHeeyeon = sSs; /%

E .
T

E
T

Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 |
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhonel3Pro();
myPhone = ip;

myPhone. surfWeb () ; /* ve

Samsung ss = new GalaxyS21();
myPhone = ss;
myPhone. surfWeb (); /* ve

in GalaxyS21

Reference Type Casting: Motivation (1.1)

1 |Student jim = new ResidentStudent ("J. Davis");
2 |ResidentStudent rs = jim;
3 | rs.setPremiumRate(1.5);
® L1is /egal: ResidentStudent is a descendant class of the static type of
jim (i.e., Student).
® L2is illegal: jim’s ST (i.e., student) is not a descendant class of rs’s ST
(i.e., ResidentStudent).
Java compiler is unable to inferthat jim’s dynamic type in L2 is

ResidentStudent!
® Force the Java compiler to believe so via a cast in L2:
’ResidentStudent rs = (ResidentStudent) jim;

e The cast | (ResidentStudent) jim ‘ creates for jim a temporary alias

whose ST corresponds to the cast type (ResidentStudent).
e Alias rs of ST ResidentStudent is then created via an assignment.
Note. jim’'s ST always remains Student.

® dynamic binding : After the cast , L3 will execute the correct version of
setPremiumRate (.- DT of rs is ResidentStudent).

Reference Type Casting: Motivation (1.2)

T: ResidentStudent H
s * u valid substitution ST: Student
—_——

(ResidentStudent) jim ;

ResidentStudent rs =

an alias whose ST is ResidentStudent

Variable rs is declared of siatic type (ST) ResidentStudent.
Variable jim is declared of ST Student.
The cast] (ResidentStudent) jim ‘ creates for jim a temporary alias,
whose ST corresponds to the cast type (ResidentStudent).
= Such a cast makes the assignment valid.
-+ RHS’s ST (ResidentsStudent) is a descendant of LHS’'s ST
(ResidentStudent).
= The assignment creates an alias rs with ST ResidentStudent.
No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.

o After the assignment, jim’'s ST remains Student.

o

[e]

o

o

Reference Type Casting: Motivation (2.1) |Lssone: Type Cast: Named or Anonymous LASSONDE
1 | SmartPhone aPhone = new IPhonel3Pro(); Named Cast: Use intermediate variable to store the cast result.
2 | IPhonel3Pro forHeeyeon = aPhone;
3 | forHeeyeon. facetime(1.5); SmartPhone aPhone = new IPhonel3Pro();
IOS forHeeyeon = (IPhonel3Pro) aPhone;

® L1is /egal: IPhonel3Pro is a descendant class of the static type of
aPhone (i.e., SmartPhone).

® L2is jllegal: aPhone’s ST (i.e., SmartPhone) is not a descendant class of
forHeeyeon’s ST (i.e., IPhonel3Pro).

Java compiler is unable to infer that aPhone’s dynamic type in L2 is SmartPhone aPhone = new IPhonel3Pro();
((IPhonel3Pro) aPhone) .facetime();

forHeeyeon. facetime () ;

Anonymous Cast: Use the cast result directly.

IPhonel3Pro!
® Force the Java compiler to believe so via a cast in L2: .
IPhonel3Pro forHeeyeon = (IPhonel3Pro) aPhone; Common Mistake:
e The cast| (/IPhone13Pro) aPhone ‘creates for aPhone a temporary alias 1 | SmartPhone aPhone = new IPhonel3Pro();

whose ST corresponds to the cast type (IPhone13Pro). 2 | (IPhonel3Pro) aPhone.facetime();

e Alias forHeeyeon of ST IPhonel3Pro is then created via an assignment.
Note. aPhone’s ST always remains SmartPhone.

* dynamic binding : After the cast , L3 will execute the correct version of = This does not compile " facetime () is not declared in the
static type of aPhone (SmartPhone).

L2 z] (IPhonel3Pro) (aPhone.facetime ()) \: Call, then cast.

facetime (- DT of forHeeyeon iS ITPhonel3Pro).
57 01 110

E
=

Reference Type Casting: Motivation (2.2) |.ssono: Notes on Type Cast (1) LASSONDE
o Given variable v of static type ST,, itis compilable to cast v to
ST: IPhonel3Pro valid substitution ST: SmartPhone
—— —_— C,aslongas C is an ancestor or descendant of ST,.
IPhonet3Pro forHeeyeon - (zPhonel3Pro) aPhone ; o Without cast, we can only call methods defined in ST, on v.
an alias whose ST is IPhonel3Pro o Casting vto C creates for v an alias with ST C.

= All methods that are defined in C can be called.

o

Variable forHeeyeon is declared of static type (ST) IPhonel3Pro.
Variable aPhone is declared of ST SmartPhone.
The cast| (IPhone13Pro) aPhone ‘ creates for aPhone a temporary alias,

whose ST corresponds to the cast type (IPhonel3Pro).

[}

Android myPhone new GalaxyS21Plus();

eclared in Android on

[e]

sideSync X x/

= Such a cast makes the assignment valid. SmartPhone sp = (SmartPhone) myPhone;

-+ RHS’s ST (IPhonel3Pro) is a descendant of LHS’s ST (IPhonel3Pro). /* Comg OK - SmartPhone is an s of Android

= The assignment creates an alias forHeeyeon with ST IPhonel3Pro. * expe on sp narrowed t! in SmartPhone

. . * sp.dial, sp.surfweb v sp. deSync x */
o I I I 3
No new ObJeCt is created. GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;

Only an alias forHeeyeon with a different ST (IPhonel3Pro) is created. /+ Compiles OK - GalaxyS21Plus is a descendant class of Android

o After the assignment, aPhone’s ST remains SmartPhone. v e on ga widened " Gala;ysz,lplus
* ga ga.s c */

60 of 110}

Reference Type Casting: Danger (1) Notes on Type Cast (2.1) LASSONDE

1 ’Stude“t jim = new NonResidentStudent("J. Davis"); ‘ Given a variable v of static type ST, and dynamic type DT,:
2 ‘ResidentStudent rs = (ResidentStudent) jim; ‘
3 ‘rs.setPremiumRate(l.S); ‘

e | (C) v|is compilable if cis ST,’s ancestor or descendant.
e Casting v to C’s ancestor/descendant narrows/widens expectations.
e L1is /egal: NonResidentStudent is a descendant of the However, being compilable does not guarantee runtime-error-free!

static type of jim (Student).

e L2 is legal (where the cast type is ResidentStudent): ; SmarEPhonerizyPhone=S;::t§;:li:ngi)i prhone - Samsung -

o cast type is descendant of jim’s ST (Student). 3 | GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;

o cast type is descendant of rs’s ST (ResidentStudent). 4 |/ les OK -’ GalaxyS21Plus is a descendant class of SmartPhone

. . . , 5 « iethods declared in Gal S21P1 ga
e L3is legal - setPremiumRate isin rs’ ST - acaxy us o
) 6 ‘ * ga.dial, ga.su wek ga. oe, VY

ResidentStudent. L |

* Java compiler is unable to infer that jim’s dynamic type in L2 « Type castin L3 is compilable .

is actually NonResidentStudent.

e Executing L2 will resultina ClassCastException .
-+ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

e Executing L3 will cause classCastException .

L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS21P1lus (e.g., sideSync).

Reference Type Casting: Danger (2) LASSONDE Notes on Type Cast (2.2) LASSONDE
1 ’ SmartPhone aPhone = new GalaxyS21Plus(); ‘ Given a variable v of static type ST, and dynamic type DT,:
2 ‘IPhonelBPro forHeeyeon = (IPhonel3Pro) aPhone;

‘ e | (C) v |is compilable if cis ST,’'s ancestor or descendant.

- - - e Casting v to C’s ancestor/descendant narrows/widens expectations.

* L1is /egal: GalaxyS21Plus is a descendant of the static e However, being compilable does not guarantee runtime-error-free!
type of aPhone (SmartPhone).

3 ‘ forHeeyeon.quickTake () ;

e L2 is legal (where the cast type is Iphone6sPlus): 1 | smartPhone myPhone = mew Samsung(); ‘ /
o cast type is descendant of aPhone’s ST (SmartPhone). g IPho;e;S’Proﬁlp): A(Ipizzgggzsfm;;hone“u is Samsung */
o cast type is descendant of forHeeyeon’s ST (IPhonel3Pro). 4 |/« Comoiles of -- TPhonel3Pro is - descendant class of SmartPhone
e L3is legal - quickTake isin forHeeyeon’ ST 5| « 10w \ethods declared in IPhonel3Pro on ip
IPhonel3Pro. 6 ! o 8 ime, v/ !
e Java compiler is unable to infer that aPhone’s dynamic type in _ _ ;
L2 is actually GalaxyS21P1lus. * Type castin L3 is compilable .
e Executing L2 will resultina ClassCastException . e Executing L3 will cause cClassCastException .
~Methods facetime, quickTake (expected from an L3: myPhone’s DT Samsung cannot meet expectations of the
IPhone13Pro) is undefined on the GalaxyS21Plus object temporary ST TPhonel3Pro (e.g., quickTake).
ng cast. 64 of 110

LASSONDE

ooooooooooooooooo

Notes on Type Cast (2.3)

Acast| (C) v|is compilable and runtime-error-free if C is
located along the ancestor path of DT,.

e.g., Given ’Android myPhone = new Samsung();‘

o Cast myPhone to a class along the ancestor path of its DT
Samsung.

o Casting myPhone to a class with more expectations than its DT
Samsung (e.g., GalaxyS21P1lus) will cause
ClassCastException.

o Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate40Pro) will cause ClassCastException.

65 of 110}

LASSONDE

ooooooooooooooooo

Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/~jackie/teaching/
lectures/2024/F/EECS2030/notes/EECS2030_F24__
Notes_Static_Types_Cast.pdf

66 of 110}

LASSONDE

ooooooooooooooooo

Compilable Cast vs. Exception-Free Cast

class A { }

class B extends A { }
class C extends B { }
class D extends A { }

B b new C();
D d (D) b;

o After L1:
o STofbisB
o DT ofbiscC
e Does L2 compile? [NO]
-+ cast type D is neither an ancestor nor a descendant of b’s ST B
e Would|D d = (D) ((a) b) |fixL2? [YES]
-+ cast type D is an ancestor of b’s cast, temporary ST A
e ClassCastException when executing this fixed L2? [YES]

-+ cast type D is not an ancestor of b’s DT C
67 of 110)

Reference Type Casting: Runtime Check (1)|assono

’Student jim = new NonResidentStudent ("J. Davis"); ‘
|if (jim instanceof ResidentStudent) { |

rs.setPremiumRate (1.5);

aprwND =

ResidentStudent rs = (ResidentStudent) jim;

}

e L1is /egal: NonResidentStudent is a descendant class of
the static type of §im (i.e., Student).
e L2 checks if jim’'s DT is a descendant of ResidentStudent.
FALSE - jim’s dynamic type is NonResidentStudent!
e L3is legal: jim's cast type (i.e., ResidentStudent)is a
descendant class of rs’s ST (i.e., ResidentStudent).

¢ L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

68 of 110]

Reference Type Casting: Runtime Check (2)|.ssonoe Notes on the instanceof Operator (2) o
Given a reference variable v and a class ¢,

ooooooooooooooooo

1 | SmartPhone aPhone = new GalaxyS21Plus(); |v instanceof C|checks if the dynamic type of v, at the
2 |4f (aPhone instanceof IPhonelibro) | moment of being checked, is a descendant class of C.
3 IOS forHeeyeon = (IPhonel3Pro) aPhone;
4 forHeeyeon. facetime () ; 1 SmartPhone myPhone = new Samsung() ;
5|1 2 | /* ST of my one 1s SmartPhone; DT of myPhone is Samsung x/
3 :Lf(myPhone :Lnstanceof Samsung) {
e L1is legal: GalaxyS21Plus is a descendant class of the g : Samsung samsung = (Samsung) myPhone;
StatIC type Of aPhone (|e, SmartPhone). 6 |if (myPhone instanceof GalaxyS21Plus) {
e L2 checks if aPhone’s DT is a descendant of TPhone13Pro. ! : GalaxySzlPlus galaxy = (GalaxyS2lPlus) myPhone;
FALSE - aPhone’s dynamic type is GalaxyS21Plus! 9 |if (myphone instanceof HuaweiMatedOPro) ({
. , . . 10 Huawei hw = (HuaweiMate40Pro) myPhone;
e L3 is legal: aPhone’s cast type (i.e., IPhonel3Pro)is a 1|
descendant class of forHeeyeon’s static type (i.e., I03). « L3 evaluates to frue. [safe to cast]

¢ L3 will not be executed at runtime, hence no e L6 and L9 evaluate to false.

[unsafe to cast]
ClassCastException, thanks to the check in L2!

This prevents L7 and L10, causing ClassCastException if

executed, from being executed.
69 of 110

Notes on the instanceof Operator (1) LASSONDE Static Types, Casts, Polymorphism (1.1) LASSONDE
Given a reference variable v and a class c, you write
- class SmartPhone
’v instanceof C‘ void dial() { ...}
. . . }
to check |f the dynamic type of v, at the moment of bellng class I0S extends SmartPhome |
checked, is a descendant class of ¢ (so that[() v|is safe). void facetime() { ...)
}
SmartPhone myPhone = new Samsung() ; class IPhonel3Pro extends IO0OS {
println(myPhone instanceof Android); void quickTake() { ... }
/* true °° Sa ng is a descendant of Android #*/ }
prlntln(myPhone instanceof Samsung)
/% true ' Samsung is a descendant of Samsung x/ T 1
println(myPhone instanceof GalaxyS21); 1 SmartPhone sp = new IPhonel3Pro(); v
/* false ** Samsung is not a descendant of GalaxyS21 */ 2 |sp.dial(); v
println (myPhone 3 | sp.facetime(); X
/+ false - Sar is not a des g:ndam of IOS */ 4 | sp.quickTake(); X
prlntln(myPhone 1nstanceof IPhonel3Pro) ;
/% false ' Sar g 1s not a descendant of IPhonel3Pro

. - X Static type of spis SmartPhone
= Samsung is the most specific type which myPhone can be . can only call methods defined in SmartPhone on sp

fel .
Cas_t 0

Static Types, Casts, Polymorphism (1.2)

class SmartPhone {
void dial() { ...}
}
class I0S extends SmartPhone {
void facetime() { ... }
}
class IPhonel3Pro extends IOS {
void quickTake() { ...}
}

1 I0S ip = new IPhonel3Pro(); Ng
2 |ip.dial(); v

3 | ip.facetime(); v

4 | ip.quickTake(); X

Static type of ipis 10S

= can only call methods defined in 10S on ip

Static Types, Casts, Polymorphism (1.3)

class SmartPhone {

void dial() { ...}

}

class I0S extends SmartPhone {
void facetime() { ... }

}

class IPhonel3Pro extends IOS {

void quickTake() { ... }
}
T 1
1 IPhonel3Pro ipé6sp = new IPhonel3Pro(); v
2 | ip6sp.dial(); Ve
3 | ip6sp.facetime(); v
4 | ip6sp.quickTake(); NG

Static type of jp6spis ITPhonel3Pro

= can call all methods defined in ITPhonel3Pro on ip6sp

Static Types, Casts, Polymorphism (1.4)

class SmartPhone

void dial() { ... }

}

class I0S extends SmartPhone {
void facetime() { ...}

}

class IPhonel3Pro extends IOS {
void quickTake() { ... }

}

1 i SmartPhone sp = new IPhonel3Pro(); v “
2 ‘ ((IPhonel3Pro) sp).dial(); Ng ‘
3 \ ((IPhonel3Pro) sp).facetime(); \
4 | ((IPhonel3Pro) sp).quickTake(); v |

L I

L4 is equivalent to the following two lines:

IPhonel3Pro ipé6sp = (IPhonel3Pro) sp;
ip6sp.quickTake() ;

75 of 110]

Static Types, Casts, Polymorphism (2)

Given a reference variable declaration
’C v; ‘

o Static type of reference variable v is class C

o A method call is valid if mis a method defined in class C.

o Despite the dynamic type of v, you are only allowed to call
methods that are defined in the static type C on v.

o If you are certain that v’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.

Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent ("Jim");
s.register(eecs2030);

if (s instanceof ResidentStudent) ({

‘ ((ResidentStudent) s).setPremiumRate(1.75); ‘

System.out.println(((ResidentStudent) s).getTuition());
}

76 of 110]

Polymorphism: Method Parameters (1)

EASS0NDE
1 ’class StudentManagementSystem { ‘
2 | Student [] ss; /+ s: s static type St t «/ int c; \
3 void addRS (Re51dentStudent rs) { sslc] = rs; c ++; }
4 void addNRS (NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent (Student s) { ss[c] = s; ct++; } }

e L3: ss[c] = rsisvalid. - RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.
e Say we have a StudentManagement System object sms:
o ’sms.addRS (0) ‘attempts the following assignment (recall call by
value), which replaces parameter rs by a copy of argument o:

’ rs = o;

o Whether this argument passing is valid depends on o’s static type.
¢ In the signature of a method m, if the type of a parameter is
class ¢, then we may call method m by passing objects whose

static types are C’s descendants.

LASSONDE

ooooooooooooooooo

Polymorphism: Method Parameters (2.1)

In the StudentManagementSystemTester:

Student sl = new Student();

Student s2 = new ResidentStudent();

Student s3 = new NonResidentStudent () ;
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();

StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(sl1); x

sms.addRS (s2) ; X

sms.addRS (s3) ; X

sms.addRS(rs);

sms.addRS (nrs) ; X

sms.addStudent (s1);

sms.addStudent (s2) ;

SENENEN

sms.addStudent (rs) ;

(

(
sms.addStudent (s3) ;

(
sms.addStudent (nrs);

Polymorphism: Method Parameters (2.2)

In the studentManagementSystemTester:

Student s = new Student ("Stella");

‘% s’ ST: Student; s’ DT: Student =/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

SO =

o L4 compiles with a cast: ’ sms.addRS ((ResidentStudent) s) ‘
o Valid cast-- (ResidentStudent) is a descendant of s’ ST.
e Valid call -+ s’ temporary ST (ResidentStudent) is now a
descendant class of addrs’s parameter rs’ ST (ResidentStudent).
o But, there willbe a ClassCastException atruntime!
-+ s’ DT (student) is not a descendant of ResidentStudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.
179 of 110|

Polymorphism: Method Parameters (2.3)

In the StudentManagementSystemTester:

Student s = new NonResidentStudent ("Nancy");

'+ s’ ST: Student; s’ DT: NonResidentStudent +
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS (s); X

SO =

o L4 compiles with a cast: ’ sms.addRS ((ResidentStudent) s) ‘
o Valid cast-- (ResidentStudent) is a descendant of s’ ST.
e Valid call -+ s’ temporary ST (ResidentStudent) is now a
descendant class of addRrs’s parameter rs’ ST (ResidentStudent).
o But, there willbe a ClassCastException atruntime!
-+ s’ DT (NonResidentStudent) not descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to false, meaning it is

unsafe to cast, thus preventing ClassCastException.
80 of 110)

Polymorphism: Method Parameters (2.4)

In the studentManagementSystemTester:

Student s = new ResidentStudent ("Rachael");

/% s’ ST: Student; s’ DT: ResidentStudent +/
StudentManagementSystem sms = new StudentManagementSystem() ;
sms.addRS(s); x

A ON =

o L4 compiles with a cast: | sms.addRs ((ResidentStudent) s) |
e Valid cast-- (ResidentStudent) is a descendant of s’ ST.
e Valid call -+ s’ temporary ST (ResidentStudent) is now a
descendant class of addRs’s parameter rs’ ST (ResidentStudent).
o And, there willbe no ClassCastException atruntime!
-+ s’ DT (ResidentStudent) is descendant of residentstudent.
o We should have written:

if (s instanceof ResidentStudent) {
sms.addRS ((ResidentStudent) s);
}

The instanceof expression will evaluate to frue, meaning it is

safe to cast.
81 of 110/

Polymorphism: Method Parameters (2.5)

In the StudentManagementSystemTester:

NonResidentStudent nrs new NonResidentStudent () ;

esiae 1C

/v S i de .
/#* ST: eside 1t; D

StudentManagementSystem sms
sms.addRS (nrs); X%

= new StudentManagementSystem() ;

AN =

Will L4 with a cast compile?

sms.addRS ((ResidentStudent) nrs)

NO - (ResidentStudent) is not a descendant of nrs’s ST
(NonResidentStudent).

82 of 110]

Why Inheritance:

A Polymorphic Collection of Students

How do you define a class StudentManagement System that

contains a list of resident and non-resident students?

class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent (Student s) |
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i1 < numberOfStudents; 1 ++) {
students[i].register(c
}
}
}

83 of 110]

a collection of students without inheritance

Polymorphism and Dynamic Binding:

A Polymorphic Collection of Students (1)

1 | ResidentStudent rs = new ResidentStudent ("Rachael");
2 | rs.setPremiumRate(1.5);
3 | NonResidentStudent nrs = new NonResidentStudent ("Nancy");
4 | nrs.setDiscountRate(0.5);
5 | StudentManagementSystem sms = new StudentManagementSystem() ;
6 | sms.addStudent (rs); /+ p orphism */
7 | sms.addStudent (nrs); /* po /
8 | Course eecs2030 = new Course("EECS2030", 500.0);
9 | sms.registerAll (eecs2030);
10 |for(int i = 0; 1 < sms.numberOfStudents; 1 ++) {
will be called */

Polymorphism and Dynamic Binding:

LSSoNDE

A Polymorphic Collection of Students (2)

At runtime, attribute is a polymorphic array:

e Static type of each item is as declared: Student
e Dynamic type of each item is a descendant of Student:

ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(ss reeee [[rur | oun | nur | nun | nun | nar | eur | nan)

8!

sms.getStudent (1)

c
sms . getStudent (0)

(_“ ResidentStudent

rs

NonResidentStudent

“Rachael”

numberOfCourses numberOfCourses 0 1 8 9

registeredCourses

registeredCourses

premiumRate discountRate

“EECS2030"
eecs2030

of 110

Polymorphism: Return Types (1)

EASS0NDE

1 |class StudentManagementSystem {

2 Student[] ss; int c;

3 void addStudent (Student s) { ss[ec] = s; ct++; }

4 Student getStudent (int i) {

5 Student s = null;

6 if(i <0 || 1 >= ¢) {

7 throw new InvalidStudentIndexException("Invalid index.");

8 }

9 else {

10 s = sslil;

11 }

12 return s;

13 b}
L4: student is static type of get Student’s return value.
L10: ss[i]’s ST (student) is descendant of s’ ST (student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of student.

86 of 110

Polymorphism: Return Types (2)

coONO O~ WN =

10
11
12

14
15
16
17

Co
Re
rs
No

St

St

‘print(s.getTuition());/*Vers

nrs.setDiscountRate(0.5); nrs.register(eecs2030);

sms.addStudent (rs) ;

print (s instanceof Student && s instanceof ResidentStudent);/+truex(
print (s instanceof NonResidentStudent) ; '

‘print(s.getTuition()); /#Ve
ResidentStudent rs2 =

print (s instanceof Student && s instanceof NonResidentStudent); /+trliex/
print (s instanceof ResidentStudent) ;

urse eecs2030 = new Course("EECS2030", 500);
sidentStudent rs = new ResidentStudent ("Rachael");
.setPremiumRate(1.5); rs.register(eecs2030);
nResidentStudent nrs = new NonResidentStudent ("Nancy") ;

udentManagementSystem sms = new StudentManagementSystem() ;
sms.addStudent (nrs) ;
sms.getStudent(0) ;

[—
static return type: Student

udent s =

/% dynamic type

/% false x/
in ResidentStudent c
sms.getStudent (0) ; X

= sms.getStudent (1) ;o /+d mi

[S ——
Student

S10n

c type of s? %/

static return type:

‘% false */

sion in NonResidentStudent called:250x/

NonResidentStudent nrs2 = sms.getStudent(l); x ‘

87

of 110

Polymorphism: Return Types (3)

At runtime, attribute is a polymorphic array:

Static type of each item is as declared: Student

Dynamic type of each item is a descendant of Student:
ResidentStudent, NonResidentStudent

StudentManagementSystem 0 1 2 3 4 5 6 7 99
(ss ness ‘ \ ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null ‘ null | null ‘

sms.getStudent (1)

<
sms . getStudent (0)

(_’ ResidentStudent

rs

NonResidentStudent

—

nrs
1 numberOfCourses 0o 1 8 9

“Rachael”

numberOfCourses
registeredCourses

registeredCourses
premiumRate

“EEC52030"

88 of 110]

Static Type vs. Dynamic Type:
When to consider which?

e Whether or not Java code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Java code being executed at runtime (e.g.,

which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

89 of 110]

LASSONDE

ooooooooooooooooo

Summary: Type Checking Rules

I CODE | ConDITION TO BE TYPE CORRECT |

X =y Is y’'s ST a descendant of x's ST?
Is method m defined in x’s ST?

x.m(y) Is y’'s ST a descendant of m’s parameter’s ST?
Is method m defined in x’s ST?
z = x.m(y) Is y’'s ST a descendant of m’s parameter’s ST?

Is ST of m’s return value a descendant of z’s ST?
(C) vy Is ¢ an ancestor or a descendant of y's ST?
Is ¢ an ancestor or a descendant of y's ST?

= (C
* ©y Is ¢ a descendant of x's ST?
Is ¢ an ancestor or a descendant of y's ST?
x.m((C) y) Is method m defined in x’s ST?

Is ¢ a descendant of m’s parameter's ST?

Evenif| () vy |compiles OK, there will be a runtime

ClassCastException if C is not an ancestor of yv's DT!
90 of 110

LASSONDE

ooooooooooooooooo

Root of the Java Class Hierarchy

e Implicitly:
o Every class is a child/sub class of the object class.
o The object class isthe parent/super class of every class.
e There are two useful accessor methods that every class
inherits from the object class:
o boolean equals (Object other)

Indicates whether some other object is “equal to” this one.
e The default definition inherited from ob-ject:

boolean equals (Object other) {
return (this == other); }

o String toString/()
Returns a string representation of the object.
¢ Very often when you define new classes, you want to
redefine / override the inherited definitions of equals and

toString.
91 of 110)

LASSONDE

ooooooooooooooooo

Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.

o Every class inherits the default version of equals
o Say a reference variable v has dynamic type D:
e Case 1 D overrides equals
= v.equals (...) invokes the overridden version in D
e Case 2 D does not override equals
Case 2.1 At least one ancestor classes of D override equals
= v.equals (...) invokes the overridden version in the closest
ancestor class
Case 2.2 No ancestor classes of D override equals
= v.equals (...) invokes default version inherited from Object.

o Same principle applies to the t oSt ring method, and all
overridden methods in general.

92 of 110}

Overriding and Dynamic Binding (2.1) LASSONDE Overriding and Dynamic Binding (2.3) LASSONDE

oooooooooooooooooooooooooooooooooo

. . boolean equals (Object obj) {
. boolean equals (Object obj) { ; T class A {
ObJeCt return this == obj; ObJeCt return this == obj; /xequals not overriddenx/
} class A { } }'k*‘* ¢ /
[W— /*equals not crriddenx*/ "
1 } ' class B extends A {
i class B extends A { bo?lean qué}S(Objecj: obj? {
/ 9 . 7 / /* overridden version */
/+*equals not overriddenx/ ’ /
A } A : }
1 d
Y W ¢ aASSC exten# SEi{ iddenx/ A class C extends B {
} S) /+equals not overriddenx,
boolean equals (Object obj) {
B 1 |object c1 = new C(); B /* overridden version */
2 |Object c2 = new C(); } ; g:J:ec: cé = new gg;'
intl 1. 1 2)); A ject c2 = new ;
* 8 |printin(cl.equals(c2)) 3 |println(cl.equals(c2));
- L3 calls which version of L3 calls which version of
1s?]
C equals [Obiject] C equals? (2]
Overriding and Dynamic Binding (2.2) LASSONDE Behaviour of Inherited tostring Method (1).assonoe
. boolean equals (Object obj) {
Object return this == obj; C1ass ‘A, “{ L
—a I } ‘ Point pl = new Point (2, 4);
E class B extends A { System.out.println(pl);
/+equals not overriddenx*/
}
A class C extends B { .
boolean equals (Object obj) { Point@677327b6
) : e Implicitly, the tostring method is called inside the println
method.
B . .
1 |Object clI = new C(); ¢ By default, the address stored in p1 gets printed.
Y 2 |Object c2 = new C(); . 0 ,
1 3 | printin(cl.equals(c?)); » We need to redefine / override the toString method,
. _ inherited from the Object class, in the Point class.
boolean equals (Object obj) { L3 calls which version of
C /* overridden version */)
) equals? [C]

Behaviour of Inherited tostring Method (2).assonoe

ooooooooooooooooo

class Point {

double x;
double y;
public String toString() f{
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:

Point pl = new Point(2, 4);
System.out.println(pl);

(2, 4)

97 of 110}

Behaviour of Inherited tostring Method (3).ssonce

ooooooooooooooooo

Exercise: Override the equals and toSt ring methods for
the ResidentStudent and NonResidentStudent classes.

98 of 110}

Beyond this lecture. .. LASSONDE

ooooooooooooooooo

¢ Implement the inheritance hierarchy of Students and
reproduce all lecture examples.

e Implement the inheritance hierarchy of Smart Phones and
reproduce all lecture examples.
Hints. Pay attention to:
o Valid? Compiles?
o ClassCastException?

e Study the ExampleTypeCasts example: draw the
inheritance hierarchy and experiment with the various
substitutions and casts.

99 of 110}

Index (1)

ooooooooooooooooo

|[Learning Outcomes|

(Why Inheritance: A Motivating Example|

(Why Inheritance: A Motivating Example|
No Inheritance: ResidentStudent Class
[No Inheritance: NonResidentClass

[No Inheritance: Testing Student Classes|

[No Inheritance:
Issues with the Student Classes

[No Inheritance: Maintainability of Code (1)|

[No Inheritance: Maintainability of Code (2)|

100 of 110

Index (2) Lassonoe

[No Inheritance: I
|A Collection of Various Kinds of Students|

|Visibility: Project, Packages, Classes|

|Visibility of Classes|

Visibility of Classes: Across All Classes |
Within the Resident Package (no modifier)|

Visibility of Classes: Across All Classes |
Within the Resident Package (no modifier)|

[Visibility of Attributes/Methods: |
|Using Modifiers to Define Scopes|

|Visibility of Attr./Meth.: Across All Methods |
(Within the Resident Class (private)

Index (3) Sssonee

|Visibility of Attr./Meth.: Across All Classes |
(Within the Resident Package (no modifier)|

Visibility of Attr./Meth.: Across All Packages |
Within the Resident Project (public)|

[Use of the protected Modifier|

Visibility of Attr./Meth.: Across All Methods |
Within the Resident Package and Sub-Classes (protected)|
|Visibility of Attr./Meth.|

Inheritance Archi r

[Inheritance: The Student Parent/Super Class|

[Inheritance:
The ResidentStudent Child/ |

Index (4) Lassonoe

[Inheritance: I
The NonResidentStudent Child/Sub Class

Inheritance Architecture Revisited

|[Using Inheritance for Code Reuse|
|Visualizing Parent/Child Objects (1)|
[Visualizing Parent/Child Objects (2)|

[Testing the Two Student Sub-Classes|

[Inheritance Architecture:
[Static Types & Expectations|

[Polymorphism: Intuition (1)|

[Polymorphism: Intuition (2)|

Index (5) Lassonoe

[Polymorphism: Intuition (3)|

[Dynamic Binding: Intuition (1))

[Dynamic Binding: Intuition (2)|

Multi-Level Inheritance Architecture
Multi-Level Inheritance Hierarchy:
Smart Phones

[Inheritance Forms a Type Hierarchy|

Inheritance Accumulates Code for Reuse
[Static Types Determine Expectations|

[Substitutions via Assignments|
Rules of Substitution

104 of 110

Index (6) LassoNpE

[Reference Variable: Dynamic Type|

|Visualizing Static Type vs. Dynamic Type|

[Reference Variable: |
[Changing Dynamic Type (1)|

[Reference Variable: |
[Changing Dynamic Type (2)|

[Polymorphism and Dynamic Binding (1)|

[Polymorphism and Dynamic Binding (2.1)|

[Polymorphism and Dynamic Binding (2.2)|
[Polymorphism and Dynamic Binding (3.1)|
[Polymorphism and Dynamic Binding (3.2)|

Index (7) :AssoNDE

[Polymorphism and Dynamic Binding (3.3)|

|[Reference Type Casting: Motivation (1.1))
|[Reference Type Casting: Motivation (1.2)|
[Reference Type Casting: Motivation (2.1)

|[Reference Type Casting: Motivation (2.2)|

[Type Cast: Named or Anonymous|
[Notes on Type Cast (1)|

|Reference Type Casting: Danger (1)|

[Reference Type Casting: Danger (2)|

[Notes on Type Cast (2.1)|

[Notes on Type Cast (2.2)|

Index (8) LassoNDE

[Notes on Type Cast (2.3)|
Required Reading:
Static Types, Dynamic Types, Casts|

|Compilable Cast vs. Exception-Free Cast|

[Reference Type Casting: Runtime Check (1)|
[Reference Type Casting: Runtime Check (2)|

[Notes on the instanceof Operator (1)|

[Notes on the instanceof Operator (2)|

[Static Types, Casts, Polymorphism (1.1)|
[Static Types, Casts, Polymorphism (1.2)|
[Static Types, Casts, Polymorphism (1.3)|

107 of 110

Index (9) Sssonee

[Static Types, Casts, Polymorphism (1.4)|

[Static Types, Casts, Polymorphism (2)|
[Polymorphism: Method Parameters (1)|
[Polymorphism: Method Parameters (2.1)|

[Polymorphism: Method Parameters (2.2)|

[Polymorphism: Method Parameters (2.3)|

[Polymorphism: Method Parameters (2.4)|

[Polymorphism: Method Parameters (2.5)|

Why Inheritance: |
A Polymorphic Collection of Students|

Polymorphism and Dynamic Binding: |

A Polymorphic Collection of Students (1)|

e
Index (10) :AssoNDE

[Polymorphism and Dynamic Binding: |
|A Polymorphic Collection of Students (2)|

[Polymorphism: Return Types (1)|
[Polymorphism: Return Types (2)|

[Polymorphism: Return Types (3)|

[Static Type vs. Dynamic Type:
When nsider which?

[Summary: Type Checking Rules|
|[Root of the Java Class Hierarchy|
|Overriding and Dynamic Binding (1)|

|Overriding and Dynamic Binding (2.1))

109 of 110

Index (11) Ssone
|Overriding and Dynamic Binding (2.2)|

|Overriding and Dynamic Binding (2.3)|
(Behaviour of Inherited tostring Method (1))
(Behaviour of Inherited tostring Method (2)|

(Behaviour of Inherited tostring Method (3)|

[Beyond this lecture. . .|

110 of 110

