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Additional Notes
Solving Problems Recursively

Chen-Wei Wang

Given a problem of size n (e.g., an integer of value n, an array of n elements, etc.), adopt the following steps to solve
the problem recursively:

| Step 1: Understand the Problem | We denote the original problem to be solved as P,

(i.e,. a problem P, where the subscript n denotes its size). For example:

Ezample 1.
Ezxample 2.
Ezxample 3.
Ezxample 4.
Ezxample 5.
Ezample 6.
Ezxample 7.

Compute the factorial of n.

Compute the n” number in the Fibonacci sequence.

Compute if a string s of length n is a palindrome.

Compute the reverse of a string s of length n.

Compute the number of occurrences of a character ¢ in a string s of length n.
Compute if elements in index range [from, to] of an array a are all positive.

Compute if elements in index range [from, to] of an array a are sorted in a non-descending order.

Step 2: Define the Base Cases | We first define the solutions to the same problem whose sizes are small so that

they can be solved immediately: Py, P;, P, etc. For example:

Ezample 1.
Ezample 2.
Ezxample 3.
Ezxample 4.
Example 5.

Factorial 0 is just 1.

The first and second Fibonacci numbers are both 1.

An empty string and a string of length one are both palindromes.

The reverse of an empty string or of a string of length one is simply the string itself.

The number of occurrences of any character in an empty string is 0.

1. If index range [from, to] is such that from > to, e.g., [3,2], then there is an empty collection of elements to
be considered.

Ezample 6. Since you cannot find a counter-example (i.e., a number which is not positive) from an empty
collection, the result of determining all numbers being positive is simply true.

Ezample 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted
in a non-descending order) from an empty collection, the result of determining all numbers in an empty
collection being sorted in a non-descending order is simply true.

2. If index range [from, to] is such that from == to, e.g., [3, 3], then there is a collection of exactly one element
to be considered. We call such a collection a singleton collection. Say e is such an element that a singleton
collection contains.

Ezxample 6. The result of determining all numbers being positive is simply e > 0.

Ezample 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted
in a non-descending order) from a collection of just one number, the result of determining all numbers in
a singleton collection being sorted in a non-descending order is simply true.

Step 3: Assume that Solutions to Smaller Problems Exist | We then assume that there exist solutions to

sub-problems whose sizes are strictly smaller than the original problem: e.g., P,_1, P,_2, etc. For example:

Example 1.

Assume the factorial of n — 1 already exists (where n > 0). We denote this solution as P, _; as its

input size (i.e., value of number) is exactly one less than the original problem.



Ezample 2. Assume the (n— 1) and (n—2)** numbers in the Fibonacci sequence already exist (where n > 2).
We denote these solutions as P,_; and P, _o as their input sizes (i.e., position in the Fibonacci sequence) are
exactly, respectively, one and two less than the original problem.

Ezample 3. Assume we already know if a smaller substring of s (where s.length() > 1), with the first and last
characters of s taken out, is a palindrome. We denote this solution as P,,_5 as its input size (i.e., length of
string) is two less than the original problem.

Ezample 4. Assume we already know the reverse of a smaller substring of s (where s.length() > 1), with the
first character of s taken out. We denote this solution as P,_1 as its input size (i.e., length of string) is one
less than the original problem.

Example 5. Assume we already know the the number of occurrences of a character ¢ in a smaller substring of
s (where s.length() > 0), with the first character of s taken out. We denote this solution as P,_1 as its input
size (i.e., length of string) is one less than the original problem.

We assume we already know the solution for elements in a smaller index range [from + 1, to] of an array a:
Ezample 6. We denote P,,_1 as the solution for if the n — 1 elements are all positive.

Example 7. We denote P,,_1 as the solution for if the n — 1 elements are sorted in a non-descending order.

| Step 4: Define the Recursive Cases | We finally define the solution to the original problem P, in terms of the

solutions to other strictly smaller sub-problems: P, = f( P,—1, Pn—2, ... ). That is, P, is defined as a function
f that combines solutions to strictly smaller problems P, 1, P,_o, etc. via some simple calculations. Informally
speaking, we “massage” solutions to smaller problems into the solution to a bigger problem. For example:

Example 1. We define P, =n x P,_.
Ezample 2. We define P, = P,,_1 + P,,_o.

Ezample 3. We define P, = (¢l == ¢2 & P,,_3) (where ¢l and ¢2 are, respectively, the first and the last
characters of s). For example, abcbe is a palindrome because a == ¢ and beb is a palindrome. However, abeece
is not a palindrome because bcc is not a palindrome, even though a == c.

Ezample J. We define P, = P,_1 + ¢l (where cl is the first character of s, and the operator + means string
concatenation). For example, the reverse of abed is the reverse of abe (which is deb) concatenated with a.

Example 5. We define P,, = 1+ P, if the first character of s matches ¢, and in case they do not match, we
define P, = 0+ P,,_1. For example, the number of occurrences of character a in string ababa is 1 (. @ matches
the first character in the string) plus the number of occurrences of a in baba (which is 2). But, the number of
occurrences of character b in string ababa is 0 (*. b does not the first character a in the string) plus the number
of occurrences of b in baba (which is 2).

Ezample 6. We define P, = a[from] > 0 & P,_;. For example, numbers in {1,2,3,4,5} are all positive
because 1 > 0 and numbers in {2,3,4,5} are all positive. But, numbers in {—1,2,3,4,5} are not all positive
because —1 > 0 is false, even though and numbers in {2, 3,4, 5} are all positive. Also, numbers in {1,2, —3,4,5}
are not all positive because numbers in {2, —3,4,5} are not all positive, even though 1 > 0 is true.

Ezample 7. We define P, = a[from] < a[from + 1] & P,_1. For example, say from is 0, then numbers in
{1,2,2,3,4} are sorted because 1 < 2 and numbers in {2,2,3,4} are sorted. But, numbers in {1,—1,2,3,4}
are not sorted because 1 < —1 is false, even though numbers in {—1,2,3,4} are sorted. Also, numbers in
{1,2,2,—1,4} are not sorted because numbers in {2,2,—1,4} are not sorted, even though 2 < 2 is true.
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