## EECS2030 Fall 2025 Additional Notes Solving Problems Recursively

## Chen-Wei Wang

Given a problem of size n (e.g., an integer of value n, an array of n elements, etc.), adopt the following steps to solve the problem recursively:

Step 1: Understand the Problem We denote the original problem to be solved as  $P_n$ 

(i.e,. a problem P, where the subscript n denotes its size). For example:

- **Example 1.** Compute the factorial of n.
- *Example 2.* Compute the  $n^{th}$  number in the Fibonacci sequence.
- *Example 3.* Compute if a string s of length n is a palindrome.
- **Example 4.** Compute the reverse of a string s of length n.
- Example 5. Compute the number of occurrences of a character c in a string s of length n.
- **Example 6.** Compute if elements in index range [from, to] of an array a are all positive.
- Example 7. Compute if elements in index range [from, to] of an array a are sorted in a non-descending order.

Step 2: Define the <u>Base</u> Cases We first define the solutions to the same problem whose sizes are small so that they can be solved immediately:  $P_0$ ,  $P_1$ ,  $P_2$ , etc. For example:

- Example 1. Factorial 0 is just 1.
- Example 2. The first and second Fibonacci numbers are both 1.
- Example 3. An empty string and a string of length one are both palindromes.
- Example 4. The reverse of an empty string or of a string of length one is simply the string itself.
- Example 5. The number of occurrences of any character in an empty string is 0.
- 1. If index range [from, to] is such that from > to, e.g., [3, 2], then there is an empty collection of elements to be considered.
  - **Example 6.** Since you cannot find a counter-example (i.e., a number which is not positive) from an empty collection, the result of determining all numbers being positive is simply *true*.
  - **Example 7.** Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted in a non-descending order) from an empty collection, the result of determining all numbers in an empty collection being sorted in a non-descending order is simply *true*.
- 2. If index range [from, to] is such that from == to, e.g., [3,3], then there is a collection of exactly one element to be considered. We call such a collection a *singleton* collection. Say e is such an element that a singleton collection contains.
  - *Example 6.* The result of determining all numbers being positive is simply e > 0.
  - Example 7. Since you cannot find a counter-example (i.e., a pair of adjacent numbers which are not sorted in a non-descending order) from a collection of just one number, the result of determining all numbers in a singleton collection being sorted in a non-descending order is simply true.

Step 3: Assume that Solutions to Smaller Problems Exist We then assume that there exist solutions to sub-problems whose sizes are strictly smaller than the original problem: e.g.,  $P_{n-1}$ ,  $P_{n-2}$ , etc. For example:

*Example 1.* Assume the factorial of n-1 already exists (where n>0). We denote this solution as  $P_{n-1}$  as its input size (i.e., value of number) is exactly one less than the original problem.

Example 2. Assume the  $(n-1)^{th}$  and  $(n-2)^{th}$  numbers in the Fibonacci sequence already exist (where n > 2). We denote these solutions as  $P_{n-1}$  and  $P_{n-2}$  as their input sizes (i.e., position in the Fibonacci sequence) are exactly, respectively, one and two less than the original problem.

*Example 3.* Assume we already know if a smaller substring of s (where s.length() > 1), with the first and last characters of s taken out, is a palindrome. We denote this solution as  $P_{n-2}$  as its input size (i.e., length of string) is two less than the original problem.

*Example 4.* Assume we already know the reverse of a smaller substring of s (where s.length() > 1), with the first character of s taken out. We denote this solution as  $P_{n-1}$  as its input size (i.e., length of string) is one less than the original problem.

Example 5. Assume we already know the the number of occurrences of a character c in a smaller substring of s (where s.length() > 0), with the first character of s taken out. We denote this solution as  $P_{n-1}$  as its input size (i.e., length of string) is one less than the original problem.

We assume we already know the solution for elements in a smaller index range [from + 1, to] of an array a:

*Example 6.* We denote  $P_{n-1}$  as the solution for if the n-1 elements are all positive.

Example 7. We denote  $P_{n-1}$  as the solution for if the n-1 elements are sorted in a non-descending order.

Step 4: Define the Recursive Cases We finally define the solution to the original problem  $P_n$  in terms of the solutions to other strictly smaller sub-problems:  $P_n = f(P_{n-1}, P_{n-2}, \dots)$ . That is,  $P_n$  is defined as a function f that combines solutions to strictly smaller problems  $P_{n-1}, P_{n-2}, etc.$  via some simple calculations. Informally speaking, we "massage" solutions to smaller problems into the solution to a bigger problem. For example:

**Example 1.** We define  $P_n = n \times P_{n-1}$ .

**Example 2.** We define  $P_n = P_{n-1} + P_{n-2}$ .

**Example 3.** We define  $P_n = (c1 == c2 \&\& P_{n-2})$  (where c1 and c2 are, respectively, the first and the last characters of s). For example, abcbc is a palindrome because a == c and bcb is a palindrome. However, abccc is not a palindrome because bcc is not a palindrome, even though a == c.

Example 4. We define  $P_n = P_{n-1} + c1$  (where c1 is the first character of s, and the operator + means string concatenation). For example, the reverse of abcd is the reverse of abc (which is dcb) concatenated with a.

Example 5. We define  $P_n = 1 + P_{n-1}$  if the first character of s matches c, and in case they do not match, we define  $P_n = 0 + P_{n-1}$ . For example, the number of occurrences of character a in string ababa is 1 (: a matches the first character in the string) plus the number of occurrences of a in baba (which is 2). But, the number of occurrences of character b in string ababa is 0 (: b does not the first character a in the string) plus the number of occurrences of b in baba (which is 2).

Example 6. We define  $P_n = a[from] > 0$  &&  $P_{n-1}$ . For example, numbers in  $\{1, 2, 3, 4, 5\}$  are all positive because 1 > 0 and numbers in  $\{2, 3, 4, 5\}$  are all positive. But, numbers in  $\{-1, 2, 3, 4, 5\}$  are not all positive because -1 > 0 is false, even though and numbers in  $\{2, 3, 4, 5\}$  are all positive. Also, numbers in  $\{1, 2, -3, 4, 5\}$  are not all positive because numbers in  $\{2, -3, 4, 5\}$  are not all positive, even though 1 > 0 is true.

Example 7. We define  $P_n = a[from] \le a[from+1]$  &&  $P_{n-1}$ . For example, say from is 0, then numbers in  $\{1,2,2,3,4\}$  are sorted because  $1 \le 2$  and numbers in  $\{2,2,3,4\}$  are sorted. But, numbers in  $\{1,-1,2,3,4\}$  are not sorted because  $1 \le -1$  is false, even though numbers in  $\{-1,2,3,4\}$  are sorted. Also, numbers in  $\{1,2,2,-1,4\}$  are not sorted because numbers in  $\{2,2,-1,4\}$  are not sorted, even though  $2 \le 2$  is true.

| Problem                                       | Base Case(s)                                                                                                       | Recursive Solution(s) to Sub-Problem(s)         | Solution                                                                                      |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $(P_n)$                                       | $\parallel (P_0, P_1, P_2)$                                                                                        | $(P_{n-1},P_{n-2})$                             |                                                                                               |
| factorial(n)                                  | $P_0 = factorial(0) = 1$                                                                                           | $P_{n-1} = factorial(n-1)$                      | $n \times P_{n-1}$                                                                            |
| fb(n)                                         |                                                                                                                    | $P_{n-1} = fb(n-1)$ $P_{n-2} = fb(n-2)$         |                                                                                               |
| isP(s)                                        | $egin{aligned} P_0 = isP("") = true \ P_1 = isP("a") = true \end{aligned}$                                         | $P_{n-2} = isP(s.substring(1, s.length() - 1))$ | $ \begin{aligned} s.charAt(0) == charAt(s.length()-1) \\ & \& \& \\ & P_{n-2} \end{aligned} $ |
| rev(s)                                        | $   P_0 = rev("") = ""  $<br>$  P_1 = rev("a") = "a"  $                                                            | $P_{n-1} = rev(s.substring(1, s.length()))$     |                                                                                               |
| occ(s,c)                                      | $P_0 = occ("", c) = 0$                                                                                             | $P_{n-1} = occ(s.substring(1, s.length()), c)$  |                                                                                               |
| allPosH(a, from, to)                          | $P_0 = allPosH(a, from, to)$ $= true $ $if from > to$ $P_1 = allPosH(a, from, to)$ $= a[from] > 0$ $if from == to$ | $P_{n-1} = allPosH(a, from + 1, to)$            | $a[0] > 0$ && $P_{n-1}$                                                                       |
| isSortedH(a, from, to) isSortedH(a, from, to) | $P_0 = isSortedH(a, from, to)$ $= true$ $If from > to$ $P_1 = isSortedH(a, from, to)$ $= true$ $If from == to$     | $P_{n-1} = isSortedH(a, from + 1, to)$          | $a[from] \le a[from+1]$ && $P_{n-1}$                                                          |