#### Introduction

MEB: Prologue, Chapter 1



EECS3342 E: System Specification and Refinement Fall 2024

Chen-Wei Wang



This module is designed to help you understand:

- What a safety-critical system is
- Code of Ethics for Professional Engineers
- What a Formal Method Is
- Verification vs. Validation
- Model-Based System Development





- A safety-critical system (SCS) is a system whose failure or malfunction has one (or more) of the following consequences:
  - death or serious injury to people
  - loss or severe damage to equipment/property
  - harm to the environment
- Based on the above definition, do you know of any systems that are *safety-critical*?



# **Professional Engineers: Code of Ethics**



- Code of Ethics is a basic guide for professional conduct and imposes duties on practitioners, with respect to society, employers, clients, colleagues (including employees and subordinates), the engineering profession and him or herself.
- It is the duty of a practitioner to act at all times with,
  - 1. *fairness* and *loyalty* to the practitioner's associates, employers, clients, subordinates and employees;
  - 2. fidelity (i.e., dedication, faithfulness) to public needs;
  - 3. devotion to high ideals of personal honour and professional integrity;
  - 4. *knowledge* of developments in the area of professional engineering relevant to any services that are undertaken; and
  - 5. *competence* in the performance of any professional engineering services that are undertaken.
- Consequence of misconduct?
  - suspension or termination of professional licenses
  - civil law suits





*Industrial standards* in various domains list *acceptance criteria* for **mission**- or **safety**-critical systems that practitioners need to comply with: e.g.,

- **Aviation** Domain: **RTCA DO-178C** "Software Considerations in Airborne Systems and Equipment Certification"
- **Nuclear** Domain: **IEEE 7-4.3.2** "Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations"
- Two important criteria are:
- 1. System *requirements* are precise and complete
- 2. System *implementation* <u>conforms</u> to the requirements
- But how do we accomplish these criteria?



# 

# Safety-Critical vs. Mission-Critical?

• Critical:

A task whose successful completion ensures the success of a larger, more complex operation.

e.g., Success of a pacemaker  $\Rightarrow$  Regulated heartbeats of a patient

• Safety:

Being free from danger/injury to or loss of human lives.

• Mission:

An operation or task assigned by a higher authority.

**Q**. Formally relate being *safety*-critical and *mission*-critical. **A**.

- **safety**-critical  $\Rightarrow$  **mission**-critical
- *mission*-critical  $\neq$  *safety*-critical
- Relevant industrial standard: *RTCA DO-178C* (replacing RTCA DO-178B in 2012) "*Software Considerations in Airborne Systems and Equipment Certification*"



# **Using Formal Methods for Certification**



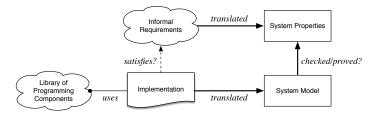
- A *formal method (FM)* is a *mathematically rigorous* technique for the specification, development, and verification of software and hardware systems.
- DO-333 "Formal methods supplement to DO-178C and DO-278A" advocates the use of formal methods: The use of formal methods is motivated by the expectation

that, as in other engineering disciplines, performing appropriate mathematical analyses can contribute to establishing the correctness and robustness of a design.

- FMs, because of their mathematical basis, are capable of:
  - *Unambiguously* describing software system requirements.
  - Enabling *precise* communication between engineers.
  - Providing *verification (towards certification) evidence* of:
    - A formal representation of the system being healthy.
    - A formal representation of the system satisfying safety properties.

# Verification: Building the Product Right?





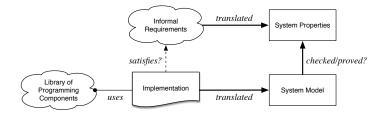
- Implementation built via reusable programming components.
- Goal : Implementation Satisfies Intended Requirements
- To verify this, we *formalize* them as a *system model* and a set of (e.g., safety) *properties*, using the specification language of a <u>theorem prover</u> (EECS3342) or a <u>model checker</u> (EECS4315).
- Two Verification Issues:
  - 1. Library components may not behave as intended.
  - Successful checks/proofs ensure that we built the product right, with respect to the informal requirements. But...





[EECS4312]

# Validation: Building the Right Product?



- Successful checks/proofs  $\neq$  We *built the right product*.
- The target of our checks/proofs may not be valid:

The requirements may be *ambiguous*, *incomplete*, or *contradictory*.

• <u>Solution</u>: *Precise Documentation* 



# **Catching Defects – When?**



- To minimize *development costs*, minimize *software defects*.
- Software Development Cycle: Requirements → Design → Implementation → Release Q. Design or Implementation Phase? Catch defects as early as possible.

| Design and architecture | Implementation | Integration<br>testing | Customer<br>beta test | Postproduct release |  |
|-------------------------|----------------|------------------------|-----------------------|---------------------|--|
| 1X*                     | 5X             | 10X                    | 15X                   | 30X                 |  |

- $\therefore$  The cost of fixing defects *increases exponentially* as software progresses through the development lifecycle.
- Discovering *defects* after **release** costs up to <u>30 times more</u> than catching them in the **design** phase.
- Choice of a design language, amendable to formal verification, is therefore critical for your project.



10 of 13

# **Model-Based System Development**



- *Modelling* and *formal reasoning* should be performed <u>before</u> implementing/coding a system.
  - A system's *model* is its *abstraction*, filtering irrelevant details. A system *model* means as much to a software engineer as a *blueprint* means to an architect.
  - A system may have a list of *models*, "sorted" by **accuracy**:

 $\langle m_0, m_1, \ldots, m_i \rangle, m_j, \ldots, m_n \rangle$ 

- The list starts by the most abstract model with least details.
- A more *abstract* model  $m_i$  is said to be *refined by* its subsequent, more *concrete* model  $m_i$ .
- The list ends with the most concrete/refined model with most details.
- It is far easier to reason about:

11 of 13

- a system's *abstract* models (rather than its full *implementation*)
- refinement steps between subsequent models
- The final product is *correct by construction*.

# Learning through Case Studies



- We will study example *models of programs/codes*, as well as proofs on them, drawn from various application domains:
  - REACTIVE Systems [sensors vs. actuators]
  - DISTRIBUTED Systems [ (geographically) distributed parties ]
- What you learn in this course will allow you to explore example in other application domains:
  - SEQUENTIAL Programs
  - CONCURRENT Programs

[ single thread of control ] [ interleaving processes ]

- The Rodin Platform will be used to:
  - Construct system *models* using the Even-B notation.
  - Prove properties and refinements using classical logic (propositional and predicate calculus) and set theory.



### Index (1)



Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

Safety-Critical vs. Mission-Critical?

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Catching Defects – When?

Model-Based System Development

Learning through Case Studies



#### **Review of Math**

MEB: Chapter 9



EECS3342 E: System Specification and Refinement Fall 2024

CHEN-WEI WANG



This module is designed to help you review:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions



# **Propositional Logic (1)**



- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
  - $\circ$  Unary logical operator: negation ( $\neg$ )



 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if ( ⇐⇒ ).

|       | ( )/  |             | ( );       |                   |            | ,            |
|-------|-------|-------------|------------|-------------------|------------|--------------|
| р     | q     | $p \land q$ | $p \lor q$ | $p \Rightarrow q$ | $p \iff q$ | $p \equiv q$ |
| true  | true  | true        | true       | true              | true       | true         |
| true  | false | false       | true       | false             | false      | false        |
| false | true  | false       | true       | true              | false      | false        |
| false | false | false       | false      | true              | true       | true         |



# **Propositional Logic: Implication (1)**



- Written as  $p \Rightarrow q$  [pronounced as "p implies q"]
  - We call *p* the antecedent, assumption, or premise.
  - We call *q* the consequence or conclusion.
- Compare the *truth* of  $p \Rightarrow q$  to whether a contract is *honoured*:
  - antecedent/assumption/premise p ≈ promised terms [ e.g., salary ]
  - consequence/conclusion  $q \approx$  obligations [e.g., duties]
- When the promised terms are met, then the contract is:
  - *honoured* if the obligations fulfilled.  $[(true \Rightarrow true) \iff true]$
  - breached if the obligations violated.  $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
  - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

| р     | q     | $p \Rightarrow q$ |
|-------|-------|-------------------|
| false | true  | true              |
| false | false | true              |



# 

 $[ q \Rightarrow p ]$ 

 $[p \Rightarrow q]$ 

# **Propositional Logic: Implication (2)**

There are alternative, equivalent ways to expressing  $p \Rightarrow q$ :  $\circ q$  if p

- q II p
  - q is true if p is true
- *p* only if *q*

If *p* is *true*, then for  $p \Rightarrow q$  to be *true*, it can only be that *q* is also *true*. Otherwise, if *p* is *true* but *q* is *false*, then  $(true \Rightarrow false) \equiv false$ .

**Note.** To prove  $p \equiv q$ , prove  $p \iff q$  (pronounced: "p <u>if and only if</u> q"):

- *p* if *q*
- p only if q
- p is sufficient for q

For *q* to be *true*, it is sufficient to have *p* being *true*.

- q is **necessary** for p [similar to p **only if** q] If p is *true*, then it is necessarily the case that q is also *true*. Otherwise, if p is *true* but q is *false*, then (*true*  $\Rightarrow$  *false*)  $\equiv$  *false*.
- q unless  $\neg p$

[When is  $p \Rightarrow q$  true?]

- If *q* is *true*, then  $p \Rightarrow q$  *true* regardless of *p*.
- If q is *false*, then  $p \Rightarrow q$  cannot be *true* unless p is *false*.

5 of 41



Given an implication  $p \Rightarrow q$ , we may construct its:

- **Inverse**:  $\neg p \Rightarrow \neg q$  [negate antecedent and consequence]
- **Converse**:  $q \Rightarrow p$  [swap antecedent and consequence]
- **Contrapositive**:  $\neg q \Rightarrow \neg p$  [inverse of converse]



# **Propositional Logic (2)**

- Axiom: Definition of  $\Rightarrow$
- **Theorem**: Identity of  $\Rightarrow$
- **Theorem**: Zero of ⇒

 $false \Rightarrow p \equiv true$ 

• Axiom: De Morgan

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
  
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

 $p \Rightarrow q \equiv \neg p \lor q$ 

true  $\Rightarrow p \equiv p$ 

Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

7 of 41



# Predicate Logic (1)



 $[-\infty, \ldots, -1, 0, 1, \ldots, +\infty]$ 

 $[0, 1, ..., +\infty]$ 

- A *predicate* is a *universal* or *existential* statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
  - $\circ \mathbb{Z}$ : the set of integers
  - $\circ~\mathbb{N}$ : the set of natural numbers
- Variable(s) in a predicate may be *quantified*:
  - Universal quantification :

**All** values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• Existential quantification :

*Some* value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

8 of 41

# Predicate Logic (2.1): Universal Q. (V)



- A *universal quantification* has the form  $(\forall X \bullet R \Rightarrow P)$ 
  - X is a comma-separated list of variable names
  - R is a constraint on types/ranges of the listed variables
  - P is a property to be satisfied
- *For all* (combinations of) values of variables listed in *X* that satisfies *R*, it is the case that *P* is satisfied.
  - $◊ \forall i \bullet i \in \mathbb{N} \Rightarrow i \ge 0$   $◊ \forall i \bullet i \in \mathbb{Z} \Rightarrow i \ge 0$  [true] [false]
  - $\circ \quad \forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$
- Proof Strategies

a of 4

- **1.** How to prove  $(\forall X \bullet R \Rightarrow P)$  *true*?
  - <u>Hint</u>. When is  $R \Rightarrow P$  true? [ true  $\Rightarrow$  true, false  $\Rightarrow \_$  ]
  - Show that for <u>all</u> instances of  $x \in X$  s.t. R(x), P(x) holds.
  - Show that for <u>all</u> instances of  $x \in X$  it is the case  $\neg R(x)$ .
- **2.** How to prove  $(\forall X \bullet R \Rightarrow P)$  false?
  - <u>Hint</u>. When is  $R \Rightarrow P$  false?

[ true  $\Rightarrow$  false ]

[false]

• Give a **witness/counterexample** of  $x \in X$  s.t. R(x),  $\neg P(x)$  holds.

# Predicate Logic (2.2): Existential Q. $(\exists)$



- An *existential quantification* has the form  $(\exists X \bullet R \land P)$ 
  - X is a comma-separated list of variable names
  - *R* is a *constraint on types/ranges* of the listed variables
  - P is a property to be satisfied
- There exist (a combination of) values of variables listed in X that satisfy both R and P.
  - $\circ \exists i \bullet i \in \mathbb{N} \land i > 0$ [ true ]  $\circ \exists i \bullet i \in \mathbb{Z} \land i > 0$
- $\exists i, j \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)$ 
  - Proof Strategies
    - **1.** How to prove  $(\exists X \bullet R \land P)$  *true*?
      - Hint. When is  $B \wedge P$  true?
      - Give a **witness** of  $x \in X$  s.t. R(x), P(x) holds.
    - **2.** How to prove  $(\exists X \bullet R \land P)$  false?
      - Hint. When is  $R \wedge P$  false?
      - Show that for all instances of  $x \in X$  s.t. R(x),  $\neg P(x)$  holds.
      - Show that for all instances of  $x \in X$  it is the case  $\neg R(x)$ .

- [ true ] [ true ]
- [ $true \wedge true$ ]
- [ true  $\land$  false, false  $\land$  \_]

## Predicate Logic (3): Exercises



- Prove or disprove:  $\forall x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$ . All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1. Integer 1 (a witness/counterexample) in the range between 1 and 10 is <u>not</u> greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
   All integers in the range between 1 and 10 are *not* greater than 10.





Conversions between  $\forall$  and  $\exists$ :

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P) (\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$



# Sets: Definitions and Membership



- A set is a collection of objects.
  - Objects in a set are called its *elements* or *members*.
  - Order in which elements are arranged does not matter.
  - An element can appear at most once in the set.
- We may define a set using:
  - **Set Enumeration**: Explicitly list all members in a set. e.g., {1,3,5,7,9}
  - Set Comprehension: Implicitly specify the condition that all members satisfy.

e.g.,  $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$ 

- An empty set (denoted as  $\{\}$  or  $\varnothing)$  has no members.
- We may check if an element is a *member* of a set:
   e.g., 5 ∈ {1,3,5,7,9}
   e.g., 4 ∉ {x | x ≤ 1 ≤ 10, x is an odd number}
- [ true ] [ true ]
- The number of elements in a set is called its *cardinality*. e.g.,  $|\emptyset| = 0$ ,  $|\{x \mid x \le 1 \le 10, x \text{ is an odd number}\}| = 5$

#### **Set Relations**



Given two sets  $S_1$  and  $S_2$ :

•  $S_1$  is a *subset* of  $S_2$  if every member of  $S_1$  is a member of  $S_2$ .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$$

•  $S_1$  and  $S_2$  are *equal* iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S<sub>1</sub> is a *proper subset* of S<sub>2</sub> if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$



## **Set Relations: Exercises**



| $? \subseteq S$ always holds                      | [ $arnothing$ and $oldsymbol{S}$ ] |
|---------------------------------------------------|------------------------------------|
| ? ⊂ $S$ always fails                              | [S]                                |
| ? ⊂ $S$ holds for some $S$ and fails for some $S$ | [Ø]                                |
| $S_1 = S_2 \Rightarrow S_1 \subseteq S_2?$        | [ Yes ]                            |
| $S_1 \subseteq S_2 \Rightarrow S_1 = S_2$ ?       | [ No ]                             |



## **Set Operations**



Given two sets  $S_1$  and  $S_2$ :

• **Union** of  $S_1$  and  $S_2$  is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of  $S_1$  and  $S_2$  is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• **Difference** of S<sub>1</sub> and S<sub>2</sub> is a set whose members are in S<sub>1</sub> but not S<sub>2</sub>.

$$S_1 \smallsetminus S_2 = \{ x \mid x \in S_1 \land x \notin S_2 \}$$



#### **Power Sets**



The *power set* of a set *S* is a *set* of all *S*'s *subsets*.

 $\mathbb{P}(S) = \{s \mid s \subseteq S\}$ 

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g.,  $\mathbb{P}(\{1, 2, 3\})$  is a set of sets, where each member set *s* has cardinality 0, 1, 2, or 3:

$$\left(\begin{array}{c} \varnothing, \\ \{1\}, \ \{2\}, \ \{3\}, \\ \{1,2\}, \ \{2,3\}, \ \{3,1\}, \\ \{1,2,3\} \end{array}\right)$$

**Exercise:** What is  $\mathbb{P}(\{1, 2, 3, 4, 5\}) \setminus \mathbb{P}(\{1, 2, 3\})$ ?



## **Set of Tuples**



Given *n* sets  $S_1, S_2, ..., S_n$ , a *cross/Cartesian product* of theses sets is a set of *n*-tuples.

Each *n*-tuple  $(e_1, e_2, ..., e_n)$  contains *n* elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g.,  $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$  is a set of triples:

$$\{a, b\} \times \{2, 4\} \times \{\$, \&\}$$

$$= \left\{ (e_1, e_2, e_3) \mid e_1 \in \{a, b\} \land e_2 \in \{2, 4\} \land e_3 \in \{\$, \&\} \right\}$$

$$= \left\{ (a, 2, \$), (a, 2, \&), (a, 4, \$), (a, 4, \&), \\ (b, 2, \$), (b, 2, \&), (b, 4, \$), (b, 4, \&) \right\}$$



# **Relations (1): Constructing a Relation**



A *relation* is a set of mappings, each being an *ordered pair* that maps a member of set *S* to a member of set *T*.

- e.g., Say  $S = \{1, 2, 3\}$  and  $T = \{a, b\}$
- $\circ ~ \varnothing$  is the *minimum* relation (i.e., an empty relation).
- $S \times T$  is the *maximum* relation (say  $r_1$ ) between S and T, mapping from each member of S to each member in T:

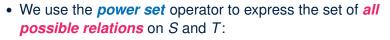
 $\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$ 

•  $\{(x, y) | (x, y) \in S \times T \land x \neq 1\}$  is a relation (say  $r_2$ ) that maps only some members in *S* to every member in *T*:

 $\{(2, a), (2, b), (3, a), (3, b)\}$ 



# **Relations (2.1): Set of Possible Relations**



 $\mathbb{P}(S \times T)$ 

ASSONE

Each member in  $\mathbb{P}(S \times T)$  is a relation.

 To declare a relation variable r, we use the colon (:) symbol to mean set membership:

$$r:\mathbb{P}(S \times T)$$

• Or alternatively, we write:

$$r: S \leftrightarrow T$$

where the set  $S \leftrightarrow T$  is synonymous to the set  $\mathbb{P}(S \times T)$ 



### **Relations (2.2): Exercise**



Enumerate  $\{a, b\} \leftrightarrow \{1, 2, 3\}$ .

#### • Hints:

- You may enumerate all relations in  $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$  via their *cardinalities*: 0, 1, ...,  $|\{a, b\} \times \{1, 2, 3\}|$ .
- What's the *maximum* relation in  $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$ ?

 $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$ 

- The answer is a set containing <u>all</u> of the following relations:
  - $\circ~$  Relation with cardinality 0: Ø
  - How many relations with cardinality 1?  $[\binom{|\{a,b\}\times\{1,2,3\}|}{1} = 6]$
  - How many relations with cardinality 2?  $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{2} = \frac{6\times5}{2!} = 15\right]$

• Relation with cardinality  $|\{a, b\} \times \{1, 2, 3\}|$ : { (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }



. . .

# Relations (3.1): Domain, Range, Inverse



Given a relation

 $r=\{(a,\,1),\,(b,\,2),\,(c,\,3),\,(a,\,4),\,(b,\,5),\,(c,\,6),\,(d,\,1),\,(e,\,2),\,(f,\,3)\}$ 

- *domain* of *r* : set of first-elements from *r* 
  - Definition: dom $(r) = \{ d \mid (d, r') \in r \}$
  - e.g.,  $dom(r) = \{a, b, c, d, e, f\}$
  - ASCII syntax: dom(r)
- range of r : set of second-elements from r
  - Definition:  $ran(r) = \{ r' \mid (d, r') \in r \}$
  - e.g.,  $ran(r) = \{1, 2, 3, 4, 5, 6\}$
  - ASCII syntax: ran(r)
- *inverse* of *r* : a relation like *r* with elements swapped
  - Definition:  $r^{-1} = \{ (r', d) | (d, r') \in r \}$
  - e.g.,  $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$
  - ASCII syntax: r~

22 of 41



#### Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$ 

*relational image* of *r* over set *s* : sub-range of *r* mapped by *s*.

• Definition:  $r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$ 

ASCII syntax: r[s]





#### Given a relation

 $r=\{(a,\,1),\,(b,\,2),\,(c,\,3),\,(a,\,4),\,(b,\,5),\,(c,\,6),\,(d,\,1),\,(e,\,2),\,(f,\,3)\}$ 

- *domain restriction* of *r* over set *ds* : sub-relation of *r* with domain *ds*.
  - Definition:  $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
  - e.g.,  $\{a, b\} \lhd r = \{(a, 1), (b, 2), (a, 4), (b, 5)\}$
  - ASCII syntax: ds <| r
- range restriction of r over set rs : sub-relation of r with range rs.
  - Definition:  $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
  - e.g.,  $r \triangleright \{1,2\} = \{(a,1), (b,2), (d,1), (e,2)\}$
  - ASCII syntax: r |> rs





#### Given a relation

 $r=\{(a,\,1),\,(b,\,2),\,(c,\,3),\,(a,\,4),\,(b,\,5),\,(c,\,6),\,(d,\,1),\,(e,\,2),\,(f,\,3)\}$ 

- *domain subtraction* of *r* over set *ds* : sub-relation of *r* with domain <u>not</u> *ds*.
  - Definition:  $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \notin ds \}$
  - e.g.,  $\{a, b\} \triangleleft r = \{(c, 3), (c, 6), (d, 1), (e, 2), (f, 3)\}$
  - ASCII syntax: ds <<| r
- *range subtraction* of *r* over set *rs* : sub-relation of *r* with range <u>not</u> *rs*.
  - Definition:  $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
  - e.g.,  $r \triangleright \{1,2\} = \{(c,3), (a,4), (b,5), (c,6), (f,3)\}$
  - ASCII syntax: r |>> rs





#### Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$   $\boxed{overriding \text{ of } r \text{ with relation } t}: \text{ a relation which agrees with } t \text{ within } dom(t), \text{ and agrees with } r \text{ outside } dom(t)$ 

• Definition:  $r \Leftrightarrow t = \{ (d, r') | (d, r') \in t \lor ((d, r') \in r \land d \notin dom(t)) \}$ • e.g.,

$$r \Leftrightarrow \{(a,3), (c,4)\}$$

$$= \{(a,3), (c,4)\} \cup \{(b,2), (b,5), (d,1), (e,2), (f,3)\}$$

 $\{(d,r')|(d,r')\in t\} \qquad \{(d,r')|(d,r')\in r\wedge d\notin \operatorname{dom}(t)\}$ 

$$= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$

• ASCII syntax: r <+ t



### **Relations (4): Exercises**



1. Define r[s] in terms of other relational operations. Answer:  $r[s] = \operatorname{ran}(s \triangleleft r)$ e.g.,  $r[\{a,b\}] = \operatorname{ran}(\{(a,1), (b,2), (a,4), (b,5)\}) = \{1,2,4,5\}$  $s \downarrow \{a,b\} \triangleleft r$ 

**2.** Define  $r \Leftrightarrow t$  in terms of other relational operators. <u>Answer</u>:  $r \Leftrightarrow t = t \cup (\text{dom}(t) \lhd r)$ e.g.,  $r \Leftrightarrow \{(a,3), (c,4)\}$ 

$$= \underbrace{\{(a,3), (c,4)\}}_{t} \cup \underbrace{\{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{\{a,c\}}$$
$$= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$



# 

## **Functions (1): Functional Property**

A *relation* r on sets S and T (i.e., r ∈ S ↔ T) is also a *function* if it satisfies the *functional property*:
 *isFunctional* (r)

 $\forall s, t_1, t_2 \bullet (s \in S \land t_1 \in T \land t_2 \in T) \Rightarrow ((s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2)$ 

- That is, in a *function*, it is <u>forbidden</u> for a member of *S* to map to <u>more than one</u> members of *T*.
- Equivalently, in a *function*, two <u>distinct</u> members of *T* <u>cannot</u> be mapped by the <u>same</u> member of *S*.
- e.g., Say *S* = {1,2,3} and *T* = {*a*,*b*}, which of the following *relations* satisfy the above *functional property*?
  - $\circ S \times T$

 $\Leftrightarrow$ 

[ No ]

<u>Witness 1</u>: (1, a), (1, b); <u>Witness 2</u>: (2, a), (2, b); <u>Witness 3</u>: (3, a), (3, b).

- $(S \times T) \setminus \{(x, y) \mid (x, y) \in S \times T \land x = 1\}$  [No] <u>Witness 1</u>: (2, a), (2, b); <u>Witness 2</u>: (3, a), (3, b)
- $\circ \{(1, a), (2, b), (3, a)\}$ [Yes]  $\circ \{(1, a), (2, b)\}$ [Yes]

### Functions (2.1): Total vs. Partial



### Given a **relation** $r \in S \leftrightarrow T$

• r is a *partial function* if it satisfies the *functional property*:

 $\begin{array}{c|c} r \in S \nrightarrow T \end{array} \iff (\text{isFunctional}(r) \land \text{dom}(r) \subseteq S) \\ \hline \textbf{Remark.} r \in S \nrightarrow T \text{ means there } \underline{\textbf{may} (\textbf{or may not) be}} s \in S \text{ s.t.} \\ r(s) \text{ is undefined } (\text{i.e., } r[\{s\}] = \emptyset). \\ \circ \text{ e.g., } \{ \{(2, a), (1, b)\}, \{(2, a), (3, a), (1, b)\} \} \subseteq \{1, 2, 3\} \nrightarrow \{a, b\} \end{array}$ 

• e.g.,  $\{\{(z, a), (1, b)\}, \{(z, a), (3, a), (1, b)\}\} \subseteq \{1, 2, 3\} \neq \{a, b\}$ • ASCII syntax: r : +->

### • *r* is a *total function* if there is a mapping for each $s \in S$ :

 $\boxed{r \in S \rightarrow T} \iff (\text{isFunctional}(r) \land \text{dom}(r) = S)$   $\boxed{\text{Remark. } r \in S \rightarrow T \text{ implies } r \in S \Rightarrow T, \text{ but } \underline{\text{not}} \text{ vice versa. Why?}}$   $\circ \text{ e.g., } \{(2, a), (3, a), (1, b)\} \in \{1, 2, 3\} \rightarrow \{a, b\}$   $\circ \text{ e.g., } \{(2, a), (1, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$   $\circ \text{ ASCII syntax: } r : -->$ 

# Functions (2.2):



# **Relation Image vs. Function Application**

- Recall: A *function* is a *relation*, but a *relation* is not necessarily a *function*.
- Say we have a *partial function*  $f \in \{1, 2, 3\} \not\rightarrow \{a, b\}$ :

 $f = \{(\mathbf{3}, a), (\mathbf{1}, b)\}$ 

With f wearing the relation hat, we can invoke relational images:

$$\begin{array}{rcl}
f[\{3\}] &=& \{a\} \\
f[\{1\}] &=& \{b\} \\
f[\{2\}] &=& \varnothing
\end{array}$$

<u>**Remark**</u>.  $\Rightarrow |f[\{v\}]| \le 1$  ::

- each member in dom(f) is mapped to at most one member in ran(f)
- each input set {v} is a <u>singleton</u> set
- With f wearing the *function* hat, we can invoke *functional applications* :

$$\begin{array}{rcl} f(3) &=& a\\ f(1) &=& b\\ f(2) & {\rm is} & {\it undefined} \end{array}$$



### **Functions (2.3): Modelling Decision**



An organization has a system for keeping **track** of its employees as to where they are on the premises (e.g., ``Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- Employee denotes the set of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.
- Is it appropriate to model/formalize such a track functionality as a relation (i.e., where\_is ∈ Employee ↔ Location)?
   Answer. No an employee cannot be at distinct locations simultaneously. e.g., where\_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- How about a total function (i.e., where\_is ∈ Employee → Location)?
   <u>Answer</u>. No in reality, not necessarily all employees show up.
   e.g., where\_is(Mark) should be undefined if Mark happens to be on vacation.
- How about a *partial function* (i.e., *where\_is* ∈ *Employee* → *Location*)? <u>Answer</u>. Yes – this addresses the inflexibility of the total function.





# **Functions (3.1): Injective Functions**

Given a *function* f (either <u>partial</u> or <u>total</u>):

 f is *injective/one-to-one/an injection* if f does <u>not</u> map more than one members of S to a single member of T. *isInjective(f)*

 $\forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)$ 

- If f is a **partial injection**, we write:  $f \in S \Rightarrow T$ 
  - e.g., { Ø, {(1,a)}, {(2,a), (3,b)} } ⊆ {1,2,3}  $\Rightarrow$  {a,b} • e.g., {(1,b), (2,a), (3,b)}  $\notin$  {1,2,3}  $\Rightarrow$  {a,b}
  - e.g.,  $\{(1,\mathbf{b}), (2,a), (3,\mathbf{b})\} \notin \{1,2,3\} \Rightarrow \{a,b\}$
  - ASCII syntax: f : >+>

 $\Leftrightarrow$ 

- If *f* is a *total injection*, we write:  $f \in S \rightarrow T$ 
  - ∘ e.g.,  $\{1, 2, 3\} \mapsto \{a, b\} = \emptyset$
  - ∘ e.g.,  $\{(2,d), (1,a), (3,c)\} \in \{1,2,3\} \mapsto \{a,b,c,d\}$
  - e.g.,  $\{(\mathbf{2}, d), (\mathbf{1}, c)\} \notin \{1, 2, 3\} \mapsto \{a, b, c, d\}$
  - e.g.,  $\{(2, \mathbf{d}), (1, c), (3, \mathbf{d})\} \notin \{1, 2, 3\} \Rightarrow \{a, b, c, d\}$
  - ASCII syntax: f : >->

[ total, <u>not</u> inj. ] [ partial, <u>not</u> inj. ]

> [ <u>not</u> total, inj. ] [ total, <u>not</u> inj. ]

### Functions (3.2): Surjective Functions

ASSOND

[ total., not sur ]

Given a *function* f (either partial or total):

f is surjective/onto/a surjection if f maps to all members of T.

 $isSurjective(f) \iff ran(f) = T$ 

- If f is a *partial surjection*, we write:  $f \in S \twoheadrightarrow T$ 
  - e.g.,  $\{\{(1, \mathbf{b}), (2, \mathbf{a})\}, \{(1, \mathbf{b}), (2, \mathbf{a}), (3, \mathbf{b})\}\} \subseteq \{1, 2, 3\} \nleftrightarrow \{a, b\}$
  - e.g.,  $\{(2, \mathbf{a}), (1, \mathbf{a}), (3, \mathbf{a})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [ total, not sur. ] • e.g.,  $\{(2, \mathbf{b}), (1, \mathbf{b})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [partial, not sur.]
  - ASCII syntax: f : +->>
- If f is a **total surjection**, we write:  $| f \in S \twoheadrightarrow T |$ 
  - e.g.,  $\{\{(2,a), (1,b), (3,a)\}, \{(2,b), (1,a), (3,b)\}\} \subseteq \{1,2,3\} \twoheadrightarrow \{a,b\}$ [ not total, sur. ]
  - e.g.,  $\{(2, a), (3, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$
  - e.g.,  $\{(2, \mathbf{a}), (3, \mathbf{a}), (1, \mathbf{a})\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$
  - ASCII syntax: f : -->>



Given a function *f*:

*f* is *bijective*/*a bijection*/*one-to-one correspondence* if *f* is *total*, *injective*, and *surjective*.

• e.g., 
$$\{1,2,3\} \rightarrow \{a,b\} = \emptyset$$
  
• e.g.,  $\{\{(1,a),(2,b),(3,c)\},\{(2,a),(3,b),(1,c)\}\} \subseteq \{1,2,3\} \rightarrow \{a,b,c\}$   
• e.g.,  $\{(2,b),(3,c),(4,a)\} \notin \{1,2,3,4\} \rightarrow \{a,b,c\}$   
[ not total, inj., sur. ]

• e.g., 
$$\{(1, \mathbf{a}), (2, b), (3, c), (4, \mathbf{a})\} \notin \{1, 2, 3, 4\} \implies \{a, b, c\}$$

[ total, not inj., sur. ]

◦ e.g.,  $\{(1, \mathbf{a}), (2, \mathbf{c})\} \notin \{1, 2\} 
ightarrow \{a, b, c\}$ 

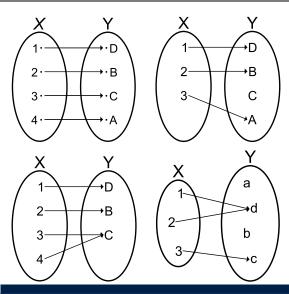
[ total, inj., not sur. ]

• ASCII syntax: f : >->>



### Functions (4.1): Exercises







## **Functions (4.2): Modelling Decisions**



- **1.** Should an array a declared as "String[] a" be *modelled/formalized* as a *partial* function (i.e.,  $a \in \mathbb{Z} \rightarrow String$ ) or a *total* function (i.e.,  $a \in \mathbb{Z} \rightarrow String$ )? <u>Answer</u>.  $a \in \mathbb{Z} \rightarrow String$  is <u>not</u> appropriate as:
  - Indices are <u>non-negative</u> (i.e., a(i), where i < 0, is **undefined**).
  - Each array size is finite: not all positive integers are valid indices.
- What does it mean if an array is *modelled/formalized* as a <u>partial</u> *injection* (i.e., *a* ∈ Z → *String*)?
   <u>Answer</u>. It means that the array does <u>not</u> contain any duplicates.
- Can an integer array "int [] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → Z)? <u>Answer</u>. Yes, if a stores all 2<sup>32</sup> integers (i.e., [-2<sup>31</sup>, 2<sup>31</sup> - 1]).
- 4. Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → String)?
  <u>Answer</u>. No ∵ # possible strings is ∞.

36 of 41

5. Can an integer array "int[]" storing all 2<sup>32</sup> values be modelled/formalized as a bijection (i.e., a ∈ Z → Z)?

<u>Answer</u>. No, because it <u>cannot</u> be *total* (as discussed earlier).



- For the *where\_is* ∈ *Employee* → *Location* model, what does it mean when it is:
  - Injective [where\_is ∈ Employee → Location]
     Surjective [where\_is ∈ Employee → Location]
  - Bijective [ where\_is ∈ Employee → Location ]
- Review examples discussed in your earlier math courses on *logic* and *set theory*.



### Index (1)



Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

88 of 41

### Index (2)



Sets: Definitions and Membership

Set Relations

Set Relations: Exercises

Set Operations

Power Sets

Set of Tuples

Relations (1): Constructing a Relation

Relations (2.1): Set of Possible Relations

Relations (2.2): Exercise

Relations (3.1): Domain, Range, Inverse

Relations (3.2): Image



### Index (3)



Relations (3.3): Restrictions

Relations (3.4): Subtractions

Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions



### Index (4)



Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...



# Specifying & Refining a Bridge Controller

MEB: Chapter 2



EECS3342 E: System Specification and Refinement Fall 2024

CHEN-WEI WANG



This module is designed to help you understand:

- What a *Requirement Document (RD)* is
- What a *refinement* is
- Writing *formal specifications*
  - (Static) contexts: constants, axioms, theorems
  - (Dynamic) <u>machines</u>: variables, invariants, events, guards, actions
- Proof Obligations (POs) associated with proving:
  - refinements
  - system properties
- Applying *inference rules* of the *sequent calculus*



## **Recall: Correct by Construction**



- Directly reasoning about <u>source code</u> (written in a programming language) is <u>too</u> complicated to be feasible.
- Instead, given a *requirements document*, prior to <u>implementation</u>, we develop *models* through <u>a series of *refinement*</u> steps:
  - Each model formalizes an *external observer*'s perception of the system.
  - Models are "sorted" with *increasing levels of accuracy* w.r.t. the system.
  - The *first model*, though the most *abstract*, can <u>already</u> be proved satisfying <u>some</u> *requirements*.
  - Starting from the *second model*, each model is analyzed and proved *correct* relative to two criteria:
    - 1. Some requirements (i.e., R-descriptions)
    - Proof Obligations (POs) related to the preceding model being refined by the <u>current model</u> (via "extra" state variables and events).
  - The <u>last model</u> (which is <u>correct by construction</u>) should be <u>sufficiently close</u> to be transformed into a <u>working program</u> (e.g., in C).

8 of 124

### State Space of a Model



- A model's *state space* is the set of <u>all</u> configurations:
  - Each <u>configuration</u> assigns values to <u>constants</u> & <u>variables</u>, subject to:
    - axiom (e.g., typing constraints, assumptions)
    - invariant properties/theorems
  - Say an initial model of a bank system with two <u>constants</u> and a <u>variable</u>:
    - $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String \nrightarrow \mathbb{Z}$  /\* typing constraint \*/
    - $\forall id \bullet id \in dom(accounts) \Rightarrow -c \leq accounts(id) \leq L$  /\* desired property \*/
    - Q. What is the state space of this initial model?
    - **A**. All <u>valid</u> combinations of *c*, *L*, and *accounts*.
      - Configuration 1: (*c* = 1,000, *L* = 500,000, *b* = ∅)
      - Configuration 2:  $(c = 2,375, L = 700,000, b = \{("id1",500), ("id2", 1,250)\})$

[ Challenge: Combinatorial Explosion ]

- Model Concreteness  $\uparrow \Rightarrow$  (State Space  $\uparrow \land$  Verification Difficulty  $\uparrow$ )
- A model's *complexity* should be guided by those properties intended to be <u>verified</u> against that model.
  - $\Rightarrow$  *Infeasible* to prove <u>all</u> desired properties on <u>a</u> model.

 $\Rightarrow$  *Feasible* to <u>distribute</u> desired properties over a list of *refinements*.

4 of 124

. . .



 We will walk through the *development process* of constructing *models* of a control system regulating cars on a bridge. Such controllers exemplify a *reactive system*.

(with <u>sensors</u> and <u>actuators</u>)

- Always stay on top of the following roadmap:
  - 1. A Requirements Document (RD) of the bridge controller
  - 2. A brief overview of the refinement strategy
  - 3. An initial, the most abstract model
  - 4. A subsequent model representing the 1st refinement
  - 5. A subsequent model representing the 2nd refinement
  - 6. A subsequent model representing the 3rd refinement



# **Requirements Document: Mainland, Island**



Imagine you are asked to build a bridge (as an alternative to ferry) connecting the downtown and Toronto Island.



Page Source: https://soldbyshane.com/area/toronto-islands/



## **Requirements Document: E-Descriptions**



# Each *E-Description* is an <u>atomic</u> *specification* of a *constraint* or an *assumption* of the system's working environment.

| ENV1 | The system is equipped with two traffic lights with two colors: green and red. |
|------|--------------------------------------------------------------------------------|
|------|--------------------------------------------------------------------------------|

| ENV2 | The traffic lights control the entrance to the bridge at both ends of it. |
|------|---------------------------------------------------------------------------|
|------|---------------------------------------------------------------------------|

| ENV3 | Cars are not supposed to pass on a red traffic light, only on a green one. |
|------|----------------------------------------------------------------------------|
|------|----------------------------------------------------------------------------|

| ENV4 |
|------|
|------|

| ENV5 | The sensors are used to detect the presence of a car entering or leaving the bridge:<br>"on" means that a car is willing to enter the bridge or to leave it. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|





# Each *R-Description* is an <u>atomic</u> *specification* of an intended *functionality* or a desired *property* of the working system.

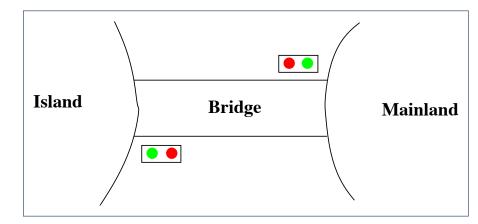
| REQ1 The system is controlling cars on a bridge connecting the mainland to an island. |  |
|---------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------|--|

| REQ2 | The number of cars on bridge and island is limited. |
|------|-----------------------------------------------------|
|------|-----------------------------------------------------|

| REQ3 | The bridge is one-way or the other, not both at the same time. |
|------|----------------------------------------------------------------|
|------|----------------------------------------------------------------|



## Requirements Document: Visual Summary of Equipment Pieces







## **Refinement Strategy**



[ REQ2 ]

- Before diving into details of the *models*, we first clarify the adopted <u>design</u> strategy of progressive <u>refinements</u>.
  - **0.** The *initial model* (*m*<sub>0</sub>) will address the intended functionality of a limited number of cars on the island and bridge.
  - **1.** A *1st refinement* (*m*<sub>1</sub> which *refines m*<sub>0</sub>) will address the intended functionality of the *bridge being one-way*.
  - **2.** A *2nd refinement* (*m*<sub>2</sub> which *refines m*<sub>1</sub>) will address the environment constraints imposed by *traffic lights*.
    - [ ENV1, ENV2, ENV3 ]

[ REQ1. REQ3 ]

**3.** A *final, 3rd refinement* (*m*<sub>3</sub> which *refines m*<sub>2</sub>) will address the environment constraints imposed by *sensors* and the *architecture*: controller, environment, communication channels.

[ ENV4, ENV5 ]

Recall Correct by Construction :

From each *model* to its *refinement*, only a <u>manageable</u> amount of details are added, making it *feasible* to conduct **analysis** and **proofs**.

## Model *m*<sub>0</sub>: Abstraction



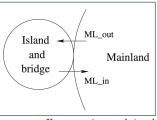
- In this <u>most</u> *abstract* perception of the bridge controller, we do <u>not</u> even consider the bridge, traffic lights, and sensors!
- Instead, we focus on this single requirement:

REQ2 The number of cars on bridge and island is limited.

### Analogies:

1 of 124

• Observe the system from the sky: island and bridge appear only as a <u>compound</u>.



• "Zoom in" on the system as refinements are introduced.

## Model *m*<sub>0</sub>: State Space

2 of 124



1. The *static* part is fixed and may be seen/imported.

A constant d denotes the <u>maximum</u> number of cars allowed to be on the *island-bridge compound* at any time.

(whereas cars on the mainland is unbounded)

constants: d



**Remark**. Axioms are assumed true and may be used to prove theorems.

2. The *dynamic* part changes as the system *evolves*.

A *variable n* denotes the actual number of cars, at a given moment, in the *island-bridge compound*.



invariants: inv0\_1 : *n* ∈ ℕ inv0\_2 : *n* ≤ *d* 

Remark. Invariants should be (subject to proofs):

- Established when the system is first initialized
- Preserved/Maintained after any enabled event's actions take effect

## Model *m*<sub>0</sub>: State Transitions via Events



- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- At any given *state* (a <u>valid</u> *configuration* of constants/variables):
  - An event is said to be *enabled* if its guard evaluates to *true*.
  - An event is said to be <u>disabled</u> if its guard evaluates to false.
  - An <u>enabled</u> event makes a state transition if it occurs and its actions take effect.
- <u>1st</u> event: A car exits mainland (and enters the island-bridge compound).



• <u>2nd</u> event: A car enters mainland (and exits the island-bridge compound).



3 of 124

Correct Specification? Say d = 2. <u>Witness</u>: Event Trace (init, ML\_in)

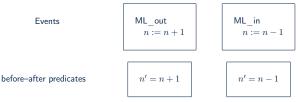
### Model *m*<sub>0</sub>: Actions vs. Before-After Predicates on the second s

- When an <u>enabled</u> event e occurs there are two notions of state:
  - Before-/Pre-State: Configuration just <u>before</u> e's actions take effect
  - After-/Post-State: Configuration just after e's actions take effect

Remark. When an enabled event occurs, its action(s) cause a transition from the

pre-state to the post-state.

• As examples, consider *actions* of *m*<sub>0</sub>'s two events:



- An event action "n := n + 1" is not a variable assignment; instead, it is a specification: "n becomes n + 1 (when the state transition completes)".
- The *before-after predicate* (*BAP*) "n' = n + 1" expresses that
   n' (the *post-state* value of n) is one more than n (the *pre-state* value of n).
- When we express *proof obligations* (*POs*) associated with *events*, we use *BAP*.



## **Design of Events: Invariant Preservation**

• Our design of the two events



only specifies how the *variable* n should be updated.

Remember, *invariants* are conditions that should <u>never</u> be *violated*!

```
invariants:
inv0_1 : n ∈ ℕ
inv0_2 : n ≤ d
```

By simulating the system as an *ASM*, we discover *witnesses* (i.e., <u>event traces</u>) of the *invariants* <u>not</u> being preserved <u>all the time</u>.
 ∃s • s ∈ STATE SPACE ⇒ ¬*invariants*(s)

 We formulate such a commitment to preserving *invariants* as a *proof* obligation (PO) rule (a.k.a. a verification condition (VC) rule).

15 of 124

## Sequents: Syntax and Semantics



?1

• We formulate each *PO/VC* rule as a (horizontal or vertical) *sequent*:

 $H \vdash G$ 



• *H* is a <u>set</u> of predicates forming the *hypotheses/assumptions*.

[ assumed as true ]

• *G* is a <u>set</u> of predicates forming the *goal/conclusion*.

[ claimed to be *provable* from H ]

 $\vdash G \mid \equiv \mid false \vdash G$ 

• Informally: •  $H \vdash G$  is true if G can

⊢ G

 $H \vdash G$  is *true* if G can be proved by assuming H.

[i.e., We say "H entails G" or "H yields G"]

Н

⊢ G

•  $H \vdash G$  is *false* if G cannot be proved by assuming H.

• Formally: 
$$H \vdash G \iff (H \Rightarrow G)$$

|=| true  $\vdash G$ 

**Q**. What does it mean when *H* is empty (i.e., no hypotheses)?

[ Why not



### **PO of Invariant Preservation: Sketch**



INV

• Here is a sketch of the PO/VC rule for *invariant preservation*:

Axioms *Invariants* Satisfied at *Pre-State* Guards of the Event ⊢ *Invariants* Satisfied at *Post-State* 

 Informally, this is what the above PO/VC requires to prove : Assuming all <u>axioms</u>, <u>invariants</u>, and the event's <u>guards</u> hold at the pre-state, after the state transition is made by the event,

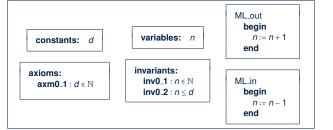
all invariants hold at the post-state.





(d)

## **PO of Invariant Preservation: Components**



- c: list of constants
- A(c): list of axioms
- v and v': list of variables in pre- and post-states
- *I*(*c*, *v*): list of *invariants*

- v = v (ir
- $\langle axm0_1 \rangle$   $v \cong \langle n \rangle, v' \cong \langle n' \rangle$  $\langle inv0_1, inv0_2 \rangle$

• G(c, v): the event's list of guards

 $G(\langle d \rangle, \langle n \rangle) \text{ of } ML\_out \cong \langle true \rangle, G(\langle d \rangle, \langle n \rangle) \text{ of } ML\_in \cong \langle true \rangle$ 

• E(c, v): effect of the *event*'s actions i.t.o. what variable values <u>become</u>

 $E(\langle d \rangle, \langle n \rangle) \text{ of } ML\_out \cong \langle n+1 \rangle, E(\langle d \rangle, \langle n \rangle) \text{ of } ML\_out \cong \langle n-1 \rangle$ 

• v' = E(c, v): *before-after predicate* formalizing *E*'s actions

BAP of *ML\_out*:  $\langle n' \rangle = \langle n + 1 \rangle$ , BAP of *ML\_in*:  $\langle n' \rangle = \langle n - 1 \rangle$ 



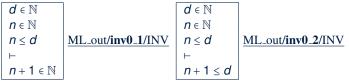
# **Rule of Invariant Preservation: Sequents**



 Based on the components (c, A(c), v, I(c, v), E(c, v)), we are able to formally state the *PO/VC Rule of Invariant Preservation*:



- Accordingly, how many *sequents* to be proved? [# events × # invariants ]
- We have two sequents generated for event ML\_out of model m<sub>0</sub>:



Exercise. Write the POs of invariant preservation for event ML\_in.

Before claiming that a *model* is *correct*, outstanding *sequents* associated with <u>all</u> *POs* must be <u>proved/discharged</u>.

# Inference Rules: Syntax and Semantics



• An *inference rule (IR)* has the following form:

**Formally**:  $A \Rightarrow C$  is an <u>axiom</u>.

**<u>Informally</u>**: To prove *C*, it is <u>sufficient</u> to prove *A* instead.

**Informally**: *C* is the case, assuming that *A* is the case.

- L is a <u>name</u> label for referencing the *inference rule* in proofs.
- A is a <u>set</u> of sequents known as *antecedents* of rule L.
- **C** is a **<u>single</u>** sequent known as *consequent* of rule *L*.
- Let's consider inference rules (IRs) with two different flavours:

$$\begin{array}{c|c} H1 \vdash G \\ \hline H1, H2 \vdash G \end{array} \quad MON \\ \hline n \in \mathbb{N} \vdash n+1 \in \mathbb{N} \end{array} \quad P2$$

• IR **MON**: To prove  $H1, H2 \vdash G$ , it <u>suffices</u> to prove  $H1 \vdash G$  instead. • IR **P2**:  $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$  is an *axiom*.

[ proved automatically without further justifications ]



С



# **Proof of Sequent: Steps and Structure**

• To prove the following sequent (related to *invariant preservation*):

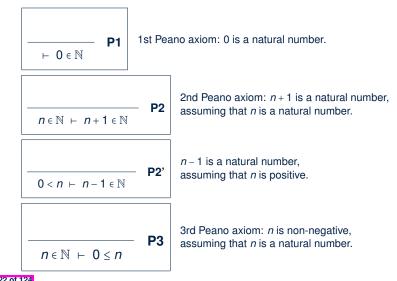


- 1. Apply a *inference rule*, which *transforms* some "outstanding" sequent to <u>one</u> or <u>more</u> other sequents to be proved instead.
- Keep applying *inference rules* until <u>all</u> *transformed* sequents are axioms that do <u>not</u> require any further justifications.
- Here is a *formal proof* of ML\_out/**inv0\_1**/INV, by applying IRs **MON** and **P2**:



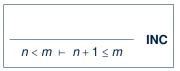
### **Example Inference Rules (1)**



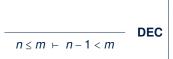


#### **Example Inference Rules (2)**





n + 1 is less than or equal to m, assuming that n is strictly less than m.

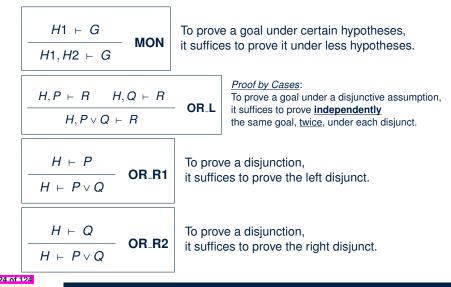


n-1 is strictly less than m, assuming that n is less than or equal to m.



#### Example Inference Rules (3)

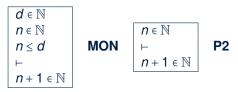




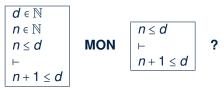


# **Revisiting Design of Events:** *ML\_out*

Recall that we already proved PO ML\_out/inv0\_1/INV :



- .:. ML\_out/inv0\_1/INV succeeds in being discharged.
- How about the other *PO* ML\_out/inv0\_2/INV for the same event?



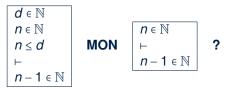
.: *ML\_out/inv0\_2/INV* fails to be discharged.





# **Revisiting Design of Events:** *ML\_in*

• How about the **PO** ML\_in/inv0\_1/INV for ML\_in:



- .: ML\_in/inv0\_1/INV fails to be discharged.
- How about the other *PO* | ML\_in/inv0\_2/INV | for the same event?

$$\begin{array}{c} d \in \mathbb{N} \\ n \in \mathbb{N} \\ n \leq d \\ \vdash \\ n-1 \leq d \end{array} \quad \text{MON} \begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \lor n-1 = d \end{array} \quad \text{OR}_{-1} \begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \end{array} \quad \text{DEC} \\ n-1 < d \end{array}$$

.: ML\_in/inv0\_2/INV succeeds in being discharged.



# **Fixing the Design of Events**



- Proofs of <u>ML\_out/inv0\_2/INV</u> and <u>ML\_in/inv0\_1/INV</u> fail due to the two events being <u>enabled</u> when they should <u>not</u>.
- Having this feedback, we add proper *guards* to *ML\_out* and *ML\_in*:

| ML_out                   | ML₋in                    |
|--------------------------|--------------------------|
| when                     | when                     |
| n < d                    | <i>n</i> > 0             |
| then                     | then                     |
| <i>n</i> := <i>n</i> + 1 | <i>n</i> := <i>n</i> − 1 |
| end                      | end                      |

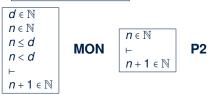
- Having changed both events, <u>updated</u> sequents will be generated for the PO/VC rule of *invariant preservation*.
- <u>All</u> sequents ({*ML\_out*, *ML\_in*} × {inv0\_1, inv0\_2}) now provable?





# **Revisiting Fixed Design of Events:** *ML\_out*

• How about the **PO** ML\_out/inv0\_1/INV for ML\_out:



- .: ML\_out/inv0\_1/INV still succeeds in being discharged!
- How about the other *PO* ML\_out/inv0\_2/INV for the same event?



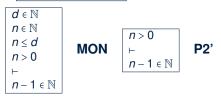
.: ML\_out/inv0\_2/INV now succeeds in being discharged!





# **Revisiting Fixed Design of Events:** *ML\_in*

• How about the **PO** ML\_in/inv0\_1/INV for ML\_in:



- .: *ML\_in/inv0\_1/INV* now <u>succeeds</u> in being discharged!
- How about the other *PO* ML\_in/inv0\_2/INV for the same event?

 $\begin{array}{c} d \in \mathbb{N} \\ n \in \mathbb{N} \\ n \leq d \\ n > 0 \\ \vdash \\ n-1 \leq d \end{array}$  MON  $\begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \lor n-1 = d \end{array}$  OR\_1  $\begin{array}{c} n \leq d \\ \vdash \\ n-1 < d \end{array}$  DEC

.: ML\_in/inv0\_2/INV still succeeds in being discharged!



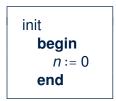
# Initializing the Abstract System m<sub>0</sub>



- Discharging the <u>four</u> sequents proved that <u>both</u> invariant conditions are preserved between occurrences/interleavings of events ML\_out and ML\_in.
- But how are the *invariants established* in the first place?
   <u>Analogy</u>. Proving *P* via *mathematical induction*, two cases to prove:

   P(1), P(2), ...
   [base cases ≈ establishing inv.]
   P(n) ⇒ P(n+1)
   [inductive cases ≈ preserving inv.]
- Therefore, we specify how the **ASM** 's *initial state* looks like:

 $\checkmark$  The IB compound, once *initialized*, has <u>no</u> cars.



- $\checkmark$  Initialization always possible: guard is *true*.
- ✓ There is no *pre-state* for *init*.
  - $\therefore$  The <u>RHS</u> of := must <u>not</u> involve variables.
  - $\therefore$  The <u>RHS</u> of := may <u>only</u> involve constants.

 $\checkmark$  There is only the *post-state* for *init*.

 $\therefore$  Before-*After Predicate*: n' = 0



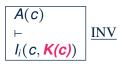
# **PO of Invariant Establishment**





- / An *reactive system*, once *initialized*, should <u>never</u> terminate.
- ✓ Event *init* can<u>not</u> "preserve" the *invariants*.
  - ··· State before its occurrence (*pre-state*) does not exist.
  - Event init only required to establish invariants for the first time
- A new formal component is needed:
  - *K*(*c*): effect of *init*'s actions i.t.o. what variable values *become*
  - e.g., K(⟨d⟩) of init = ⟨0⟩
    v' = K(c): before-after predicate formalizing init's actions
    - e.g., BAP of *init*:  $\langle \mathbf{n}' \rangle = \langle 0 \rangle$
- Accordingly, PO of *invariant establisment* is formulated as a *sequent*:

| Axioms                                           |     |
|--------------------------------------------------|-----|
| F                                                | INV |
| <i>Invariants</i> Satisfied at <i>Post-State</i> |     |





# **Discharging PO of Invariant Establishment**

- How many sequents to be proved?
- We have two sequents generated for event init of model m<sub>0</sub>:



Can we discharge the PO init/inv0\_1/INV ?



• Can we discharge the **PO** init/inv0\_2/INV ?

**P3** 

*d* ∈ ℕ ⊢ 0 ≤ *d* 

32 of 124

∴ *init/inv0\_2/INV* <u>succeeds</u> in being discharged.



LASSONDE

[ # invariants ]

# System Property: Deadlock Freedom



- So far we have proved that our initial model *m*<sub>0</sub> is s.t. <u>all</u> *invariant conditions* are:
  - · Established when system is first initialized via init
  - Preserved whenevner there is a state transition

(via an enabled event: *ML\_out* or *ML\_in*)

- However, whenever <u>event occurrences</u> are <u>conditional</u> (i.e., <u>guards</u> stronger than <u>true</u>), there is a possibility of <u>deadlock</u>:
  - A state where *guards* of <u>all</u> events evaluate to *false*
  - When a *deadlock* happens, <u>none</u> of the *events* is *enabled*.

 $\Rightarrow$  The system is blocked and <u>not</u> reactive anymore!

• We express this *non-blocking* property as a new requirement:

| REQ4 | Once started, the system should work for ever. |  |
|------|------------------------------------------------|--|
|------|------------------------------------------------|--|



# PO of Deadlock Freedom (1)



 $\langle d \rangle$ 

(axm0\_1)

 $\mathbf{v} \cong \langle n \rangle, \mathbf{v}' \cong \langle n' \rangle$ 

 $(inv0_1, inv0_2)$ 

- Recall some of the formal components we discussed:
  - c: list of constants
  - A(c): list of axioms
  - *v* and *v*': list of *variables* in *pre* and *post*-states
  - *I*(*c*, *v*): list of *invariants*
  - G(c, v): the event's list of *guards*

 $G(\langle d \rangle, \langle n \rangle) \text{ of } \textit{ML\_out} \ \widehat{=} \ \langle n < d \rangle, \ G(\langle d \rangle, \langle n \rangle) \text{ of } \textit{ML\_in} \ \widehat{=} \ \langle n > 0 \rangle$ 

A system is *deadlock-free* if <u>at least one</u> of its *events* is *enabled*:

Axioms<br/>Invariants<br/>Satisfied at Pre-State<br/>Disjunction of the guards satisfied at Pre-StateDLFA(c)<br/>I(c, v)<br/> $\vdash$ <br/> $G_1(c, v) \lor$ 

$$\begin{array}{c} A(c) \\ I(c, \mathbf{v}) \\ \vdash \\ G_1(c, \mathbf{v}) \lor \cdots \lor G_m(c, \mathbf{v}) \end{array} \end{array}$$

#### To prove about deadlock freedom

- An event's effect of state transition is <u>not</u> relevant.
- Instead, the evaluation of <u>all</u> events' guards at the pre-state is relevant.



## PO of Deadlock Freedom (2)



• **Deadlock freedom** is <u>not</u> necessarily a desired property.

 $\Rightarrow$  When it is (like  $m_0$ ), then the generated *sequents* must be discharged.

• Applying the PO of *deadlock freedom* to the initial model *m*<sub>0</sub>:



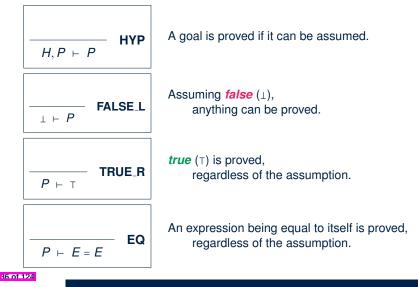
Our bridge controller being *deadlock-free* means that cars can *always* <u>enter</u> (via *ML\_out*) or <u>*leave*</u> (via *ML\_in*) the island-bridge compound.

• Can we formally discharge this **PO** for our *initial model* m<sub>0</sub>?



#### **Example Inference Rules (4)**





#### **Example Inference Rules (5)**



$$\frac{H(F), E = F \vdash P(F)}{H(E), E = F \vdash P(E)} \quad EQ_LR$$

To prove a goal P(E) assuming H(E), where both *P* and *H* depend on expression *E*, it <u>suffices</u> to prove P(F) assuming H(F), where both *P* and *H* depend on expression *F*, given that *E* is equal to *F*.

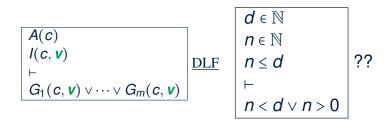
$$\frac{H(\boldsymbol{E}), \boldsymbol{E} = \boldsymbol{F} \vdash P(\boldsymbol{E})}{H(\boldsymbol{F}), \boldsymbol{E} = \boldsymbol{F} \vdash P(\boldsymbol{F})} \quad \textbf{EQ\_RL}$$

To prove a goal P(F) assuming H(F), where both P and H depend on expression F, it <u>suffices</u> to prove P(E) assuming H(E), where both P and H depend on expression E, given that E is equal to F.





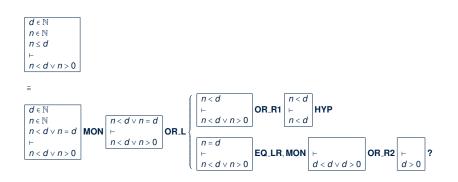
## **Discharging PO of DLF: Exercise**







#### **Discharging PO of DLF: First Attempt**





# Why Did the DLF PO Fail to Discharge?



- In our first attempt, proof of the 2nd case failed:  $\vdash d > 0$
- This unprovable sequent gave us a good hint:
  - For the model under consideration (m<sub>0</sub>) to be *deadlock-free*, it is required that d > 0.
     [ ≥ 1 car allowed in the IB compound ]
  - But current specification of m<sub>0</sub> not strong enough to entail this:
    - $\neg(d > 0) \equiv d \le 0$  is possible for the current model
    - Given axm0\_1 : d ∈ N

10 of 124

- $\Rightarrow$  *d* = 0 is allowed by *m*<sub>0</sub> which causes a *deadlock*.
- Recall the *init* event and the two guarded events:

| init  | ML_out<br>when | ML_in<br><b>when</b> |
|-------|----------------|----------------------|
| begin | n < d          | <i>n</i> > 0         |
| n :=  | then           | then                 |
| end   | n := n +       | + 1 $n := n - 1$     |
|       | end            | end                  |
|       |                |                      |

When d = 0, the disjunction of guards evaluates to *false*:  $0 < 0 \lor 0 > 0$  $\Rightarrow$  As soon as the system is initialized, it *deadlocks immediately* 

as no car can either enter or leave the IR compound!!

# **Fixing the Context of Initial Model**



• Having understood the <u>failed</u> proof, we add a proper **axiom** to m<sub>0</sub>:

axioms: axm0\_2 : *d* > 0

• We have effectively elaborated on REQ2:

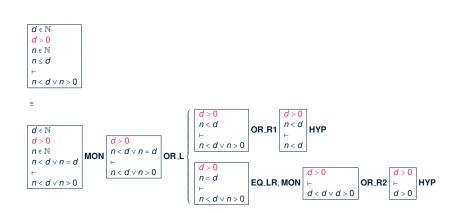
| REQ2 | The number of cars on bridge and island is limited but positive. |
|------|------------------------------------------------------------------|
|------|------------------------------------------------------------------|

- Having changed the context, an <u>updated</u> *sequent* will be generated for the PO/VC rule of *deadlock freedom*.
- Is this new sequent now provable?





### **Discharging PO of DLF: Second Attempt**

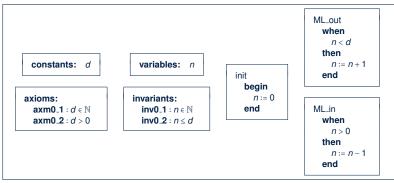




# **Initial Model: Summary**



- The final version of our *initial model* m<sub>0</sub> is *provably correct* w.r.t.:
  - Establishment of Invariants
  - Preservation of Invariants
  - Deadlock Freedom
- Here is the <u>final</u> **specification** of  $m_0$ :



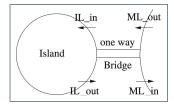


# Model *m*<sub>1</sub>: "More Concrete" Abstraction



- First refinement has a more concrete perception of the bridge controller:
  - We "zoom in" by observing the system from <u>closer to the ground</u>, so that the island-bridge <u>compound</u> is split into:

- the island
- the (one-way) bridge



- Nonetheless, traffic lights and sensors remain *abstracted* away!
- That is, we focus on these two requirement:

| REQ1 | The system is controlling cars on a bridge connecting the mainland to an island. |
|------|----------------------------------------------------------------------------------|
| REQ3 | The bridge is one-way or the other, not both at the same time.                   |

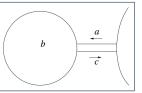
• We are **obliged to prove** this **added concreteness** is **consistent** with m<sub>0</sub>.

## Model *m*<sub>1</sub>: Refined State Space

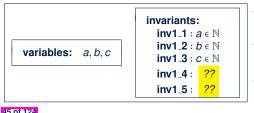
**1.** The **<u>static</u>** part is the same as  $m_0$ 's: **constants**: *d* 

axioms: axm0\_1 : *d* ∈ ℕ axm0\_2 : *d* > 0

2. The <u>dynamic</u> part of the *concrete state* consists of three *variables*:



- *a*: number of cars on the bridge, heading to the <u>island</u>
- b: number of cars on the island
- *c*: number of cars on the bridge, heading to the <u>mainland</u>



- / inv1\_1, inv1\_2, inv1\_3 are
   typing constraints.
- ✓ inv1\_4 links/glues the abstract and concrete states.
- inv1\_5 specifies that the bridge is one-way.



# Model *m*<sub>1</sub>: State Transitions via Events



- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- We first consider the "old" *events* already existing in m<sub>0</sub>.
- Concrete/Refined version of event ML\_out:



- Meaning of *ML\_out* is *refined*: a car <u>exits</u> mainland (getting on the bridge).
- ML\_out enabled only when:
  - the bridge's current traffic flows to the island
  - number of cars on both the <u>bridge</u> and the <u>island</u> is <u>limited</u>
- Concrete/Refined version of event ML\_in:



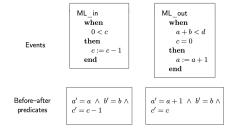
16 of 124

- Meaning of *ML\_in* is *refined*: a car <u>enters</u> mainland (getting off the bridge).
- ML\_in enabled only when:

there is some car on the bridge heading to the mainland.

# Model *m*<sub>1</sub>: Actions vs. Before-After Predicates

Consider the concrete/refined version of actions of m<sub>0</sub>'s two events:



- An event's *actions* are a **specification**: "c becomes c 1 after the transition".
- The *before-after predicate* (*BAP*) "c' = c 1" expresses that
  - c' (the **post-state** value of c) is one less than c (the **pre-state** value of c).
- Given that the concrete state consists of three variables:
  - An event's actions only specify those changing from pre-state to post-state.

Other <u>unmentioned</u> variables have their *post*-state values remain <u>unchanged</u>.

[e.g., **a**' = **a**  $\land$  **b**' = **b**]

• When we express *proof obligations (POs)* associated with *events*, we use *BAP*.

# 

# States & Invariants: Abstract vs. Concrete

- *m*<sub>1</sub> refines *m*<sub>0</sub> by introducing more *variables*:
   *Abstract* State (of *m*<sub>0</sub> being refined):
  - Concrete State
  - (of the <u>refinement</u> model  $m_1$ ):

| variables: | n    |            |
|------------|------|------------|
| variables: | a, b | , <b>с</b> |

- Accordingly, *invariants* may involve different states:
  - Abstract Invariants
     (involving the abstract state only):

 Concrete Invariants (involving <u>at least</u> the concrete state): invariants: inv0\_1 : *n* ∈ ℕ inv0\_2 : *n* ≤ *d* 

invariants: inv1\_1 :  $a \in \mathbb{N}$ inv1\_2 :  $b \in \mathbb{N}$ inv1\_3 :  $c \in \mathbb{N}$ inv1\_4 : a + b + c = ninv1\_5 :  $a = 0 \lor c = 0$ 



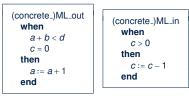
## **Events: Abstract vs. Concrete**



- When an *event* exists in both models  $m_0$  and  $m_1$ , there are two versions of it:
  - The *abstract* version modifies the *abstract* state.

| (abstract_)ML_out when   | (abstract_)ML_in<br>when |
|--------------------------|--------------------------|
| n < d                    | <i>n</i> > 0             |
| then                     | then                     |
| <i>n</i> := <i>n</i> + 1 | <i>n</i> := <i>n</i> − 1 |
| end                      | end                      |
|                          |                          |

• The *concrete* version modifies the *concrete* state.

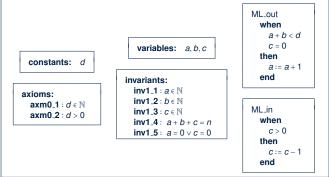


• A <u>new event</u> may <u>only</u> exist in *m*<sub>1</sub> (the *concrete* model): we will deal with this kind of events later, separately from "redefined/overridden" events.

49 of 124



# PO of Refinement: Components (1)



- c: list of constants • A(c): list of **axioms** • v and v': **abstract variables** in pre- & post-states • w and w': concrete variables in pre- & post-states  $w \cong \langle a, b, c \rangle, w' \cong \langle a', b', c' \rangle$ I(c, v): list of abstract invariants
- J(c, v, w): list of concrete invariants 50 of 124

 $\langle d \rangle$ (axm0\_1)

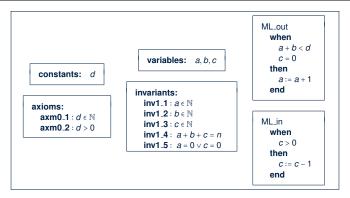
 $v \cong \langle n \rangle, v' \cong \langle n \rangle$ 

 $(inv0_1, inv0_2)$ 

 $(inv1_1, inv1_2, inv1_3, inv1_4, inv1_5)$ 



# PO of Refinement: Components (2)



• G(c, v): list of guards of the *abstract event* 

 $G(\langle d \rangle, \langle n \rangle)$  of  $ML_out \cong \langle n < d \rangle$ , G(c, v) of  $ML_in \cong \langle n > 0 \rangle$ 

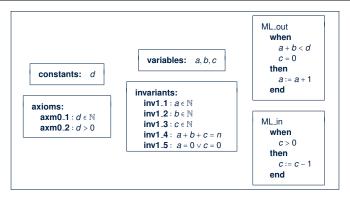
• H(c, w): list of guards of the concrete event

 $H(\langle d \rangle, \langle a, b, c \rangle) \text{ of } ML\_out \cong \langle a + b < d, c = 0 \rangle, H(c, w) \text{ of } ML\_in \cong \langle c > 0 \rangle$ 

51 of 124



# PO of Refinement: Components (3)



• E(c, v): effect of the *abstract event*'s actions i.t.o. what variable values **become** 

 $E(\langle d \rangle, \langle n \rangle)$  of  $ML_out \cong \langle n+1 \rangle, E(\langle d \rangle, \langle n \rangle)$  of  $ML_in \cong \langle n-1 \rangle$ 

F(c, w): effect of the concrete event's actions i.t.o. what variable values become

F(c, w) of  $ML_out \cong (a + 1, b, c)$ , F(c, w) of  $ML_in \cong (a, b, c - 1)$ 



# **Sketching PO of Refinement**



The PO/VC rule for a proper refinement consists of two parts:

#### 1. Guard Strengthening

Axioms

Abstract Invariants Satisfied at Pre-State Concrete Invariants Satisfied at Pre-State Guards of the Concrete Event

⊢

2 of 12

Guards of the Abstract Event

#### 2. Invariant Preservation



- A *concrete* transition <u>always</u> has an *abstract* counterpart.
- A concrete event is enabled only if abstract counterpart is enabled.
- A concrete event performs a transition on concrete states.
- This concrete state transition must be <u>consistent</u> with how its abstract counterpart performs a corresponding abstract transition.

**Note**. *Guard strengthening* and *invariant preservation* are only <u>applicable</u> to events that might be *enabled* after the system is <u>launched</u>.

GRD

The special, <u>non-guarded init</u> event will be discussed separately later.

# **Refinement Rule: Guard Strengthening**



LASSONDE



- How many *sequents* to be proved? [# *abstract* guards ]
- For ML\_out, only <u>one</u> abstract guard, so <u>one</u> sequent is generated :

 $\begin{array}{cccc} d \in \mathbb{N} & d > 0 \\ n \in \mathbb{N} & n \le d \\ a \in \mathbb{N} & b \in \mathbb{N} & c \in \mathbb{N} & a + b + c = n & a = 0 \lor c = 0 \\ a + b < d & c = 0 \\ \vdash \\ n < d \end{array}$ 

<u>Exercise</u>. Write ML\_in's PO of Guard Strengthening for Refinement.

54 of 124



#### **PO Rule: Guard Strengthening of** *ML\_out*

|          | ev0. 1                    | ( d - NI                            |            |
|----------|---------------------------|-------------------------------------|------------|
|          | axm0_1                    | $\{ d \in \mathbb{N} \}$            |            |
|          | axm0_2                    | { <i>d</i> > 0                      |            |
|          | inv0_1                    | $\{ n \in \mathbb{N} \}$            |            |
|          | inv0_2                    | { <i>n</i> ≤ <i>d</i>               |            |
|          | inv1_1                    | { <i>a</i> ∈ ℕ                      |            |
|          | inv1_2                    | $\{ b \in \mathbb{N} \}$            |            |
|          | inv1_3                    | $\left\{ c \in \mathbb{N} \right\}$ | ML_out/GRD |
|          | inv1_4                    | $\begin{cases} a+b+c=n \end{cases}$ |            |
|          | inv1_5                    | $\{a=0\lor c=0$                     |            |
| Concret  | e guards of <i>ML_out</i> | ∫ a+b <d< th=""><th></th></d<>      |            |
| Concreta |                           | C = 0                               |            |
|          |                           | F                                   |            |
| Abstrac  | t guards of <i>ML_out</i> | { <i>n</i> < <i>d</i>               |            |





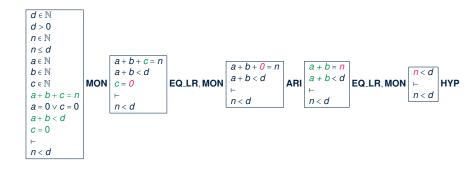
#### **PO Rule: Guard Strengthening of** *ML\_in*

| $axm0_{-}1  \left\{ \begin{array}{l} d \in \mathbb{N} \\ axm0_{-}2  \left\{ \begin{array}{l} d > 0 \\ inv0_{-}1  \left\{ \begin{array}{l} n \in \mathbb{N} \end{array} \right. \right\} \right\}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                   |
| inv0 1 $\{n \in \mathbb{N}\}$                                                                                                                                                                     |
|                                                                                                                                                                                                   |
| inv0_2 { <i>n</i> ≤ <i>d</i>                                                                                                                                                                      |
| inv1₋1 { <i>a</i> ∈ ℕ                                                                                                                                                                             |
| inv1_2 $\begin{cases} b \in \mathbb{N} \\ ML_in/GRE \end{cases}$                                                                                                                                  |
| inv1_3 $\{ c \in \mathbb{N} \}$                                                                                                                                                                   |
| <b>inv1_4</b> $\{ a+b+c=n \}$                                                                                                                                                                     |
| <b>inv1_5</b> $\{ a = 0 \lor c = 0 \}$                                                                                                                                                            |
| <b>Concrete</b> guards of $ML_{in} \{ c > 0 \}$                                                                                                                                                   |
| ⊢                                                                                                                                                                                                 |
| Abstract guards of $ML_in \{ n > 0 \}$                                                                                                                                                            |





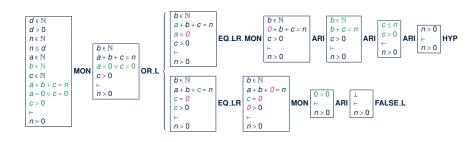
#### Proving Refinement: ML\_out/GRD







#### Proving Refinement: ML\_in/GRD

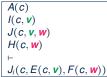




# **Refinement Rule: Invariant Preservation**



۲ Based on the components, we are able to formally state the PO/VC Rule of Invariant Preservation for Refinement:



INV where  $J_i$  denotes a single *concrete invariant* 

• # sequents to be proved? [# concrete, old evts × # concrete invariants]

Here are two (of the ten) sequents generated:

 $d \in \mathbb{N}$  $d \in \mathbb{N}$ d > 0d > 0 $n \in \mathbb{N}$  $n \in \mathbb{N}$ n < dn < d $a \in \mathbb{N}$ a e N b∈ℕ h∈ℕ C E N ML out/inv1 4/INV ML\_in/inv1\_5/INV  $C \in \mathbb{N}$ a+b+c=na+b+c=n $a = 0 \lor c = 0$  $a = 0 \lor c = 0$ a+b < dc > 0c = 0 $a = 0 \lor (c - 1) = 0$ (a+1) + b + c = (n+1)

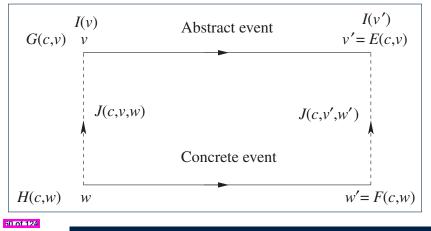
Exercises. Specify and prove other eight POs of Invariant Preservation. 59 of 124

#### **Visualizing Inv. Preservation in Refinement**



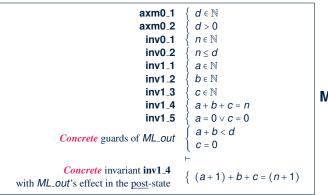
Each *concrete* event (w to w') is *simulated by* an *abstract* event (v to v'):

- abstract & concrete pre-states related by concrete invariants J(c, v, w)
- abstract & concrete post-states related by concrete invariants J(c, v', w')





#### INV PO of *m*<sub>1</sub>: ML\_out/inv1\_4/INV

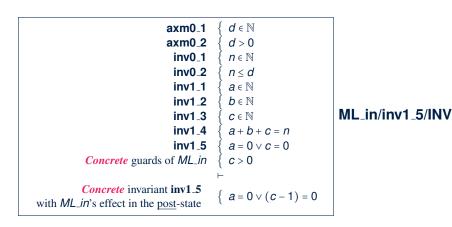


#### ML\_out/inv1\_4/INV





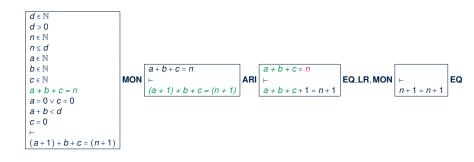
#### INV PO of *m*<sub>1</sub>: ML\_in/inv1\_5/INV







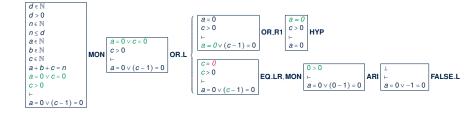
#### Proving Refinement: ML\_out/inv1\_4/INV







#### Proving Refinement: ML\_in/inv1\_5/INV

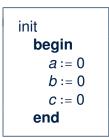




#### Initializing the Refined System m<sub>1</sub>



- Discharging the twelve sequents proved that:
  - concrete invariants preserved by ML\_out & ML\_in
  - concrete guards of ML\_out & ML\_in entail their abstract counterparts
- What's left is the specification of how the **ASM** 's *initial state* looks like:



- $\sqrt{No}$  cars on bridge (heading either way) and island
- $\checkmark$  Initialization always possible: guard is *true*.
- ✓ There is no *pre-state* for *init*.
  - $\therefore$  The <u>RHS</u> of := must <u>not</u> involve variables.
  - $\therefore$  The <u>RHS</u> of := may <u>only</u> involve constants.
- $\checkmark$  There is only the *post-state* for *init*.

 $\therefore$  Before-*After Predicate*:  $a' = 0 \land b' = 0 \land c' = 0$ 



### **PO of** *m*<sub>1</sub> **Concrete Invariant Establishment**

- · Some (new) formal components are needed:
  - *K*(*c*): effect of *abstract init*'s actions:
- e.g.,  $K(\langle d \rangle)$  of init  $\widehat{=} \langle 0 \rangle$

LASSOND

- v' = K(c): before-after predicate formalizing abstract init's actions
   e.g., BAP of init: (n') = (0)
- *L*(*c*): effect of *concrete init*'s actions:

e.g., K(⟨d⟩) of init ≈ ⟨0,0,0⟩
w' = L(c): before-after predicate formalizing concrete init's actions e.g., BAP of init: ⟨a', b', c'⟩ = ⟨0,0,0⟩

Accordingly, PO of *invariant establisment* is formulated as a <u>sequent</u>:

| Axioms                                             |     | A(c)     |
|----------------------------------------------------|-----|----------|
| F                                                  | INV | H        |
| <b>Concrete Invariants</b> Satisfied at Post-State |     | $J_i(c)$ |





# **Discharging PO of** $m_1$

# **Concrete Invariant Establishment**

How many sequents to be proved?

- [ # concrete invariants ]
- <u>Two</u> (of the <u>five</u>) sequents generated for *concrete init* of *m*<sub>1</sub>:

$$\begin{array}{c} d \in \mathbb{N} \\ d > 0 \\ \vdash \\ 0 + 0 + 0 = 0 \end{array} \xrightarrow{\text{init/inv1_4/INV}} \begin{array}{c} d \in \mathbb{N} \\ d > 0 \\ \vdash \\ 0 = 0 \lor 0 = 0 \end{array} \xrightarrow{\text{init/inv1_5/INV}} \end{array}$$

• Can we discharge the **PO** init/inv1\_4/INV ?





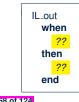
#### Model *m*<sub>1</sub>: New, Concrete Events



- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered concrete/refined events already existing in mo: ML\_out & ML\_in
- New event IL\_in:



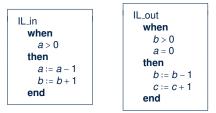
- $\circ$  *IL\_in* denotes a car <u>entering</u> the island (getting off the bridge).
- IL\_in enabled only when:
  - The bridge's current traffic <u>flows to</u> the island.
     <u>Q</u>. <u>Limited</u> number of cars on the <u>bridge</u> and the <u>island</u>?
    - <u>A</u>. Ensured when the earlier  $ML_out$  (of same car) occurred
- New event IL\_out:



- *IL\_out* denotes a car exiting the island (getting on the bridge).
- IL\_out enabled only when:
  - There is some car on the island.
  - The bridge's current traffic flows to the mainland.

# Model *m*<sub>1</sub>: BA Predicates of Multiple Actions

Consider *actions* of *m*<sub>1</sub>'s two *new* events:



What is the **BAP** of *ML\_in*'s actions?

$$a' = a - 1 \land b' = b + 1 \land c' = c$$

What is the **BAP** of *ML\_in*'s actions?

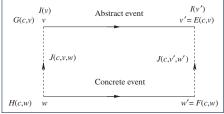
$$a' = a \land b' = b - 1 \land c' = c + 1$$



# Visualizing Inv. Preservation in Refinement



Recall how a concrete event is simulated by its abstract counterpart:



• For each *new* event:

70 of 1

- Strictly speaking, it does **<u>not</u>** have an *abstract* counterpart.
- It is *simulated by* a special *abstract* event (transforming v to v'):

|     | skip<br><b>begin</b> | <ul> <li><i>skip</i> is a "dummy" event: <u>non</u>-guarded and does <u>nothing</u></li> <li>Q. <i>BAP</i> of the skip event?</li> </ul> |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|     | end                  | $\underline{\mathbf{A}}$ . $n' = n$                                                                                                      |
| 124 |                      |                                                                                                                                          |

#### **Refinement Rule: Invariant Preservation**



- The new events *IL\_in* and *IL\_out* do not exist in **m**<sub>0</sub>, but:
  - $\circ~$  They  $\underline{exist}$  in  $m_1$  and may impact upon the  $\underline{concrete}$  state space.
  - They *preserve* the *concrete invariants*, just as *ML\_out* & *ML\_in* do.
- Recall the PO/VC Rule of <u>Invariant Preservation</u> for <u>Refinement</u>:

```
 \begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ H(c,w) \\ \vdash \\ J_i(c,E(c,v),F(c,w)) \end{array}  \quad \text{where } J_i \text{ denotes a } \underline{\text{single } concrete invariant} \\ \end{array}
```

• How many *sequents* to be proved? [# new evts × # concrete invariants ]

1 of 124

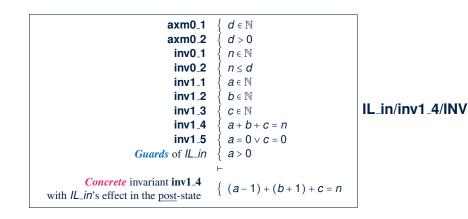
• Here are two (of the ten) sequents generated:

| $\begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \in \mathbb{N} \\ d = d \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ a > 0 \\ \vdash \\ (a - 1) + (b + 1) + c = n \end{array}$ | IL_in/inv1_4/INV | $\begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \in \mathbb{N} \\ n \leq d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ a > 0 \\ \vdash \\ (a - 1) = 0 \lor c = 0 \end{array}$ | <u>IL_in/inv1_5/INV</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|

• Exercises. Specify and prove other eight POs of Invariant Preservation.



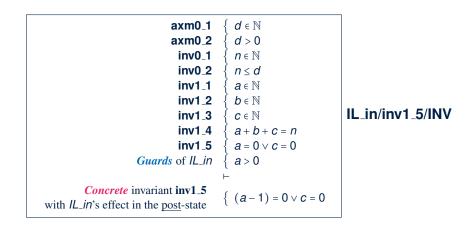
#### INV PO of *m*<sub>1</sub>: IL\_in/inv1\_4/INV







#### INV PO of *m*<sub>1</sub>: IL\_in/inv1\_5/INV







Ν

$$d \in \mathbb{N}$$
  

$$d > 0$$
  

$$n \in \mathbb{N}$$
  

$$n \le d$$
  

$$a \in \mathbb{N}$$
  

$$b \in \mathbb{N}$$
  

$$c \in \mathbb{N}$$
  

$$a + b + c = n$$
  

$$a = 0 \lor c = 0$$
  

$$a > 0$$
  

$$\vdash$$
  

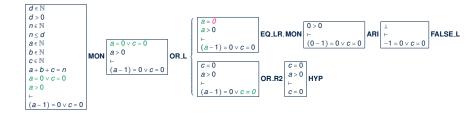
$$(a - 1) + (b + 1) + c = n$$

$$\mathbf{MON} \begin{vmatrix} a+b+c=n \\ \vdash \\ (a-1)+(b+1)+c=n \end{vmatrix} \mathbf{ARI} \begin{vmatrix} a+b+c=n \\ \vdash \\ a+b+c=n \end{vmatrix} \mathbf{HYP}$$





#### Proving Refinement: IL\_in/inv1\_5/INV

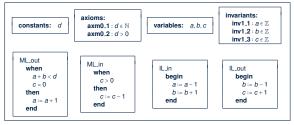




## Livelock Caused by New Events Diverging



• An alternative *m*<sub>1</sub> (with **inv1\_4**, **inv1\_5**, and **guards** of <u>new</u> events removed):



Concrete invariants are under-specified: only typing constraints.

**Exercises**: Show that **Invariant Preservation** is provable, but **Guard Strengthening** is <u>not</u>.

 Say this alternative m<sub>1</sub> is implemented as is: *IL\_in* and *IL\_out* <u>always</u> <u>enabled</u> and may occur <u>indefinitely</u>, preventing other "old" events (*ML\_out* and *ML\_in*) from ever happening: *(init ML\_out II in IL\_out II in IL\_out II)*

 $(init, ML_out, IL_in, IL_out, IL_in, IL_out, ...)$ 

Q: What are the corresponding *abstract* transitions?

<u>A</u>: (*init*, *ML\_out*, *skip*, *skip*, *skip*, *skip*, ...) [≈ executing while(true);

- We say that these two *new* events *diverge*, creating a *livelock*:
  - Different from a *deadlock* :: <u>always</u> an event occurring (*IL\_in* or *IL\_out*).
  - But their *indefinite* occurrences contribute <u>nothing</u> useful.

76 of 124

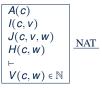
#### PO of Convergence of New Events



The PO/VC rule for *non-divergence/livelock freedom* consists of two parts:

- Interleaving of *new* events characterized as an integer expr.: *variant*.
- A variant V(c, w) may refer to constants and/or *concrete* variables.
- In the original  $m_1$ , let's try **variants** :  $2 \cdot a + b$

#### 1. Variant Stays Non-Negative



- Variant *V(c, w)* measures how many more times the *new* events can occur.
- If a *new* event is *enabled*, then V(c, w) > 0.
  - When V(c, w) reaches 0, some "old" events must happen s.t. V(c, w) goes back above 0.

#### 2. A New Event Occurrence Decreases Variant

$$\begin{array}{c}
A(c) \\
I(c,v) \\
J(c,v,w) \\
H(c,w) \\
\vdash \\
V(c,F(c,w)) < V(c,w)
\end{array}$$
VAR

If a *new* event is *enabled* and occurs, the value of V(c, w) ↓.

#### PO of Convergence of New Events: NAT



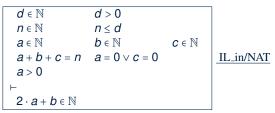
• Recall: PO related to Variant Stays Non-Negative:



How many sequents to be proved?

[#new events]

• For the *new* event *IL\_in*:



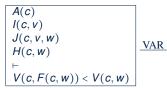
Exercises: Prove IL\_in/NAT and Formulate/Prove IL\_out/NAT.



#### PO of Convergence of New Events: VAR



• Recall: PO related to A New Event Occurrence Decreases Variant



How many sequents to be proved?

[#new events]

• For the *new* event *IL\_in*:

 $\begin{array}{cccc}
d \in \mathbb{N} & d > 0 \\
n \in \mathbb{N} & n \leq d \\
a \in \mathbb{N} & b \in \mathbb{N} & c \in \mathbb{N} \\
a + b + c = n & a = 0 \lor c = 0 \\
a > 0 \\
\vdash \\
2 \cdot (a - 1) + (b + 1) < 2 \cdot a + b
\end{array}$ IL.in/VAR

Exercises: Prove IL\_in/VAR and Formulate/Prove IL\_out/VAR.





Given the original  $\mathbf{m}_1$ , what if the following *variant* expression is used:

variants : a + b

Are the formulated sequents still provable?



#### PO of Refinement: Deadlock Freedom



- Recall:
  - We proved that the initial model  $m_0$  is deadlock free (see **DLF**).
  - We proved, according to *guard strengthening*, that if a *concrete* event is <u>enabled</u>, then its *abstract* counterpart is <u>enabled</u>.
- PO of <u>relative</u> deadlock freedom for a refinement model:

$$\begin{array}{c} A(c) \\ I(c,v) \\ J(c,v,w) \\ G_1(c,v) \lor \cdots \lor G_m(c,v) \\ \vdash \\ H_1(c,w) \lor \cdots \lor H_n(c,w) \end{array} \end{array}$$

 $\begin{array}{l} \text{If an } \textbf{abstract} \text{ state does } \underline{\text{not}} \quad \textbf{deadlock} \\ \text{(i.e., } G_1(c,v) \lor \cdots \lor G_m(c,v) \text{), then} \\ \text{its } \textbf{concrete} \text{ counterpart does } \underline{\text{not}} \quad \textbf{deadlock} \\ \text{(i.e., } H_1(c,w) \lor \cdots \lor H_n(c,w) \text{).} \end{array}$ 

• Another way to think of the above PO:

The *refinement* does <u>not</u> introduce, in the *concrete*, any "new" *deadlock* scenarios <u>not</u> existing in the *abstract* state.





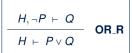
#### **PO Rule: Relative Deadlock Freedom** *m*<sub>1</sub>

| axm0_1<br>axm0_2<br>inv0_1<br>inv0_2<br>inv1_1<br>inv1_2<br>inv1_3<br>inv1_4<br>inv1_5<br>Disjunction of <i>abstract</i> guards | $\begin{cases} d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \le d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a = 0 \lor c = 0 \\ n < d \\ \forall n > 0 \end{cases}$ guards of <i>ML_out</i> in <i>m</i> <sub>0</sub>                                                                          | DLF |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Disjunction of <i>concrete</i> guards                                                                                           | $ \begin{cases} a+b < d \land c = 0 \\ \lor & c > 0 \\ \lor & a > 0 \\ \lor & b > 0 \land a = 0 \end{cases} $ guards of <i>ML_out</i> in <i>m</i> <sub>1</sub><br>guards of <i>ML_in</i> in <i>m</i> <sub>1</sub><br>guards of <i>IL_in</i> in <i>m</i> <sub>1</sub><br>guards of <i>IL_out</i> in <i>m</i> <sub>1</sub> |     |



#### **Example Inference Rules (6)**





#### To prove a *disjunctive goal*,

it suffices to prove one of the disjuncts, with the the <u>negation</u> of the the other disjunct serving as an additional <u>hypothesis</u>.

$$\frac{H, P, Q \vdash R}{H, P \land Q \vdash R} \quad \text{AND}_{-L}$$

To prove a goal with a <u>conjunctive hypothesis</u>, it suffices to prove the same goal, with the the two <u>conjuncts</u> serving as two separate <u>hypotheses</u>.

$$\frac{H \vdash P \qquad H \vdash Q}{H \vdash P \land Q} \quad \text{AND}_{-}\mathbf{R}$$

To prove a goal with a *conjunctive goal*, it suffices to prove each <u>conjunct</u> as a separate <u>goal</u>.



#### **Proving Refinement: DLF of** *m*<sub>1</sub>





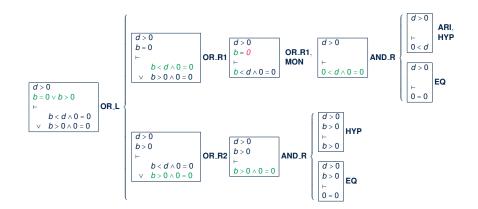
#### MON

| d > 0<br>a ∈ ℕ<br>b ∈ ℕ | $d > 0$ $a \in \mathbb{N}$ $b \in \mathbb{N}$ $c = 0$ $(a + b < d \land c = 0)$ $(b - b) \land a = 0$ | EQ.LR,<br>MON |  | OR_R,<br>ARI | $d > 0$ $a = 0$ $b \in \mathbb{N}$ $a + b < d \land 0 = 0$ $v  b > 0 \land a = 0$ | EQ_LR,<br>MON |  | ARI | $ \begin{aligned} d &> 0 \\ b &= 0 \lor b > 0 \\ \vdash \\ b &< d \land 0 = 0 \\ \lor \\ b &> 0 \land 0 = 0 \end{aligned} $ | ] |
|-------------------------|-------------------------------------------------------------------------------------------------------|---------------|--|--------------|-----------------------------------------------------------------------------------|---------------|--|-----|-----------------------------------------------------------------------------------------------------------------------------|---|
|-------------------------|-------------------------------------------------------------------------------------------------------|---------------|--|--------------|-----------------------------------------------------------------------------------|---------------|--|-----|-----------------------------------------------------------------------------------------------------------------------------|---|





**Proving Refinement: DLF of** *m*<sub>1</sub> (continued)





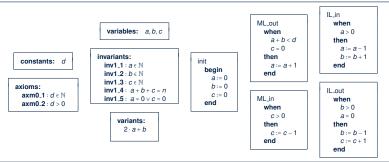
#### **First Refinement: Summary**



- The <u>final</u> version of our *first refinement*  $m_1$  is *provably correct* w.r.t.:
  - Establishment of Concrete Invariants
  - Preservation of Concrete Invariants
  - Strengthening of *guards*

86 of 124

- *Convergence* (a.k.a. livelock freedom, non-divergence)
- <u>Relative</u> *Deadlock* Freedom
- Here is the <u>final</u> specification of *m*<sub>1</sub>:





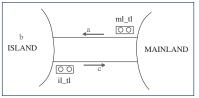
[ new events ]

# Model *m*<sub>2</sub>: "More Concrete" Abstraction



- 2nd refinement has even more concrete perception of the bridge controller:
  - We "zoom in" by observing the system from even closer to the ground, so that the one-way traffic of the bridge is controlled via:

*ml\_tl*: a traffic light for exiting the ML *il\_tl*: a traffic light for exiting the IL <u>abstract</u> variables *a*, *b*, *c* from *m*<sub>1</sub> still used (instead of being replaced)



- Nonetheless, sensors remain *abstracted* away!
- That is, we focus on these three *environment constraints*:

| ENV1 | The system is equipped with two traffic lights with two colors: green and red. |
|------|--------------------------------------------------------------------------------|
| ENV2 | The traffic lights control the entrance to the bridge at both ends of it.      |
| ENV3 | Cars are not supposed to pass on a red traffic light, only on a green one.     |

We are obliged to prove this added concreteness is consistent with m<sub>1</sub>.

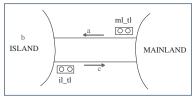
## Model *m*<sub>2</sub>: Refined, Concrete State Space

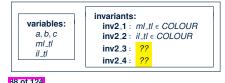


1. The static part introduces the notion of traffic light colours:

|             |            |           | axioms:                              |
|-------------|------------|-----------|--------------------------------------|
|             |            |           |                                      |
| sets: COLOR | constants: | red.areen | <b>axm2_1</b> : COLOR = {green, red} |
|             |            |           |                                      |
|             |            |           | axm2_2 : green ≠ red                 |

#### 2. The dynamic part shows the superposition refinement scheme:





- Abstract variables a, b, c from m<sub>1</sub> are still in use in m\_2.
- Two new, concrete variables are introduced: ml\_tl and il\_tl
  - <u>Constrast</u>: In m<sub>1</sub>, *abstract* variable n is replaced by *concrete* variables a, b, c.
    - ◊ inv2\_1 & inv2\_2: typing constraints
    - inv2\_3: being allowed to exit ML means cars within limit and no opposite traffic
    - inv2\_4: being allowed to exit IL means some car in IL and no opposite traffic

# Model m<sub>2</sub>: Refining Old, Abstract Events



- The system acts as an ABSTRACT STATE MACHINE (ASM): it evolves as actions of enabled events change values of variables, subject to invariants.
- Concrete/Refined version of event ML\_out:



• Recall the *abstract* guard of *ML\_out* in  $m_1$ :  $(c = 0) \land (a + b < d)$ 

 $\Rightarrow$  <u>Unrealistic</u> as drivers should <u>**not**</u> know about *a*, *b*, *c*!

- *ML\_out* is *refined*: a car <u>exits</u> the ML (to the bridge) only when:
  - the traffic light *ml\_tl* allows
- Concrete/Refined version of event IL\_out:



89 of 124

- Recall the *abstract* guard of *IL\_out* in  $m_1$ :  $(a = 0) \land (b > 0)$ 
  - $\Rightarrow$  <u>Unrealistic</u> as drivers should <u>**not**</u> know about *a*, *b*, *c*!
- *IL\_out* is *refined*: a car <u>exits</u> the IL (to the bridge) only when:
  - the traffic light *il\_tl* allows
- Q1. How about the other two "old" events IL\_in and ML\_in?
- A1. No need to *refine* as already *guarded* by *ML\_out* and *IL\_out*.
- Q2. What if the driver disobeys *ml\_tl* or *il\_tl*?



## Model *m*<sub>2</sub>: New, Concrete Events

- The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as actions of enabled events change values of variables, subject to invariants.
- Considered *events* <u>already</u> existing in *m*<sub>1</sub>:
  - ML\_out & IL\_out
  - IL\_in & ML\_in

ML\_tl\_green

when

then

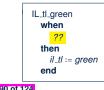
end

- New event ML\_tl\_green:
  - *ML\_tl\_green* denotes the traffic light *ml\_tl* turning green.
  - *ML\_tl\_green* enabled only when:
    - the traffic light not already green
    - limited number of cars on the bridge and the island
    - <u>No</u> opposite traffic

 $[ \Rightarrow ML_out$ 's **abstract** guard in  $m_1$ ]

• *New event IL\_tl\_green*:

*ml\_tl* := *qreen* 



- *IL\_tl\_green* denotes the traffic light *il\_tl* turning green.
- IL\_tl\_green enabled only when:
  - the traffic light not already green
  - some cars on the island (i.e., island not empty)
  - <u>No</u> opposite traffic

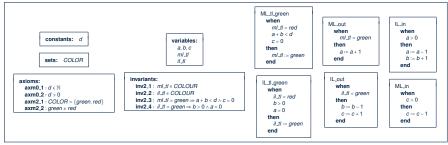
#### $[ \Rightarrow IL_out$ 's **abstract** guard in $m_1$ ]



[ REFINED ] [ UNCHANGED ]



#### Invariant Preservation in Refinement m<sub>2</sub>



Recall the PO/VC Rule of Invariant Preservation for Refinement:



- How many *sequents* to be proved? [# concrete evts × # concrete invariants = 6 × 4]
- We discuss two sequents: <u>ML\_out/inv2\_4</u>/INV and <u>IL\_out/inv2\_3</u>/INV

*Exercises*. Specify and prove (some of) other <u>twenty-two</u> *POs of Invariant Preservation*.

# LASSONDE

#### INV PO of *m*<sub>2</sub>: ML\_out/inv2\_4/INV

|                                                                                         |                                                                            | 1                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|
| axm0_1                                                                                  | { <i>d</i> ∈ ℕ                                                             |                  |
| axm0_2                                                                                  | { d > 0                                                                    |                  |
| axm2_1                                                                                  | { COLOUR = {green, red}                                                    |                  |
| axm2_2                                                                                  | } green ≠ red                                                              |                  |
| inv0_1                                                                                  | { <i>n</i> ∈ ℕ                                                             |                  |
| inv0_2                                                                                  | { n≤d                                                                      |                  |
| inv1_1                                                                                  | <i>`</i> <b>a</b> ∈ℕ                                                       |                  |
| inv1_2                                                                                  | } b ∈ ℕ                                                                    |                  |
| inv1_3                                                                                  | } <i>c</i> ∈ ℕ                                                             |                  |
| inv1_4                                                                                  | a+b+c=n                                                                    | ML_out/inv2_4/IN |
| inv1_5                                                                                  | $a = 0 \lor c = 0$                                                         |                  |
| inv2_1                                                                                  | } ml₋tl ∈ COLOUR                                                           |                  |
| inv2_2                                                                                  | Ì il_tl ∈ COLOUR                                                           |                  |
| inv2_3                                                                                  | $\begin{cases} ml_t = green \Rightarrow a + b < d \land c = 0 \end{cases}$ |                  |
| inv2_4                                                                                  | $iI_t = green \Rightarrow b > 0 \land a = 0$                               |                  |
| Concrete guards of ML_out                                                               | { ml_tl = green                                                            |                  |
|                                                                                         | -                                                                          |                  |
| <i>Concrete</i> invariant inv2_4 with <i>ML_out</i> 's effect in the <u>post</u> -state | $\{ il_t = green \Rightarrow b > 0 \land (a+1) = 0$                        |                  |

#### INV PO of *m*<sub>2</sub>: IL\_out/inv2\_3/INV



| $\begin{array}{l} \textbf{axm0.1} & \left\{ \begin{array}{l} d \in \mathbb{N} \\ \textbf{axm0.2} & \left\{ \begin{array}{l} d > 0 \\ \textbf{axm2.1} \\ \textbf{COLOUR} = \{ \textit{green}, \textit{red} \} \\ \textbf{axm2.2} \\ \textbf{green} \neq \textit{red} \\ \textbf{inv0.1} \\ \textbf{inv0.2} \\ \textbf{n} \leq d \\ \textbf{inv1.1} \\ \textbf{inv1.2} \\ \left\{ \begin{array}{l} a \in \mathbb{N} \\ b \in \mathbb{N} \end{array} \right. \end{array} \end{array}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| axm2.1 { $COLOUR = \{green, red\}$<br>axm2.2 { $green \neq red$<br>inv0.1 { $n \in \mathbb{N}$<br>inv0.2 { $n \leq \mathbb{N}$<br>inv1.1 { $a \in \mathbb{N}$<br>inv1.2 { $b \in \mathbb{N}$                                                                                                                                                                                                                                                                                       |
| axm2.2 { green $\neq$ red<br>inv0.1 { $n \in \mathbb{N}$<br>inv0.2 { $n \leq d$<br>inv1.1 { $a \in \mathbb{N}$<br>inv1.2 { $b \in \mathbb{N}$                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{l} \operatorname{inv0.1} \left\{ \begin{array}{l} n \in \mathbb{N} \\ \operatorname{inv0.2} \end{array} \right\} \\ \operatorname{inv0.2} \left\{ \begin{array}{l} n \le d \\ i \ge d \\ \operatorname{inv1.1} \end{array} \right\} \\ \operatorname{inv1.2} \left\{ \begin{array}{l} a \in \mathbb{N} \\ b \in \mathbb{N} \end{array} \right\} $                                                                                                                  |
| inv0.2 { n≤d<br>inv1.1 { a∈ ℕ<br>inv1.2 { b∈ ℕ                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| inv1.1 { a∈ℕ<br>inv1.2 { b∈ℕ                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| inv1.2 $b \in \mathbb{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| inv1_3 { c ∈ ℕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $inv1_4 \{ a+b+c=n $                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| inv1_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $inv2_1 \{ m_{t} \in COLOUR \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| inv2_2 { <i>il_tl</i> ∈ COLOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| inv2_3 { $m_{t} = green \Rightarrow a + b < d \land c = 0$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| inv2_4 $\begin{cases} il_t = green \Rightarrow b > 0 \land a = 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                      |
| Concrete guards of IL_out { il_tI = green                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ⊢ T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Concreteinva3with ML_out's effect in the post-state $mtl = green \Rightarrow a + (b-1) < d \land (c+1) = 0$                                                                                                                                                                                                                                                                                                                                                                        |

L\_out/inv2\_3/INV



#### **Example Inference Rules (7)**



$$\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R} \quad \text{IMP}_{\perp}$$

If a hypothesis *P* matches the <u>assumption</u> of another *implicative hypothesis*  $P \Rightarrow Q$ , then the <u>conclusion</u> *Q* of the *implicative hypothesis* can be used as a new hypothesis for the sequent.

$$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad \text{IMP}_{-}\mathbf{R}$$

To prove an *implicative goal*  $P \Rightarrow Q$ , it suffices to prove its conclusion Q, with its assumption P serving as a new <u>hypotheses</u>.

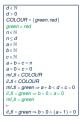
$$\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \mathsf{NOT_LL}$$

To prove a goal Q with a *negative hypothesis*  $\neg P$ , it suffices to prove the <u>negated</u> hypothesis  $\neg(\neg P) \equiv P$ with the <u>negated</u> original goal  $\neg Q$ serving as a new <u>hypothesis</u>.





#### Proving ML\_out/inv2\_4/INV: First Attempt











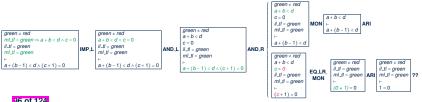
#### Proving IL\_out/inv2\_3/INV: First Attempt

| $d \in \mathbb{N}$                                               |
|------------------------------------------------------------------|
| <i>d</i> > 0                                                     |
| COLOUR = {green, red}                                            |
| green ≠ red                                                      |
| $n \in \mathbb{N}$                                               |
| $n \le d$                                                        |
| a∈N                                                              |
| $b \in \mathbb{N}$                                               |
| $C \in \mathbb{N}$                                               |
| a+b+c=n                                                          |
| $a = 0 \lor c = 0$                                               |
| ml_tl ∈ COLOUR                                                   |
| il_tl ∈ COLOUR                                                   |
| $ml_tl = green \Rightarrow a + b < d \land c = 0$                |
| $iI_tI = green \Rightarrow b > 0 \land a = 0$                    |
| il_tl = green                                                    |
| E .                                                              |
| $ml_{a}tl = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0$ |

#### MON

 $\begin{array}{l} green \neq red \\ ml\_ll = green \Rightarrow a + b < d \land c = 0 \\ il\_ll = green \\ \vdash \\ ml\_ll = green \Rightarrow a + (b-1) < d \land (c+1) = 0 \end{array}$ 

#### IMP\_R



#### Failed: ML\_out/inv2\_4/INV, IL\_out/inv2\_3/INV



 Our first attempts of proving <u>ML\_out/inv2\_4/INV</u> and <u>IL\_out/inv2\_3/INV</u> both failed the <u>2nd case</u> (resulted from applying IR AND\_R):

green  $\neq$  red  $\wedge$  il\_tl = green  $\wedge$  ml\_tl = green  $\vdash$  1 = 0

- This unprovable sequent gave us a good hint:
  - Goal 1 = 0 = **false** suggests that the *safety requirements* a = 0 (for inv2\_4) and c = 0 (for inv2\_3) *contradict* with the current  $m_2$ .
  - Hyp. <u>*il\_tl = green = ml\_tl*</u> suggests a *possible, dangerous state* of *m*<sub>2</sub>, where two cars heading <u>different</u> directions are on the <u>one-way</u> bridge:

| ( | init           | , ML_tl_green  | , <u>ML_out</u> , | <u>IL_in</u>   | , IL_tl_green  | IL_out         | $, \underbrace{ML_out} )$ |
|---|----------------|----------------|-------------------|----------------|----------------|----------------|---------------------------|
|   | d = 2          | <i>d</i> = 2   | d = 2             | <i>d</i> = 2   | d = 2          | <i>d</i> = 2   | <i>d</i> = 2              |
|   | <i>a</i> ′ = 0 | <i>a</i> ′ = 0 | a' = 1            | a' = 0         | <i>a</i> ′ = 0 | <i>a</i> ′ = 0 | a' = 1                    |
|   | <i>b</i> ′ = 0 | <i>b</i> ′ = 0 | b' = 0            | b' = 1         | <i>b</i> ′ = 1 | b' = 0         | b' = 0                    |
|   | <i>c</i> ′ = 0 | <i>c</i> ′ = 0 | <i>c</i> ′ = 0    | <i>c</i> ′ = 0 | <i>c</i> ′ = 0 | c' = 1         | c' = 1                    |
| n | nl_tl' = red   | ml_tl' = green | ml_tl' = green    | ml_tl' = green | ml_tl' = green | ml_tl' = green | ml_tl' = green            |
|   | il_tl' = red   | $iI_tI' = red$ | $iI_tI' = red$    | $iI_tI' = red$ | il_tl' = green | il_tl' = green | il_tl' = green            |



### Fixing *m*<sub>2</sub>: Adding an Invariant



Having understood the <u>failed</u> proofs, we add a proper *invariant* to m<sub>2</sub>:

invariants: ... inv2\_5 : ml\_tl = red \vee il\_tl = red

• We have effectively resulted in an improved *m*<sub>2</sub> more faithful w.r.t. **REQ3**:

| REQ3 | The bridge is one-way or the other, not both at the same time. |
|------|----------------------------------------------------------------|
|------|----------------------------------------------------------------|

- Having added this new invariant *inv2\_5*:
  - Original 6 × 4 generated sequents to be <u>updated</u>: inv2\_5 a new hypothesis e.g., Are <u>ML\_out/inv2\_4/INV</u> and <u>IL\_out/inv2\_3/INV</u> now provable?
  - Additional 6 × 1 sequents to be generated due to this new invariant e.g., Are *ML\_tl\_green/inv2\_5/INV* and *IL\_tl\_green/inv2\_5/INV provable*?

# 

#### INV PO of $m_2$ : ML\_out/inv2\_4/INV – Updated

| axm0_1                                 | $\begin{cases} d \in \mathbb{N} \end{cases}$                               |                   |
|----------------------------------------|----------------------------------------------------------------------------|-------------------|
| axm0_2                                 | { <i>d</i> > 0                                                             |                   |
| axm2_1                                 | { COLOUR = {green, red}                                                    |                   |
| axm2_2                                 | { green ≠ red                                                              |                   |
| inv0_1                                 | { <i>n</i> ∈ ℕ                                                             |                   |
| inv0_2                                 | } n≤d                                                                      |                   |
| inv1_1                                 | } a ∈ ℕ                                                                    |                   |
| inv1_2                                 | } b ∈ ℕ                                                                    |                   |
| inv1_3                                 | } <i>c</i> ∈ ℕ                                                             |                   |
| inv1_4                                 | $\hat{a} + b + c = n$                                                      | ML_out/inv2_4/INV |
| inv1_5                                 | $a = 0 \lor c = 0$                                                         |                   |
| inv2_1                                 | } ml_tl ∈ COLOUR                                                           |                   |
| inv2_2                                 | } il_tl ∈ COLOUR                                                           |                   |
| inv2_3                                 | $\begin{cases} ml_t = green \Rightarrow a + b < d \land c = 0 \end{cases}$ |                   |
| inv2_4                                 | $i_{l-t} = green \Rightarrow b > 0 \land a = 0$                            |                   |
| inv2_5                                 | $\begin{cases} ml_t = red \lor il_t = red \end{cases}$                     |                   |
| Concrete guards of ML_out              | $\begin{cases} m_{t} = green \end{cases}$                                  |                   |
| C C                                    | ⊢                                                                          |                   |
| Concrete invariant inv2_4              |                                                                            |                   |
| with ML_out's effect in the post-state | $\{ il_t = green \Rightarrow b > 0 \land (a+1) = 0$                        |                   |
| 1                                      |                                                                            |                   |

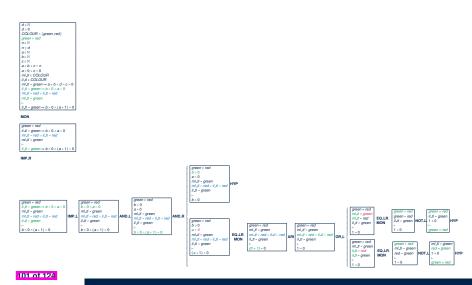


#### INV PO of *m*<sub>2</sub>: IL\_out/inv2\_3/INV – Updated

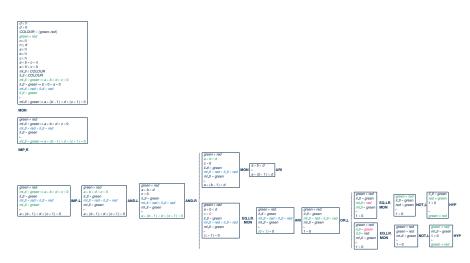
| axm0.1<br>axm0.2<br>axm2.1<br>axm2.2<br>inv0.1<br>inv1.2<br>inv1.3<br>inv1.3<br>inv1.4<br>inv1.5<br>inv2.1<br>inv2.2<br>inv2.3<br>inv2.3<br>inv2.4<br>inv2.5<br><i>Concrete</i> guards of <i>IL_out</i><br><i>Concrete</i> invariant inv2.3<br>with <i>ML_out</i> 's effect in the <u>post</u> -state | $ \left\{ \begin{array}{l} d \in \mathbb{N} \\ d > 0 \\ COLOUR = \{green, red\} \\ green \neq red \\ n \in \mathbb{N} \\ n \in \mathbb{N} \\ d \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ ml.tl \in COLOUR \\ il.tl \in COLOUR \\ il.tl = green \Rightarrow a + b < d \land c = 0 \\ il.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = red \lor il.tl = red \\ il.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b > 0 \land a = 0 \\ ml.tl = green \Rightarrow b < 0 \land a = 0 \\ ml.tl = green \Rightarrow b < 0 \land a = 0 \\ m$ | IL_out/inv2_3/INV |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|



#### Proving ML\_out/inv2\_4/INV: Second Attempt



## Proving IL\_out/inv2\_3/INV: Second Attempt





### Fixing m<sub>2</sub>: Adding Actions



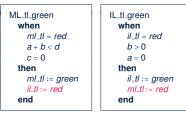
Recall that an *invariant* was added to m<sub>2</sub>:

```
invariants:
  inv2 5 : ml tl = red \lor il tl = red
```

- Additional 6 × 1 sequents to be generated due to this new invariant:
  - e.g., *ML\_tl\_green*/inv2\_5/INV

[ for *ML\_tl\_green* to preserve inv2\_5 ] e.g., IL\_tl\_green/inv2\_5/INV [ for *IL\_tI\_green* to preserve inv2\_5 ]

• For the above sequents to be provable, we need to revise the two events:



Exercise: Specify and prove ML\_tl\_green/inv2\_5/INV & IL\_tl\_green/inv2\_5/INV.





#### INV PO of *m*<sub>2</sub>: ML\_out/inv2\_3/INV

| $inv2.4 \begin{cases} il.tl = green = \\ inv2.5 \end{cases} \begin{cases} m_ttl = red \lor \\ m_ttl = red \lor \\ m_ttl = green \end{cases}$ | DUR<br>UR<br>$h \Rightarrow a + b < d \land c = 0$<br>$\Rightarrow b > 0 \land a = 0$<br>$il \pm i = red$ |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|



#### Proving ML\_out/inv2\_3/INV: First Attempt









#### Failed: ML\_out/inv2\_3/INV

- Our first attempt of proving *ML\_out/inv2\_3/INV* failed the <u>1st case</u> (resulted from applying IR AND\_R):

 $a + b < d \land c = 0 \land ml_t = green \vdash (a + 1) + b < d$ 

• This *unprovable* sequent gave us a good hint:

b'

• Goal (a+1) + b < d specifies the *capacity requirement*.

• Hypothesis  $c = 0 \land ml_t = green$  assumes that it's safe to exit the ML.

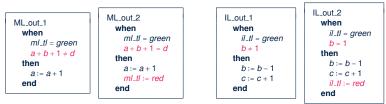
- Hypothesis  $\begin{vmatrix} a+b < d \end{vmatrix}$  is **not** strong enough to entail (a+1) + b < d. e.g., d = 3, b = 0, a = 0(a+1) + b < d evaluates to true e.g., d = 3, b = 1, a = 0(a+1) + b < d evaluates to true (a+1) +
- Therefore, a + b < d (allowing one more car to exit ML) should be split: a + b + 1 ≠ d [more later cars may exit ML, ml\_tl remains green] a + b + 1 = d [no more later cars may exit ML, ml\_tl turns red]



#### **Fixing** *m*<sub>2</sub>**: Splitting** *ML\_out* **and** *IL\_out*



- Recall that *ML\_out/inv2\_3/INV* failed :: two cases not handled separately:
  - $a + b + 1 \neq d$  [more later cars may exit ML, *ml\_tl* remains *green*] a + b + 1 = d [no more later cars may exit ML, *ml\_tl* turns *red*]
- Similarly, IL\_out/inv2\_4/INV would fail :: two cases not handled separately:
  - $b-1 \neq 0$  [more later cars may exit IL, *il\_tl* remains *green*] b-1=0 [no more later cars may exit IL, *il\_tl* turns *red*]
- Accordingly, we split *ML\_out* and *IL\_out* into two with corresponding guards.

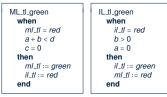


**Exercise**: Given the latest  $m_2$ , how many sequents to prove for *invariant preservation*? **Exercise**: Specify and prove *ML\_out\_i*/inv2\_3/INV & *IL\_out\_i*/inv2\_4/INV (where  $i \in 1..2$ ). **Exercise**: Each split event (e.g., *ML\_out\_1*) refines its *abstract* counterpart (e.g., *ML\_out*)?



### m<sub>2</sub> Livelocks: New Events Diverging

- Recall that a system may *livelock* if the <u>new</u> events diverge.
- Current m<sub>2</sub>'s two <u>new</u> events ML\_tl\_green and IL\_tl\_green may diverge :



 ML\_tl\_green and IL\_tl\_green both enabled and may occur indefinitely, preventing other "old" events (e.g., ML\_out) from ever happening:

| ( | init                     | , | ML_tl_green    | , <u>ML_out_1</u>         | $IL_{-in}$ ,              | IL_tl_green ,             | , <u>ML_tl_green</u>      | IL_tl_green ,             | ) |
|---|--------------------------|---|----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---|
|   | d = 2                    |   | d = 2          | d = 2                     | d = 2                     | d = 2                     | d = 2                     | d = 2                     |   |
|   | <i>a</i> ′ = 0           |   | <i>a</i> ′ = 0 | <i>a</i> ′ = 1            | <i>a</i> ′ = 0            |   |
|   | <i>b'</i> = 0            |   | b' = 0         | b' = 0                    | <i>b</i> ′ = 1            | b' = 1                    | b' = 1                    | b' = 1                    |   |
|   | c'=0                     |   | <i>c</i> ′ = 0 | c' = 0                    | <i>c</i> ′ = 0            | <i>c</i> ′ = 0            | <i>c</i> ′ = 0            | <i>c</i> ′ = 0            |   |
|   | nl_tl = <mark>rea</mark> |   | ml_tl' = green | ml_tl' = green            | ml_tl' = green            | ml_tl' = <mark>red</mark> | ml_tl' = green            | ml_tl' = <mark>red</mark> |   |
|   | il_tl = <mark>red</mark> |   | il_tl' = red   | il_tl' = <mark>red</mark> | il_tl' = <mark>red</mark> | il_tl' = green            | il_tl' = <mark>red</mark> | il_tl' = green            |   |

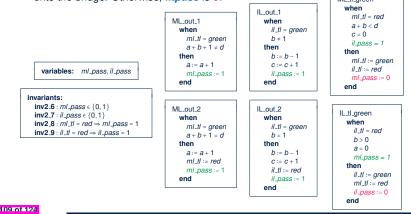
 $\Rightarrow$  Two traffic lights keep changing colors so rapidly that <u>no</u> drivers can ever pass!

• Solution: Allow color changes between traffic lights in a disciplined way.

## Fixing *m*<sub>2</sub>: Regulating Traffic Light Changes

We introduce two variables/flags for regulating traffic light changes:

- *ml\_pass* is 1 <u>if</u>, since *ml\_tl* was last turned *green*, <u>at least one</u> car exited the <u>ML</u> onto the bridge. Otherwise, *ml\_pass* is 0.
- *il\_pass* is 1 <u>if</u>, since *il\_tl* was last turned *green*, <u>at least one</u> car exited the <u>IL</u> onto the bridge. Otherwise, *il\_pass* is 0.



### Fixing *m*<sub>2</sub>: Measuring Traffic Light Changes



- Recall:
  - Interleaving of *new* events charactered as an integer expression: *variant*.
  - A variant V(c, w) may refer to constants and/or *concrete* variables.
  - In the latest  $m_2$ , let's try **variants** :  $ml_pass + il_pass$
- Accordingly, for the *new* event *ML\_tl\_green*:

```
d \in \mathbb{N}
                                          d > 0
 COLOUR = {green, red}
                                          areen ≠ red
 n \in \mathbb{N}
                                          n < d
 a \in \mathbb{N}
                                          b∈ℕ
                                                                              C \in \mathbb{N}
 a+b+c=n
                                     a = 0 \lor c = 0
 ml tl ∈ COLOUR
                                       il tl ∈ COLOUR
 ml_t = green \Rightarrow a + b < d \land c = 0 il_t = green \Rightarrow b > 0 \land a = 0
                                                                                        ML_tl_green/VAR
 ml tl = red \lor il tl = red
 ml_pass \in \{0, 1\}
                                      il_pass ∈ {0, 1}
 ml_t = red \Rightarrow ml_pass = 1 il_t = red \Rightarrow il_pass = 1
                                          a+b < d
 ml tl = red
                                                                              c = 0
 il_pass = 1
\vdash
 0 + il_pass < ml_pass + il_pass
```

Exercises: Prove ML\_tl\_green/VAR and Formulate/Prove IL\_tl\_green/NAT.



#### PO Rule: Relative Deadlock Freedom of m<sub>2</sub>

|                                |                                                                                          | 1   |
|--------------------------------|------------------------------------------------------------------------------------------|-----|
| axm0_1                         | { <i>d</i> ∈ ℕ                                                                           |     |
| axm0_2                         | {                                                                                        |     |
| axm2_1                         | { COLOUR = {green, red}                                                                  |     |
| axm2_2                         | { green ≠ red                                                                            |     |
| inv0_1                         | { <i>n</i> ∈ ℕ                                                                           |     |
| inv0_2                         | { n ≤ d                                                                                  |     |
| inv1_1                         | a∈N                                                                                      |     |
| inv1_2                         | { <i>b</i> ∈ ℕ                                                                           |     |
| inv1_3                         | { <i>c</i> ∈ ℕ                                                                           |     |
| inv1_4                         | a+b+c=n                                                                                  |     |
| inv1_5                         | $a = 0 \lor c = 0$                                                                       |     |
| inv2_1                         | { ml_tl ∈ COLOUR                                                                         |     |
| inv2_2                         | { <i>il_tl</i> ∈ COLOUR                                                                  |     |
| inv2_3                         | $ml_t = green \Rightarrow a + b < d \land c = 0$                                         |     |
| inv2_4                         | $il_t = green \Rightarrow b > 0 \land a = 0$                                             |     |
| inv2_5                         | $\{ ml_t l = red \lor il_t l = red \}$                                                   | DIE |
| inv2_6                         | { <i>ml_pass</i> ∈ {0,1}                                                                 | DLF |
| inv2_7                         | { <i>il_pass</i> ∈ {0, 1}                                                                |     |
| inv2_8                         | $\{ ml_t l = red \Rightarrow ml_pass = 1 \}$                                             |     |
| inv2_9                         | $i_{l-t} = red \Rightarrow i_{pass} = 1$                                                 |     |
|                                | $a+b < d \land c = 0$ guards of <i>ML_out</i> in $m_1$                                   |     |
| Disjunction of abstract guards | v c > 0 } guards of ML_in in m <sub>1</sub>                                              |     |
| Disjunction of ubstruct guards | ∨ a > 0 } guards of IL_in in m₁                                                          |     |
|                                | $(\lor b > 0 \land a = 0)$ guards of <i>IL_out</i> in $m_1$                              |     |
| •                              | -                                                                                        |     |
|                                | $ml_t = red \land a + b < d \land c = 0 \land il_pass = 1$ guards of $ML_t green in m_2$ |     |
|                                | v il_tl = red \land b > 0 \land a = 0 \land ml_pass = 1 } guards of IL_tl_green in m2    |     |
|                                | $\vee$ ml_tl = green $\land$ a + b + 1 ≠ d } guards of ML_out_1 in m <sub>2</sub>        |     |
| Disjunction of concrete guards | $\vee$ ml_tl = green $\land$ a + b + 1 = d } guards of ML_out_2 in m <sub>2</sub>        |     |
| Disjunction of Concrete guards | $\vee$ il_tl = green $\land$ b $\neq$ 1 guards of lL_out_1 in m <sub>2</sub>             |     |
|                                | $\vee$ il_tl = green $\wedge$ b = 1 } guards of IL_out_2 in m <sub>2</sub>               |     |
|                                | ∨ a > 0 } guards of ML_in in m <sub>2</sub>                                              |     |
|                                | v c > 0 guards of IL_in in m <sub>2</sub>                                                |     |



#### **Proving Refinement: DLF of** *m*<sub>2</sub>



|   | <i>d</i> > 0                                                                   |  |
|---|--------------------------------------------------------------------------------|--|
|   | COLOUR = {green, red}                                                          |  |
|   | green ≠ red                                                                    |  |
|   | $n \in \mathbb{N}$                                                             |  |
|   | $n \le d$                                                                      |  |
|   | a∈N                                                                            |  |
|   | b∈N                                                                            |  |
|   | c ∈ N                                                                          |  |
|   | a+b+c=n                                                                        |  |
|   | $a = 0 \lor c = 0$                                                             |  |
|   | ml_tl ∈ COLOUR                                                                 |  |
|   | il_tl ∈ COLOUR                                                                 |  |
|   | $ml_t = green \Rightarrow a + b < d \land c = 0$                               |  |
|   | $il_t = green \Rightarrow b > 0 \land a = 0$                                   |  |
|   | $ml_t = red \lor il_t = red$                                                   |  |
|   | ml_pass ∈ {0,1}                                                                |  |
|   | <i>il_pass</i> ∈ {0, 1}                                                        |  |
|   | $ml_t = red \Rightarrow ml_pass = 1$                                           |  |
|   | $iI_tI = red \Rightarrow iI_pass = 1$                                          |  |
|   | $a + b < d \land c = 0$                                                        |  |
|   | v c>0                                                                          |  |
|   | ∨ a > 0                                                                        |  |
|   | $\vee b > 0 \land a = 0$                                                       |  |
| 1 | F                                                                              |  |
| 1 | $ml_t = red \wedge a + b < d \wedge c = 0 \wedge il_pass = 1$                  |  |
| 1 | ∨ <i>il_tl</i> = <i>red</i> ∧ <i>b</i> > 0 ∧ <i>a</i> = 0 ∧ <i>ml_pass</i> = 1 |  |
| 1 | ∨ ml_tl = green                                                                |  |
|   | ∨ il_tl = green                                                                |  |
|   | ∨ a > 0                                                                        |  |
|   | v c>0                                                                          |  |

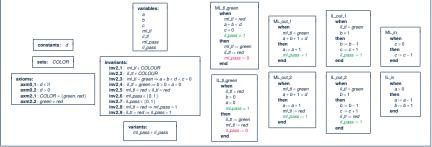


 $d \in \mathbb{N}$ 



#### Second Refinement: Summary

- The final version of our **second refinement** m<sub>2</sub> is **provably correct** w.r.t.:
  - Establishment of Concrete Invariants
  - Preservation of Concrete Invariants 0
  - 0 Strengthening of guards
  - **Convergence** (a.k.a. livelock freedom, non-divergence) 0
  - Relative **Deadlock** Freedom 0
- Here is the final specification of *m*<sub>2</sub>:





113 of 124

LASSONDE

[ init ] [old & new events] [ old events ] [ new events ]

#### Index (1)



Learning Outcomes

Recall: Correct by Construction

State Space of a Model

Roadmap of this Module

Requirements Document: Mainland, Island

Requirements Document: E-Descriptions

Requirements Document: R-Descriptions

Requirements Document:

Visual Summary of Equipment Pieces

Refinement Strategy

Model m<sub>0</sub>: Abstraction



#### Index (2)



Model *m*<sub>0</sub>: State Space

Model *m*<sub>0</sub>: State Transitions via Events

Model  $m_0$ : Actions vs. Before-After Predicates

Design of Events: Invariant Preservation

Sequents: Syntax and Semantics

PO of Invariant Preservation: Sketch

PO of Invariant Preservation: Components

Rule of Invariant Preservation: Sequents

Inference Rules: Syntax and Semantics

Proof of Sequent: Steps and Structure

Example Inference Rules (1)

#### Index (3)

- Example Inference Rules (2)
- Example Inference Rules (3)
- Revisiting Design of Events: ML\_out
- Revisiting Design of Events: ML\_in
- Fixing the Design of Events
- Revisiting Fixed Design of Events: ML\_out
- Revisiting Fixed Design of Events: ML\_in
- Initializing the Abstract System  $m_0$
- PO of Invariant Establishment
- Discharging PO of Invariant Establishment

System Property: Deadlock Freedom

#### Index (4)

PO of Deadlock Freedom (1)

PO of Deadlock Freedom (2)

Example Inference Rules (4)

Example Inference Rules (5)

Discharging PO of DLF: Exercise

Discharging PO of DLF: First Attempt

Why Did the DLF PO Fail to Discharge?

Fixing the Context of Initial Model

Discharging PO of DLF: Second Attempt

Initial Model: Summary

Model m<sub>1</sub>: "More Concrete" Abstraction





#### Index (5)



- Model *m*<sub>1</sub>: Refined State Space
- Model *m*<sub>1</sub>: State Transitions via Events
- Model m<sub>1</sub>: Actions vs. Before-After Predicates
- States & Invariants: Abstract vs. Concrete
- Events: Abstract vs. Concrete
- PO of Refinement: Components (1)
- PO of Refinement: Components (2)
- PO of Refinement: Components (3)
- Sketching PO of Refinement
- Refinement Rule: Guard Strengthening
- PO Rule: Guard Strengthening of ML\_out



#### Index (6)



PO Rule: Guard Strengthening of ML\_in

Proving Refinement: ML\_out/GRD

Proving Refinement: ML\_in/GRD

**Refinement Rule: Invariant Preservation** 

Visualizing Inv. Preservation in Refinement

INV PO of m1: ML\_out/inv1\_4/INV

INV PO of m<sub>1</sub>: ML\_in/inv1\_5/INV

Proving Refinement: ML\_out/inv1\_4/INV

Proving Refinement: ML\_in/inv1\_5/INV

Initializing the Refined System  $m_1$ 

PO of m<sub>1</sub> Concrete Invariant Establishment

#### Index (7)



Discharging PO of m<sub>1</sub>

Concrete Invariant Establishment

Model m1: New, Concrete Events

Model m<sub>1</sub>: BA Predicates of Multiple Actions

Visualizing Inv. Preservation in Refinement

**Refinement Rule: Invariant Preservation** 

INV PO of  $m_1$ : IL\_in/inv1\_4/INV

INV PO of m<sub>1</sub>: IL\_in/inv1\_5/INV

Proving Refinement: IL\_in/inv1\_4/INV

Proving Refinement: IL\_in/inv1\_5/INV

Livelock Caused by New Events Diverging



#### Index (8)



PO of Convergence of New Events

PO of Convergence of New Events: NAT

PO of Convergence of New Events: VAR

Convergence of New Events: Exercise

PO of Refinement: Deadlock Freedom

PO Rule: Relative Deadlock Freedom of m<sub>1</sub>

Example Inference Rules (6)

Proving Refinement: DLF of m<sub>1</sub>

Proving Refinement: DLF of m<sub>1</sub> (continued)

First Refinement: Summary

Model m<sub>2</sub>: "More Concrete" Abstraction

#### Index (9)



Model m<sub>2</sub>: Refined, Concrete State Space

Model m<sub>2</sub>: Refining Old, Abstract Events

Model m<sub>2</sub>: New, Concrete Events

Invariant Preservation in Refinement m<sub>2</sub>

INV PO of m<sub>2</sub>: ML\_out/inv2\_4/INV

INV PO of m<sub>2</sub>: IL\_out/inv2\_3/INV

Example Inference Rules (7)

Proving ML\_out/inv2\_4/INV: First Attempt

Proving IL\_out/inv2\_3/INV: First Attempt

Failed: ML\_out/inv2\_4/INV, IL\_out/inv2\_3/INV

Fixing m<sub>2</sub>: Adding an Invariant

#### **Index (10)**



INV PO of m<sub>2</sub>: ML\_out/inv2\_4/INV – Updated

INV PO of m<sub>2</sub>: IL\_out/inv2\_3/INV – Updated

Proving ML\_out/inv2\_4/INV: Second Attempt

Proving IL\_out/inv2\_3/INV: Second Attempt

Fixing m<sub>2</sub>: Adding Actions

INV PO of m<sub>2</sub>: ML\_out/inv2\_3/INV

Proving ML\_out/inv2\_3/INV: First Attempt

Failed: ML out/inv2 3/INV

Fixing m<sub>2</sub>: Splitting ML\_out and IL\_out

m<sub>2</sub> Livelocks: New Events Diverging

Fixing m<sub>2</sub>: Regulating Traffic Light Changes





Fixing m<sub>2</sub>: Measuring Traffic Light Changes

PO Rule: Relative Deadlock Freedom of m<sub>2</sub>

Proving Refinement: DLF of m<sub>2</sub>

Second Refinement: Summary

