Selections

EECS2030 B & G: Advanced
Object Oriented Programming

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Outcomes

The Boolean Data Type

if Statement

Compound vs. Primitive Statement
Logical Operations

Common Errors and Pitfalls

I

Extra Practice? LASSONDE

e Java project archive: Lecture_02_Selections.zip
contains some of the lecture examples.

Expanded it: remaining examples and your own examples !
e Optional (but recommended): Videos 10 — 17 from W19 Java tutorial:

https://www.eecs.yorku.ca/~jackie/teaching/
tutorials/index.html#java from scratch

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch

Motivating Examples (1.1) LASSONDE

I

©Co~NoOOhr~WN =

import java.util.Scanner;
public class ComputeArea {
public static void main(String[] args) {

}
}

Scanner input = new Scanner(System.in);
System.out.println("Enter the radius of a circle:");
double radiusFromUser = input.nextDouble();

final double PI = 3.14;

double area = radiusFromUser * radiusFromUser % PI;
System.out.print ("Circle with radius " + radiusFromUser);
System.out.println(" has an area of " + area);
input.close();

When the above Java class is run as a Java Application, Line 4
is executed first, followed by executing Line 5, ..., and ended
with executing Line 11.

In Line 6, the radius value comes from the user. Any problems?

Motivating Examples (1.2)

et ae o

o If the user enters a positive radius value as expected:

Enter the radius of a circle:
3
Circle with radius 3.0 has an area of 28.26

e However, if the user enters a negative radius value:

Enter the radius of a circle:
-3
Circle with radius -3.0 has an area of 28.2

6

In this case, the area should not have been calculated!
¢ \We need a mechanism to take selective actions :

Act differently in response to valid and invalid input values.

Motivating Examples (2.1)

et ae o

Problem: Take an integer value from the user, then output a
message indicating if the number is negative, zero, or positive.

e Here is an example run of the program:

Enter a number:
5
You just entered a positive number.

e Here is another example run of the program:

Enter a number:
-5
You just entered a negative number.

* Your solution program must accommodate all possibilities!

I

Motivating Examples (2.2) LASSONDE

¢ So far, you only learned about writing programs that are
executed top to bottom, line by line, without ever branching.

¢ In general, we need a mechanism to allow the program to:
o Check a list of conditions; and
o Branch its execution accordingly.

* e.g., To solve the above problem, we have 3 possible branches:

1. If the user input is negative, then we execute the first branch that
prints You just entered a negative number.

2. If the user input is zero, then we execute the second branch that
prints You just entered zero.

3. If the user input is positive, then we execute the third branch that
prints You just entered a positive number.

_

I

The boolean Data Type

A (data) type denotes a set of related runtime values.
We need a data type whose values suggest either a condition

holds, or it does not hold, so that we can take selective actions.

The Java boolean type consists of 2 literal values: frue, false
All relational expressions have the boolean type.

Math Symbol Java Operator Example (ris5) Result
< <= r <=5 true
> r >=5 true
= == r == 5 true
< < r <5 false
> > r>>5 false
= r !=5 false
Note. You may do the following rewritings:
0 x <=y X >y x =y X ==y
ol (x > y) Hx <=vy) Hx == vy) Hx I=y)

I

Syntax of if Statement LASSONDE

T

| if (BooleanExpression;) { /* Mandatory =/ |
Statement; 1; Statements 1;

}

|else if (BooleanExpression;) { /+ Optional =/ \

Statement, 1; Statements »;

else if (BooleanExpress:on,7) | /* Optional */
Statement, 1; Statement, »;
}

else { /* Optional */

you like

/% when all previous brai

Statementy; Statements;
}

Semantics of if Statement (1.1)

start of if-statement

Statement;

end of if-statement

I

Semantics of if Statement (1.2)

Consider a single i f statement as consisting of:

e An if branch

e A (possibly empty) list of else if branches

e An optional else branch

At runtime :

e Branches of the i f statement are executed from top to bottom.

» We only evaluate the condition of a branch if those conditions
of its preceding branches evaluate to false.

¢ The first branch whose condition evaluates to frue gets its
body (i.e., code wrapped within { and }) executed.

o After this execution, all /ater branches are ignored.

1 orbh

I

Semantics of if Statement: Case 1

Only first satisfying branch executed; later branches ignored.

r

int i = —-4;
if(i < 0) {
System.out.println("i is negative");
}
else if (i < 10) {
System.out.println("i is less than than 10");
}
else if (i == 10) {
System.out.println("i is equal to 10");
}
else {

System.out.println("i is greater than 10");
}

i is negative

17 orbh

I

Semantics of if Statement: Case 2

Only first satisfying branch executed; later branches ignored.

r

int i = 5;
if(i < 0) {
System.out.println("i is negative");
}
else if (i < 10) {
System.out.println("i is less than than 10");
}
else if (i == 10) {
System.out.println("i is equal to 10");
}
else {

System.out.println("i is greater than 10");
}

i is less than 10

130100

I

Semantics of if Statement: Case 3

Only first satisfying branch executed; later branches ignored.

r

int i = 10;
if(i < 0) {
System.out.println("i is negative");
}
else if (i < 10) {
System.out.println("i is less than than 10");
}
else if (i == 10) {
System.out.println("i is equal to 10");
}
else {

System.out.println("i is greater than 10");
}

i is equal to 10

14 ot bhb

I

Semantics of if Statement: Case 4

No satisfying branches, and an else part is present,
then the default action is executed.

r

int 1 = 12;
if(i < 0) {
System.out.println("i is negative");
}
else if (i < 10) |
System.out.println("i is less than than 10");
}
else if (i == 10) {
System.out.println("i is equal to 10");
}
else {
System.out.println("i is greater than 10");

}

i is greater than 10

15 01 bh

-
—

Semantics of if Statement: Case 5

No satisfying branches, and an e1se part is absent,
then nothing is executed.

I
int i = 12;
if(i < 0) {
System.out.println("i is negative");

}
else if (i < 10) {
System.out.println("i is less than than 10");

}
else if (i == 10) {
System.out.println("i is equal to 10");

}

b orbh

I

Logical Operators

e [ogical operators are used to create compound Boolean
expressions.
o Similar to arithmetic operators for creating compound number
expressions.
o Logical operators can combine Boolean expressions that are built
using the relational operators.
eg.,1 <= x && x <= 10

eg,x <1 |] x > 10
e We consider three logical operators:
Java Operator Description Meaning
! logical negation not
&& logical conjunction and
| | logical disjunction or

I

Logical Negation

LASSONDE

e Logical negation is a unary operator (i.e., one operand being
a Boolean expression).

e The result is the “negated” value of its operand.

Operand op !op
true false
false true

double radius = input.nextDouble() ;

final double PI = 3.14;

boolean isPositive =

if (!isPositive) {/* no
System.out.println("Error:

}

else {
System.out.println("Area is

}

t the

radius > 0;

itive is true

1SFOS1itC1 1S Truec

case that

radius value must be positive.

" + radius * radius * PI);

*/

")

18 orbh

I

Logical Conjunction

e Logical conjunction is a binary operator (i.e., two operands,
each being a Boolean expression).

e The conjunction is frue only when both operands are true.
e If one of the operands is false, their conjunction is false.

Left Operand op1 Right Operand op2 opl && op2

true true true
frue false false
false true false
false false false

int age input.nextInt () ;
boolean isOldEnough = age >= 45;
boolean isNotTooOld = age < 65;

if (!isOldEnough) { /* young =*/ }
else if (isOldEnough && isNotTooOld) { /+*
else { /+ senior +/ }

-
—

Logical Disjunction ~ |isoun

e Logical disjunction is a binary operator (i.e., two operands,
each being a Boolean expression).
¢ The disjunction is false only when both operands are false.

e If one of the operands is true, their disjunction is true.
Left Operand op1 Right Operand op2 opl || op2

false false false
frue false true
false frue frue
true true true

int age = input.nextInt();
boolean isSenior = age >= 65;
boolean isChild = age < 18;
if (isSenior || 1isChild) { /* discoun
else { /% no discount =/ }

P orbh

I

Logical Laws: Negation
e The negation of a strict inequality is a non-strict inequality.
Relation || Negation | Equivalence
i >3 V(i >) i <= 3
i >= 7 V(i >= 9 i < 7
i< 3 (i < 3J) i >= 3
i <=7 (1 <= 73) i > 3
* eg.,
[i€(1i > 7) | | [if(1 <= §) | |
lelse (/« [F@ES5) /| equivalent to lelse (/« [1(i <= 3) /|

o Action 1 is executed when i > j

o Action 2 is executed when i <= j.

Case Study: Error Handling of Input Radius [(I)o

Problem: Prompt user for radius value of a circle. Print an error
message if input is negative; otherwise, print the calculated area.

public class ComputeArea {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.println("Enter a radius value:");
double radius = input.nextDouble();
final double PI = 3.14159;
‘ if (radius < 0) { /# condition of invalid inputs */ ‘
System.out.println("Error: Negative radius value!");

}

‘ else { /x implicit: ! (radius < 0), or radius >= 0 */ ‘
double area = radius = radius * PI;
System.out.println("Area is " + area);

}
input.close();
}
}

v orbh

Case Study: Error Handling of Input Radius |(2

The same problem can be solved by checking the condition of
valid inputs first.

public class ComputeAreal2 {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);
System.out.println("Enter a radius value:");
double radius = input.nextDouble();
final double PI = 3.14159;
if (radius >= 0) { /* condition of valid inputs x/
double area = radius = radius * PI;
System.out.println("Area is " + area);
}
‘ else { /% implicit: !(radius >= 0), or radius < 0 */
System.out.println("Error: Negative radius value!");
}
input.close();
}
}

v3iorbh

I

Logical Laws: DeMorgan for Conjunction |issons

Say we have two Boolean expressions By and Bo:
e Whatdoes ! (B; && B>) mean?
It is not the case that both By and B are true.
e Whatdoes !By |/ !B> mean?
It is either Bj is false, B» is false, or both are false.

¢ Both expressions are equivalent! [proved by the truth table]
By B H I (B && Bg)‘ !By] !B
true true false false
true false true true
false true true true

false false true true

PZiwe) M3

Logical Laws: DeMorgan for Disjunction Retoue

Say we have two Boolean expressions By and Bs:
e Whatdoes ! (By |/ B>) mean?

It is not the case that either B, is true, Bs is true, or both are
frue.

e Whatdoes !B; &«& !B, mean?
Both B; and B, are false.

¢ Both expressions are equivalent' [proved by the truth table]
B; B B B>) ‘ !'By && ! Bo
true true false false
true false false false
false ftrue false false
false false true true

I

Example: DeMorgan for Conjunctlon LASSONDE

if(0 <= 1 && 1 <= 10) { /* Action 1 x/ }
else { /+ Action 2 =%/ }

e When is Action 2 executed? i <0 || 1> 10

if(i < 0 && false) { /+ Action 1 =/ }
else { /+ Action 2 x/ }

e When is Action 1 executed? false
e When is Action 2 executed? frue (i.e.,i >= 0 || true)

if(i < 0 && 1 > 10) { /% Action 1 =%/ }
else { /x Action 2 =/ }

e When is Action 1 executed? false
e When is Action 2 executed? true (i.e.,i >= 0 || i <= 10)

Lesson: Be careful not to write branching conditions that use &«
but always evaluate to false.

b orbh

I

Example: DeMorgan for Disjunction LASSONDE

if(i < 0 || i > 10) { /# Action 1 =%/ }
else { /+ Action 2 =/ }

e When is Action 2 executed? 0 <= i && i <= 10
if(i < 0 || true) { /# Action 1 x/ }

else { /+ Action 2 x/ }

e When is Action 1 executed? true

e When is Action 2 executed? false (i.e.,i >= 0 && false)

if(i < 10 || 1 >= 10) { /» Action 1 x/ }
else { /x Action 2 =/ }

e When is Action 1 executed? true
e When is Action 2 executed? false (i.e., i >= 10 && i < 10)

Lesson: Be careful not to write branching conditions that use /|
but always evaluate to frue.

v/ orbh

I

Operator Precedence

e Operators with higher precedence are evaluated before those
with lower precedence.

eg.,2 + 3 x5
» For the three logical operators , negation (!) has the highest
precedence, then conjunction (&¢), then disjunction (| |).

€.0.,true || true && false means
o true || (true && false), rather than
o (true || true) && false

e When unsure, use parentheses to force the precedence.

e orbh

I

Operator Associativity

e When operators with the same precedence are grouped
together, we evaluate them from left to right.

e.g.,1 + 2 - 3 means

((1L + 2) = 3)
e.g., false || true || false means
((false || true) || false)

9 ot bbb

I

Two-Way if Statement without else Part |.ssono:

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("Area for the circle of is " + area);

}

An if statement with the missing else part is equivalent to an if
statement with an e1se part that does nothing.

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("Area for the circle of is " + area);
}
else {
/+ Do nothing. x/
}

Primitive Statement vs. Compound Statemeat

e A statement is a block of Java code that modifies value(s) of
some variable(s).

¢ An assignment (=) statement is a primitive statement:
It only modifies its left-hand-side (LHS) variable.
e An if statementis a compound statement:

Each of its branches may modify more than one variables via
other statements (e.g., assignments, if statements).

31 orbh

I

Compound if Statement: Example
1 |int x = input.nextInt();
2 |int y = 0;
3 |if (x >= 0) {
4 System.out.println("x is positive");
5 if (x > 10) { v = x * 2; }
6 else if (x < 10) { y = x % 2; }
7 else { y = x » x; }
8 |}
9 |else { /* x < 0 */
10 System.out.println("x is negative");
11 if(x < -5) { y = -x; }
12 |}

Exercise: Draw a flow chart for the above compound statement.

32 orbh

MUItl'Way if Statement With else Part :—A§SONDE

I

if (score >= 80.0) {

System.out.println("A");

}

else if (score >= 70.0) {
System.out.println("B");

}

else if (score >= 60.0) {
System.out.println("C");

}

else {
System.out.println("F");

}

if (score >= 80.0) {
System.out.println("A"); }
else { /+ score < 80.0 */
if (score >= 70.0) {
System.out.println("B"); }
else { /+ score < 70.0 =/
if (score >= 60.0) {
System.out.println("C"); }
else { /x score < 60.0 #*/
System.out.println("F");
}
}
}

Exercise: Draw the corresponding flow charts for both programs.
Convince yourself that they are equivalent.

330160

I

MUItl'Way if Statement Without else Part :A§SONDE

String letterGrade = "F";

if (score >= 80.0) {
letterGrade = "A";

}

else if (score >= 70.0) {
letterGrade = "B";

}

else if (score >= 60.0) {
letterGrade = "C";

}

In this case, since we already assign an initial, default value
"F" to variable letterGrade, so when all the branch
conditions evaluate to false, then the default value is kept.

Compare the above example with the example in slide

I

One if Stmt vs. Multiple i £ Stmts (1) LASSONDE

Question: Do these two programs behave same at runtime?

if (i >= 3) {System.out.println("i is >= 3");}
else if (i <= 8) {System.out.println("i is <= 8");}

if (i >= 3) {System.out.println("i is >= 3");}
if(i <= 8) ({System.out.println("i is <= 8");}

Question: Do these two programs behave same at runtime?

if (i <= 3) {System.out.println("i is <= 3");}
else if (i >= 8) {System.out.println("i is >= 8");}

if (i <= 3) {System.out.println("i is <= 3");}
if(i >= 8) {System.out.println("i is >= 8");}

35 0168

One if Stmt vs. Multiple i £ Stmts (2) LASSONDE

I

T
| int i = 5;
if (i >= 3)

{System.out.println("i is >= 3");}

else if (i <= 8) {System.out.println("i is <= 8");}

i is >=

3

T
| int i = 5;
if (i >= 3

)
if (i <= 8)

{System.out.println("i is >= 3");}
{System.out.println("i is <= 8");}

i is >=
i is <=

3
8

Two versions behave differently because the two conditions i >= 3
and i <= 8 may be satisfied simultaneously.

36 orbh

One if Stmt vs. Multiple i £ Stmts (3)

I

et ae o

T
‘ int 1 = 2;

if(i <= 3) {System.out.println("i is <= 3");}

else if (i >= 8) {System.out.println("i is >= 8");}

i is <=3

T
| int i = 2;
if (i <= 3
if (i >= 8

{System.out.println("i is <= 3");}
{System.out.println("i is >= 8");}

)
)

i is <=3

Two versions behave the same because the two conditions i <= 3

and i >= 8 cannot be satisfied simultaneously.

320108

Common Error 1: Independent if Statemen

with Overlapping Conditions

if (marks >= 80) {
System.out.println("A");

}

if (marks >= 70) {
System.out.println("B");

}

if (marks >= 60) {
System.out.println("C");

}

else {
System.out.println("F");

if (marks >= 80) {
System.out.println("A");

}

else if (marks >= 70) {
System.out.println("B");

}

else if (marks >= 60) {
System.out.println("C");

}

else {
System.out.println("F");

e Conditions in a list of i f statements are checked independently .

¢ In asingle if statement, only the first satisfying branch is executed.

CHme IS

I

Overlapping Conditions: Exercise (1) LASSONDE

e Does this program always print exactly one line?

if(x < 0) { printlIn("x < 0"); }

if(0 <= x && x < 10) { printIn("0 <= x < 10"); }
if (10 <= x && x < 20) { println("10 <= x < 20"); }
if(x >= 20) { println("x >= 20"); }

¢ Yes, because the branching conditions for the four
if-statements are all non-overlapping.

e That is, any two of these conditions cannot be satisfied
simultaneously:
ox < 0
o (0 <= x && x < 10
o 10 <= x && x < 20
o x >= 20

39 o1 b8

I

Overlapping Conditions: Exercise (2) LASSONDE

¢ Does this program always print exactly one line?

if(x < 0) { printIn("x < 0"); }

else if (0 <= x && x < 10) { println("0 <= x < 10"); }
else if (10 <= x && x < 20) { println("10 <= x < 20"); }
else if (x >= 20) { printlin("x >= 20"); }

e Yes, because it’s a single if-statement:
Only the first satisfying branch is executed.

e But, can it be simplified?
Hint: In a single if-statement, a branch is executed only if all
earlier branching conditions fail.

dll ot b

I

Overlapping Conditions: Exercise (3) LASSONDE

» This simplified version is equivalent:

1 |if(x < 0) { println("x < 0"); }

2 |else if(x < 10) { println("0 <= x < 10"); }
3 |else if(x < 20) { println("10 <= x < 20"); }
4

else { println("x >= 20"); }

« At runtime, the 2nd condition at L2 is checked only
when the 1st condition at L1 fails
(i.e.,, ! (x < 0),orequivalently, x >= 0).

« At runtime, the 3rd condition at L3 is checked only
when the 2nd condition at L2 fails
(i.e.,, ! (x < 10), orequivalently, x >= 10).

¢ At runtime, the else (default) branch at L4 is reached only when
the 3rd condition at L3 fails
(i.e., ! (x < 20), orequivalently, x >= 20).

dil ot b

I

Scope of Variables (1)

When you declare a variable, there is a limited scope where the

variable can be used.

e |f the variable is declared directly under the main method, then
all lines of code (including branches of i f statements) may
either re-assign a new value to it or use its value.

public static void main(String[] args) {
int i = input.nextInt();
System.out.println("i is " + 1i);
if (i > 0) {
i =1~ 3; /* both use and re why * /
}
else {
i =1 % =-3; /# both use and re-assignment, why? */
}
System.out.println("3 x [i| is " + 1);
}

dJ ot b

Scope of Variables (2.1)

I

e [f the variable is declared under an if branch, anelse if
branch, or an e1se branch, then only lines of code appearing
within that branch (i.e., its body) may either re-assign a new

value to it or use its value.

public static void main(String[] args) {
int i = input.nextInt();
if (i > 0) {
int j = i %« 3; /% a new variable */
if (j > 10) { .}
}
else {
int j = 1 « -3; /% a new variab also called j #*/
if (j < 10) | }
}
}

a3 ot b

I

Scope of Variables (2.2)

e A variable declared under an if branch, an else if branch,
or an else branch, cannot be re-assigned or used outside its

scope.
public static void main(String[] args) {
int i = input.nextInt();
if (i > 0) {
int j =1 % 3; /% a new variable j */
if (7 > 10) { -}
}
else {
int k = 1 x =-3; /x a i ox/
if (7 < k) { } X
}
}

I

Scope of Variables (2.3)

e A variable declared under an i f branch, else 1if branch, or
else branch, cannot be re-assigned or used outside its scope.

1 |public static void main(String[] args) {

2 int i = input.nextInt();

3 if (i > 0) {

4 int j = 1 x 3; /* a new variable j */

5 if (7 > 10) { }

6 }

7 else {

8 int j = 1 * -3; /* a new variable also called j */

9 if (§ < 10) { ...}

10 }

11 ‘ System.out.println("i = j is " + (i * F)); X ‘
12 ’} ‘

o A variable cannot be referred to outside its declared scope.
[e.g., illegal use of § at L11]
o A variable can be used:
¢ within its declared scope [e.g.,useof i atL11]
¢ within sub-scopes of its declared scope [e.g.,use of i at L4, L8]

I

Scope of Variables (2.4)

How about input parameters and return value?

int k = Utilities.getSum(i, 7);
System.out.println(k);
bl

1 |public class SumdApp {

2 public static void main(String[] args) {
3 Scanner input = new Scanner (System.in);
4 int i = input.nextInt();

5 int j = input.nextInt();

6

7

8

public class Utilities {
public static int getSum(int x, int y) {
int result = x + y;
return result;

bl

o Scope of i, 7§, k? [SumApp.main]
o Scope of x, y, result? [Utilities.getSum]
o L5is asif we wrote: int k = result;

where result stores the value computed by executing get Sum

I

General vs. Specific Boolean Conditions (1)|.assonoe

Two or more conditions overlap if they can evaluate to frue
simultaneously.

e.g., Say marks is declared as an integer variable:
o marks >= 80 andmarks >= 70 overlap. [why?]
o Values 80, 81, 82, ... make both conditions frue
e marks >= 80 has fewer satisfying values than marks >= 70
e We say marks >= 80 is more specific than marks >= 70
e Or,we say marks >= 70 is more general than marks >= 80
o marks <= 65andmarks <= 75 overlap. [why?]
o Values 65, 64, 63, ... make both conditions frue
e marks <= 65 has fewer satisfying values than marks <= 75
o We say marks <= 65 is more specific than marks <= 75
e Or,we say marks <= 75 is more general than marks <= 65

a7 ot bh

I

General vs. Specific Boolean Conditions (2)|.assonoe

Say we have two overlapping conditions x >= 5and x >= 0:
o What values make both conditions true? [5,6,7,...]
o Which condition is more general? [x >= 0]
o If we have a single if statement, then having this order

if(x >= 5) { System.out.println("x >= 5");
else if(x >= 0) { System.out.println(" >

’

}
0"; 1}

is different from having this order

if(x >= 0) { System.out.println("x >= 0");
else if(x >= 5) { System.out.println("x >

I~

}
5"y}

o Say x is 5, then we have
o What output from the first program? [x >= 5]
o What output from the second program? [x >= 0, not specific enough!]
o The cause of the “ not-specific-enough ” problem of the second
program is that we did not check the more specific condition (x >=

5) before checking the more general condition (x >= 0).

Common EI‘rOI‘ 2: if-elseif Statement Witl;ﬁjssoms
Most General Condition First (1)

if (gpa >= 2.5) {
graduateWith = "Pass";

}

else if (gpa >= 3.5) {
graduateWith = "Credit";

}

else if (gpa >= 4) {
graduateWith = "Distinction";

}

else if (gpa >= 4.5) {
graduateWith = "High Distinction"

}

’

The above program will:

o Not award a “High Distinction” to gpa == 4.8.
o Why?

a9 ot b

Common Error 2: if-elseif Statement with
Most General Condition First (2)

e Always “sort” the branching conditions s.t. the more specific
conditions are checked before the more general conditions.

if (gpa >= 4.5) {
graduateWith = "High Distinction" ;
}
else if (gpa >= 4) {
graduateWith = "Distinction";
}
else if (gpa >= 3.5) {
graduateWith = "Credit";
}
else if (gpa >= 2.5) {

graduateWith = "Pass";
}
else { graduateWith = "Fail"; }
[Simaan]

I

Short'C|rCUit Evaluatlon (1) LASSONDE

e Both Logical operators && and || evaluate from left to right.
e Operator && continues to evaluate only when operands so far
evaluate to frue.

if (x !'= 0 && y / x > 2) {
/+* do something */

}

else {
/% print error +/ }

e Operator || continues to evaluate only when operands so far
evaluate to false.

if (x == 0 || ¥y / x <= 2) {

/* print error #*/
}
else {
/+ do something */ }

1L orbh

I

Short-Circuit Evaluation (2) S

e Both Logical operators && and || evaluate from left to right.

e Short-Circuit Evaluation is not exploited: crash when x == 0
if (y/x>2&&x‘—0) {
b o
else {
/+ print error %/}
e Short-Circuit Evaluation is not exploited: crash when x == 0
if y/X<—2 I x == 0)
/# print error %/
}
else {
'+ do something }

VA AN

I

Common Error 3: Missing Braces (1)

Confusingly, braces can be omitted if the block contains a
single statement.

final double PI = 3.1415926;
Scanner input = new Scanner (System.in);
double radius = input.nextDouble();
if (radius >= 0)
System.out.println("Area is " + radius * radius * PI);

In the above code, it is as if we wrote:

Scanner input = new Scanner (System.in);
double radius = input.nextDouble() ;

|if (radius >= 0) {

final double PI = 3.1415926;
System.out.println("Area is " + radius * radius * PI);
]

|
| 3

b3.0rbh

I

Common Error 3: Missing Braces (2)

Your program will misbehave when a block is supposed to
execute multiple statements , but you forget to enclose them
within braces.

final double PI = 3.1415926;
Scanner input = new Scanner (System.in);
double radius = input.nextDouble() ;
double area = 0;
if (radius >= 0)
area = radius * radius = PI;
System.out.println("Area is " + area);

This program will mistakenly print “Area is 0.0” when a
negative number is input by the user, why? Fix?

if (radius >= 0) {

area = radius % radius * PI;
System.out.println("Area is " + area);
}

I

Common Error 4: Misplaced Semicolon

Semicolon (;) in Java marks the end of a statement (e.g.,
assignment, i f statement).

if (radius >= 0); {
area = radius * radius * PI;
System.out.println("Area is " + area);

}

This program will calculate and output the area even when the
input radius is negative, why? Fix?

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("Area is " + area);

}

a0t bhb

Common Error 5:
Variable Not Properly Re-Assigned

LASSONDE

1 | String graduateWith = "";

2 |if (gpa >= 4.5) {

3 graduateWith = "High Distinction" ; }
4 |else if (gpa >= 4) {

5 graduateWith = "Distinction"; }

6 |else if (gpa >= 3.5) {

7 graduateWith = "Credit"; }

8 |else if (gpa >= 2.5) {

9 graduateWith = "Pass"; }

The above program will award “” to gpa == 1.5. Why?
Possible Fix 1: Change the initial value in Line 1 to “Fail”.
Possible Fix 2: Add an else branch after Line 9:

’else { graduatewith = "fail" }

Compare this example with the example in slide

bb ot bhb

I

Common Errors 6: Ambiguous else (1)

if (x >= 0)
if (x > 100) {
System.out.println("x is larger than 100");

}

else {
System.out.println("x is negative");
}
* When x is 20, this program considers it as negative. Why?

-~ else clause matches the most recent unmatched i f clause.
. The above is as if we wrote: ‘
[if (x >= 0) { \

if (x > 100) {
\
1

System.out.println("x is larger than 100");

}
else {

System.out.println("x is negative");

)
|}

L
b 0orbhb

I

Common EI‘rOI‘S 6: AmbIgUOUS else (2) LASSONDE

o Fix?
Use pairs of curly braces ({}) to force what you really mean to
specify!
r 1
|if (x >= 0) | |
if (x > 100) {
System.out.println("x is larger than 100");

}
|}
else {

System.out.println("x is negative");

}

8. orbh

Common Pitfall 1: Updating Boolean Variab

boolean isEven;

if (number % 2 == 0) {
isEven = true;

}

else {
isEven = false;

}

Correct, but simplifiable : voclean isEven
Similarly, how would you simply the following?

(number%2

if (isEven == false) {
System.out.println("0dd Number");
}
else {
System.out.println("Even Number");

}

Simplify isEven == falseto !isEven

Beyond this lecture. .. Y

e Create a console tester in Eclipse.
Try out the examples given in the slides.
¢ Solve the motivating example in Slide 5.
e Optional (but recommended): Videos 10 — 17 from W19 Java tutorial:

https://www.eecs.yorku.ca/~jackie/teaching/
tutorials/index.html#java from scratch

pll ot b

https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch
https://www.eecs.yorku.ca/~jackie/teaching/tutorials/index.html#java_from_scratch

Index (1)

[Cearning Ouicomes

[Exira Pracfice?

[Wictivating Examples (1.1}
Wiotivating Examples (1.2)
[Wictivating Examples (2.7}
Wictivating Examples (2.2)

[The boolean Data Typel
Syntax of i f Statemeni
[Semantics of i £ Statement (1.1)

[Semantics of i f Statement (1.2)

>emantics of i f Statement: Case 1

Index (2) LassonDE
Semantics of 1f Sfalement: Case 2
Semantics of 1f Sfalement: Case 3

Semanfics of 1.t Sfalement: Case 4
Semanfics of 1.t Slalement: Case b
[Cogical Operators|
[Cogical Operators: Negation|

ogical Operators: Conjunctio
[Cogical Operators: Disjunction|

ase Study: Error Handing of Input Radius

ase Study: Error Handing of Inpuf Radius

Index (3)

ogical Laws. Dellorgan tor Lonjunctio

ogical Laws: Deliorgan tor Disjunctio
Example: DeMorgan for Conjunction]
Example: DeMorgan for Disjunction
Operator Precedence
bperator Associativity|
[TWo-Way 1 Statement without e1se Parl
Prlmltlve Statement vs. Compound Statemenl
Compound L Statement: Exampld

ulti-Way if Statement with else Par

ulti-Way if Statement without eIlse Par

Index (4) :A%SCE)MI\ABME

Dne if Stmtvs. IVlulhpIe if Stmis i ”
Dne if Stmt vs. IVlulhpIe if Stmis igl
Dne if Stmt vs. IVIthpIe if Stmis igl

[Common Error 1: Independent i f Statements with |
Overlapping Conditions

[Overlapping Condifions: Exercise (1)
[Overlapping Conditions: Exercise (2]
Overlapping Condifions: EXercise (3]
Scope of Variables (1]
Scope of Variables (2.1)
Scope of Variables (2.2)

b4 ot hB

Index (5)

[Scope of Variables (2.3}
[Scope of Variables (2.3}
[General vs. Specific Boolean Conditions (1)
[General vs. Specific Boolean Conditions (2}

Common Error 2: i f—elseif Siatement with Most General |
ondaition Firs
Common Error 2: i f-elseif Siatement with Most General
ondition Firs

ort-Circuit evaluation

ort-Circuit evaluation

Eommon Error 3: IVIlssmg Braces i |I

b ot hb

Index (6)
Eommon Error 3: W‘ISSII‘IQ Braces iZI
ommon Error 4: Misplace emicolo

Common Error 5.]
ariable NO roperiy he-Assigne

Common Error 6. Ambiquous e1se (1)
Common Error 6. Ambiquous e1se (7]
[Common Piffall 1: Updafing Boolean Variable]

bb ot hb

	Learning Outcomes
	Extra Practice?
	Motivating Examples (1.1)
	Motivating Examples (1.2)
	Motivating Examples (2.1)
	Motivating Examples (2.2)
	The boolean Data Type
	Syntax of if Statement
	Semantics of if Statement (1.1)
	Semantics of if Statement (1.2)
	Semantics of if Statement: Case 1
	Semantics of if Statement: Case 2
	Semantics of if Statement: Case 3
	Semantics of if Statement: Case 4
	Semantics of if Statement: Case 5
	Logical Operators
	Logical Operators: Negation
	Logical Operators: Conjunction
	Logical Operators: Disjunction
	Logical Laws: Negation
	Case Study: Error Handing of Input Radius (1)
	Case Study: Error Handing of Input Radius (2)
	Logical Laws: DeMorgan for Conjunction
	Logical Laws: DeMorgan for Disjunction
	Example: DeMorgan for Conjunction
	Example: DeMorgan for Disjunction
	Operator Precedence
	Operator Associativity
	Two-Way if Statement without else Part
	Primitive Statement vs. Compound Statement
	Compound if Statement: Example
	Multi-Way if Statement with else Part
	Multi-Way if Statement without else Part
	One if Stmt vs. Multiple if Stmts (1)
	One if Stmt vs. Multiple if Stmts (2)
	One if Stmt vs. Multiple if Stmts (3)
	Common Error 1: Independent if Statements with Overlapping Conditions
	Overlapping Conditions: Exercise (1)
	Overlapping Conditions: Exercise (2)
	Overlapping Conditions: Exercise (3)
	Scope of Variables (1)
	Scope of Variables (2.1)
	Scope of Variables (2.2)
	Scope of Variables (2.3)
	Scope of Variables (2.4)
	General vs. Specific Boolean Conditions (1)
	General vs. Specific Boolean Conditions (2)
	Common Error 2: if-elseif Statement with Most General Condition First (1)
	Common Error 2: if-elseif Statement with Most General Condition First (2)
	Short-Circuit Evaluation (1)
	Short-Circuit Evaluation (2)
	Common Error 3: Missing Braces (1)
	Common Error 3: Missing Braces (2)
	Common Error 4: Misplaced Semicolon
	Common Error 5: Variable Not Properly Re-Assigned
	Common Error 6: Ambiguous else (1)
	Common Error 6: Ambiguous else (2)
	Common Pitfall 1: Updating Boolean Variable
	Beyond this lecture…

