

LASSONDE

Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 Unary logical operator: negation (¬)

	· /
р	$\neg p$
true	false
false	true

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

р	q	p∧q	$p \lor q$	$p \Rightarrow q$	$p \iff q$	<i>p</i> ≡ <i>q</i>
true	true	true	true	true	true	true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

3 of 41

LASSONDE

Learning Outcomes of this Lecture

Review of Math

MEB: Chapter 9

EECS3342 E: System Specification and Refinement

Fall 2024

CHEN-WEI WANG

This module is designed to help you review:

- Propositional Logic
- Predicate Logic
- Sets, Relations, and Functions

Propositional Logic: Implication (1)

- Written as p ⇒ q [pronounced as "]
 We call p the antecedent, assumption, or premise.
 - We call q the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - antecedent/assumption/premise *p* ≈ promised terms [e.g., salary]
 - consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - \circ honoured if the obligations fulfilled. [(true \Rightarrow true) \iff true]
 - *breached* if the obligations violated. $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

р	q	$p \Rightarrow q$
false	true	true
false	false	true

Propositional Logic: Implication (2)

There are alternative, equivalent	ways to expressing $p \Rightarrow q$:	Axiom: Definition
∘ <i>q</i> if <i>p</i>		
<i>q</i> is <i>true</i> if <i>p</i> is <i>true</i>		 Theorem: Identi
○ p only if q		
If <i>p</i> is <i>true</i> , then for $p \Rightarrow q$ to be <i>th</i> Otherwise, if <i>p</i> is <i>true</i> but <i>q</i> is <i>fals</i>	rue, it can only be that q is also true. se, then $(true \Rightarrow false) \equiv false$.	• Theorem: Zero
<u>Note</u> . To prove $p \equiv q$, prove $p \iff q$	<i>q</i> (pronounced: "p <u>if and only if</u> q"):	
• p if q	$[q \Rightarrow p]$	 Axiom: De Morg
• p only if q	$[p \Rightarrow q]$	
 p is sufficient for q 		
For <i>q</i> to be <i>true</i> , it is sufficient to	have <i>p</i> being <i>true</i> .	
• q is necessary for p	[similar to p only if q]	Axiom: Double
If p is true, then it is necessarily t		
Otherwise, if p is true but q is fals		
$\circ q$ unless $\neg p$	[When is $p \Rightarrow q$ true?]	• Theorem: Contr
If q is true, then $p \Rightarrow q$ true regar		
If q is <i>false</i> , then $p \Rightarrow q$ cannot be	,	
5 of 41		7 of 41

Propositional Logic (2)

- ion of \Rightarrow
- $p \Rightarrow q \equiv \neg p \lor q$ itity of \Rightarrow

true
$$\Rightarrow$$
 p \equiv *p*

LASSONDE

LASSONDE

 \Rightarrow of \Rightarrow

$$false \Rightarrow p \equiv true$$

$$\neg (p \land q) \equiv \neg p \lor \neg c$$

$$\neg (p \lor q) \equiv \neg p \land \neg c$$

Negation

$$p \equiv \neg (\neg p)$$

trapositive

 $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$

Propositional Logic: Implication (3)

LASSONDE

LASSONDE

Given an implication $p \Rightarrow q$, we may construct its:

- Inverse: $\neg p \Rightarrow \neg q$
- [negate antecedent and consequence]
- Converse: $q \Rightarrow p$
- [swap antecedent and consequence]
- Contrapositive: $\neg q \Rightarrow \neg p$
- - [inverse of converse]

Predicate Logic (1)

- A predicate is a universal or existential statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:

 Z: the set of integers 	$[-\infty,\ldots,-1,0,1,\ldots,+\infty]$
$\circ \ \mathbb{N}$: the set of natural numbers	$[0,1,\ldots,+\infty]$

• Variable(s) in a predicate may be *quantified*:

• Universal quantification : All values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• *Existential quantification* :

Some value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

Predicate Logic (2.1): Universal Q. (∀)

LASSONDE

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- *For all* (combinations of) values of variables listed in *X* that satisfies *R*, it is the case that *P* is satisfied.

$\circ \forall i \bullet i \in \mathbb{N} \implies i \ge 0$	[true]
$\circ \forall i \bullet i \in \mathbb{Z} \implies i \ge 0$	[false]
° ∀i.i • i∈ℤ∧i∈ℤ⇒i <i∨i>i</i∨i>	[false]

- Proof Strategies
 - **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?
 - <u>Hint</u>. When is $R \Rightarrow P$ true? [true \Rightarrow true, false \Rightarrow]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), P(x) holds.
 - Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.
 - **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ *false*?
 - <u>Hint</u>. When is $R \Rightarrow P$ false? [true \Rightarrow false]
- Give a witness/counterexample of $x \in X$ s.t. $R(x), \neg P(x)$ holds.

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \bullet (x \in \mathbb{Z} \land 1 \le x \le 10) \Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1. Integer 1 (a witness/counterexample) in the range between 1 and 10 is <u>not</u> greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are *not* greater than 10.

11 of 41

Predicate Logic (2.2): Existential Q. (∃)

- An *existential quantification* has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - *P* is a *property* to be satisfied
- *There exist* (a combination of) values of variables listed in *X* that satisfy both *R* and *P*.

$\circ \exists i \bullet i \in \mathbb{N} \land i \geq 0$	[true]
$\circ \exists i \bullet i \in \mathbb{Z} \land i \geq 0$	[true]
$\circ \exists i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \land (i < j \lor i > j)$	[true]

- Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is $R \land P$ true? [true \land true]
 - Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
 - **2.** How to prove $(\exists X \bullet R \land P)$ *false*?
 - <u>Hint</u>. When is $R \wedge P$ false? [true \wedge false, false, \wedge _]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
- Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

Predicate Logic (4): Switching Quantifications

Conversions between \forall and \exists :

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P) (\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

Sets: Definitions and Membership

 A set is a collection of objects.
 Objects in a set are called its <i>elements</i> or <i>members</i>.
 Order in which elements are arranged does not matter.
 An element can appear at most once in the set.
 We may define a set using:
 Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}
 Set Comprehension: Implicitly specify the condition that all
members satisfy.
e.g., $\{x \mid 1 \le x \le 10 \land x \text{ is an odd number}\}$
 An empty set (denoted as {} or Ø) has no members.
 We may check if an element is a <i>member</i> of a set:
e.g., $5 \in \{1, 3, 5, 7, 9\}$ [<i>true</i>]
e.g., $4 \notin \{x \mid x \le 1 \le 10, x \text{ is an odd number}\}$ [<i>true</i>]
 The number of elements in a set is called its cardinality.
e.g., $ \emptyset = 0$, $ \{x \mid x \le 1 \le 10, x \text{ is an odd number}\} = 5$
13 of 41

LASSONDE

? ⊆ S always holds	[$arnothing$ and $oldsymbol{S}$]
? ⊂ S always fails	[S]
$? \subset S$ holds for some S and fails for some S	[Ø]
$S_1 = S_2 \Rightarrow S_1 \subseteq S_2$?	[Yes]
$S_1 \subseteq S_2 \Rightarrow S_1 = S_2$?	[No]

15 of 41

Set Relations

Given two sets S_1 and S_2 :

• S_1 is a *subset* of S_2 if every member of S_1 is a member of S_2 .

$$S_1 \subseteq S_2 \iff (\forall x \bullet x \in S1 \Rightarrow x \in S2)$$

• S_1 and S_2 are *equal* iff they are the subset of each other.

$$S_1 = S_2 \iff S_1 \subseteq S_2 \land S_2 \subseteq S_1$$

• S_1 is a *proper subset* of S_2 if it is a strictly smaller subset.

$$S_1 \subset S_2 \iff S_1 \subseteq S_2 \land |S1| < |S2|$$

Set Operations

Given two sets S_1 and S_2 :

• **Union** of S_1 and S_2 is a set whose members are in either.

$$S_1 \cup S_2 = \{x \mid x \in S_1 \lor x \in S_2\}$$

• *Intersection* of S_1 and S_2 is a set whose members are in both.

$$S_1 \cap S_2 = \{x \mid x \in S_1 \land x \in S_2\}$$

• **Difference** of S₁ and S₂ is a set whose members are in S₁ but not S₂.

$$S_1 \setminus S_2 = \{x \mid x \in S_1 \land x \notin S_2\}$$

16 of 41

Power Sets

LASSONDE

The *power set* of a set *S* is a *set* of all *S*'s *subsets*.

$$\mathbb{P}(S) = \{s \mid s \subseteq S\}$$

The power set contains subsets of *cardinalities* 0, 1, 2, ..., |S|. e.g., $\mathbb{P}(\{1,2,3\})$ is a set of sets, where each member set *s* has cardinality 0, 1, 2, or 3:

$$\left\{\begin{array}{l} \varnothing, \\ \{1\}, \{2\}, \{3\}, \\ \{1,2\}, \{2,3\}, \{3,1\}, \\ \{1,2,3\}\end{array}\right\}$$

Exercise: What is $\mathbb{P}(\{1, 2, 3, 4, 5\}) \setminus \mathbb{P}(\{1, 2, 3\})$?

A *relation* is a set of mappings, each being an *ordered pair* that maps a member of set *S* to a member of set *T*.

Relations (1): Constructing a Relation

e.g., Say $S = \{1, 2, 3\}$ and $T = \{a, b\}$

- $\circ \underline{\emptyset}$ is the *minimum* relation (i.e., an empty relation).
- $S \times T$ is the *maximum* relation (say r_1) between S and T, mapping from each member of S to each member in T:

 $\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

LASSONDE

LASSONDE

∘ { $(x, y) | (x, y) \in S \times T \land x \neq 1$ } is a relation (say r_2) that maps only some members in *S* to every member in *T*:

 $\{(2,a),(2,b),(3,a),(3,b)\}$

19 of 41

Set of Tuples

Given *n* sets S_1, S_2, \ldots, S_n , a *cross/Cartesian product* of theses sets is a set of *n*-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set.

$$S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, \dots, e_n) \mid e_i \in S_i \land 1 \le i \le n\}$$

e.g., $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ is a set of triples:

$$\{a, b\} \times \{2, 4\} \times \{\$, \&\}$$

$$= \left\{ (e_1, e_2, e_3) \mid e_1 \in \{a, b\} \land e_2 \in \{2, 4\} \land e_3 \in \{\$, \&\} \right\}$$

$$= \left\{ (a, 2, \$), (a, 2, \&), (a, 4, \$), (a, 4, \&), \\ (b, 2, \$), (b, 2, \&), (b, 4, \$), (b, 4, \&) \right\}$$

Relations (2.1): Set of Possible Relations

• We use the *power set* operator to express the set of *all possible relations* on *S* and *T*:

 $\mathbb{P}(S \times T)$

Each member in $\mathbb{P}(S \times T)$ is a relation.

 To declare a relation variable r, we use the colon (:) symbol to mean set membership:

 $r: \mathbb{P}(S \times T)$

• Or alternatively, we write:

 $r: S \leftrightarrow T$

where the set $S \leftrightarrow T$ is synonymous to the set $\mathbb{P}(S \times T)$

20 of 41

Relations (2.2): Exercise

LASSONDE

Enumerate $\{a, b\} \leftrightarrow \{1, 2, 3\}$.

• Hints:

- You may enumerate all relations in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$ via their *cardinalities*: 0, 1, ..., $|\{a, b\} \times \{1, 2, 3\}|$.
- What's the *maximum* relation in $\mathbb{P}(\{a, b\} \times \{1, 2, 3\})$? $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$
- The answer is a set containing *all* of the following relations:
 - Relation with cardinality 0: Ø
 - $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{1} = 6\right]$ • How many relations with cardinality 1?
 - How many relations with cardinality 2? $\left[\binom{|\{a,b\}\times\{1,2,3\}|}{2} = \frac{6\times5}{2!} = 15\right]$
 - . . .
 - Relation with cardinality $|\{a, b\} \times \{1, 2, 3\}|$:

```
\{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}
```

21 of 41

Relations (3.2): Image

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

relational image of *r* over set *s* : sub-range of *r* mapped by *s*.

• Definition:
$$r[s] = \{ r' \mid (d, r') \in r \land d \in s \}$$

• e.g.,
$$r[\{a, b\}] = \{1, 2, 4, 5\}$$

• ASCII syntax: r[s]

Given a relation

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

- **domain** of *r* : set of first-elements from *r*
 - Definition: dom $(r) = \{ d \mid (d, r') \in r \}$
 - e.g., dom(r) = {a, b, c, d, e, f}
 - ASCII syntax: dom(r)
- **range** of r : set of second-elements from r

• Definition: $ran(r) = \{ r' \mid (d, r') \in r \}$

• e.g., ran(
$$r$$
) = {1,2,3,4,5,6}

- ASCII syntax: ran(r)
- *inverse* of *r* : a relation like *r* with elements swapped
 - Definition: $r^{-1} = \{ (r', d) | (d, r') \in r \}$
 - e.g., $r^{-1} = \{(1, a), (2, b), (3, c), (4, a), (5, b), (6, c), (1, d), (2, e), (3, f)\}$
 - ASCII syntax: r~

Relations (3.3): Restrictions

Given a relation

- $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$
- domain restriction of r over set ds : sub-relation of r with domain ds.
- Definition: $ds \triangleleft r = \{ (d, r') \mid (d, r') \in r \land d \in ds \}$
- e.g., $\{a, b\} \triangleleft r = \{(a, 1), (b, 2), (a, 4), (b, 5)\}$
- ASCII syntax: ds <| r
- range restriction of r over set rs : sub-relation of r with range rs.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \in rs \}$
 - e.g., $r \triangleright \{1,2\} = \{(a,1), (b,2), (d,1), (e,2)\}$
 - ASCII syntax: r |> rs

Relations (3.4): Subtractions

LASSONDE

r = {(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)}

- **domain subtraction** of *r* over set *ds* : sub-relation of *r* with domain not *ds*. • Definition: $ds \leq r = \{ (d, r') | (d, r') \in r \land d \notin ds \}$
 - e.g., $\{a,b\} \triangleleft r = \{(\mathbf{c},3), (\mathbf{c},6), (\mathbf{d},1), (\mathbf{e},2), (\mathbf{f},3)\}$
 - ASCII syntax: ds <<| r
- *range subtraction* of *r* over set *rs* : sub-relation of *r* with range <u>not</u> *rs*.
 - Definition: $r \triangleright rs = \{ (d, r') \mid (d, r') \in r \land r' \notin rs \}$
 - ∘ e.g., $r \triangleright \{1,2\} = \{\{(c,3), (a,4), (b,5), (c,6), (f,3)\}\}$
 - ASCII syntax: r |>> rs

1. Define r[s] in terms of other relational operations. Answer: $r[s] = ran(s \triangleleft r)$ e.g., $r[\{a,b\}] = ran(\{(a,1), (b,2), (a,4), (b,5)\}) = \{1,2,4,5\}$ $(a,b) \triangleleft r$

2. Define $r \triangleleft t$ in terms of other relational operators. **Answer**: $r \triangleleft t = t \cup (\text{dom}(t) \triangleleft r)$

$$r \Leftrightarrow \{(a,3),(c,4)\}$$

Relations (4): Exercises

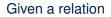
$$= \{(a,3), (c,4)\} \cup \{(b,2), (b,5), (d,1), (e,2), (f,3)\}$$

$$\underbrace{\operatorname{dom}(t)}_{\{a,c\}} \triangleleft t$$

$$\{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$$

27 of 41

Relations (3.5): Overriding



25 of 41

 $r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$

overriding of *r* with relation *t*: a relation which agrees with *t* within dom(t), and agrees with *r* outside dom(t)

```
• Definition: r \Leftrightarrow t = \{ (d, r') \mid (d, r') \in t \lor ((d, r') \in r \land d \notin dom(t)) \}

• e.g.,

r \Leftrightarrow \{(a,3), (c,4)\}
```

- $= \underbrace{\{(a,3), (c,4)\}}_{\{(d,r')|(d,r')\in t\}} \underbrace{\{(b,2), (b,5), (d,1), (e,2), (f,3)\}}_{\{(d,r')|(d,r')\in r \land d \notin dom(t)\}}$
- $= \{(a,3), (c,4), (b,2), (b,5), (d,1), (e,2), (f,3)\}$
- ASCII syntax: r <+ t

Functions (1): Functional Property

A relation r on sets S and T (i.e., r ∈ S ↔ T) is also a function if it satisfies the functional property:
 isFunctional (r)

 \iff

 $\forall s, t_1, t_2 \bullet (s \in S \land t_1 \in T \land t_2 \in T) \Rightarrow ((s, t_1) \in r \land (s, t_2) \in r \Rightarrow t_1 = t_2)$

- That is, in a *function*, it is <u>forbidden</u> for a member of *S* to map to <u>more than one</u> members of *T*.
- Equivalently, in a *function*, two <u>distinct</u> members of *T* <u>cannot</u> be mapped by the <u>same</u> member of *S*.
- e.g., Say S = {1,2,3} and T = {a,b}, which of the following relations satisfy the above functional property?
 - $S \times T [No]$ <u>Witness 1</u>: (1, a), (1, b); <u>Witness 2</u>: (2, a), (2, b); <u>Witness 3</u>: (3, a), (3, b). $(S \times T) \setminus \{(x, y) \mid (x, y) \in S \times T \land x = 1\}$ [No]
 - <u>Witness 1</u>: (2, a), (2, b); <u>Witness 2</u>: (3, a), (3, b)
 - $\circ \{(1, a), (2, b), (3, a)\}$ [Yes]
- $\circ \{(1, a), (2, b)\}$ [Yes] 28 of 41]

Functions (2.1): Total vs. Partial

LASSONDE

Given a **relation** $r \in S \leftrightarrow T$

• r is a *partial function* if it satisfies the *functional property*:

 $|r \in S \not\rightarrow T| \iff (\text{isFunctional}(r) \land \operatorname{dom}(r) \subseteq S)$

Remark. $r \in S \Rightarrow T$ means there may (or may not) be $s \in S$ s.t. r(s) is **undefined**.

• e.g., $\{\{(\mathbf{2}, a), (\mathbf{1}, b)\}, \{(\mathbf{2}, a), (\mathbf{3}, a), (\mathbf{1}, b)\}\} \subseteq \{1, 2, 3\} \not\rightarrow \{a, b\}$ • ASCII syntax: r : +->

• *r* is a *total function* if there is a mapping for each $s \in S$:

 $|r \in S \rightarrow T| \iff (\text{isFunctional}(r) \land \text{dom}(r) = S)$ **Remark**. $r \in S \rightarrow T$ implies $r \in S \rightarrow T$, but not vice versa. Why?

• e.g., $\{(\mathbf{2}, a), (\mathbf{3}, a), (\mathbf{1}, b)\} \in \{1, 2, 3\} \rightarrow \{a, b\}$ $a = a \{(2, a) (1, b)\} \notin \{1, 2, 3\} \rightarrow \{a, b\}$

• e.g.,
$$\{(\mathbf{Z}, d), (\mathbf{I}, D)\} \notin \{\mathbf{I}, \mathbf{Z}, \mathbf{S}\} \rightarrow \mathbf{A}$$

• ASCII syntax: r : -->

29 of 41

Functions (2.3): Modelling Decision

An organization has a system for keeping track of its employees as to where they are on the premises (e.g., `'Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- Employee denotes the set of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.
- **1.** Is it appropriate to *model/formalize* such a **track** functionality as a *relation* (i.e., *where_is* \in *Employee* \leftrightarrow *Location*)? **Answer**. No – an employee cannot be at distinct locations simultaneously. e.g., where_is[Alan] = { ``Zone A, Floor 23'', ``Zone C, Floor 46'' }
- **2.** How about a *total function* (i.e., *where_is* \in *Employee* \rightarrow *Location*)? **Answer**. No – in reality, not necessarily all employees show up. e.g., where_is(Mark) should be undefined if Mark happens to be on vacation.
- **3.** How about a *partial function* (i.e., *where_is* ∈ *Employee* → *Location*)? **Answer**. Yes – this addresses the inflexibility of the total function.

31 of 41

•

Functions (2.2): **Relation Image vs. Function Application**

- Recall: A *function* is a *relation*, but a *relation* is not necessarily a *function*.
- Say we have a *partial function* $f \in \{1,2,3\} \not\rightarrow \{a,b\}$: $f = \{(\mathbf{3}, a), (\mathbf{1}, b)\}$
 - With f wearing the *relation* hat, we can invoke *relational images*:

$$\begin{array}{rcl} f[\{3\}] &=& \{a\} \\ f[\{1\}] &=& \{b\} \\ f[\{2\}] &=& \varnothing \end{array}$$

Remark. Given that the inputs are **singleton** sets (e.g., {3}), so are the output sets (e.g., $\{a\}$). \therefore Each member in the domain is mappe to at most one member in the range.

• With f wearing the *function* hat, we can invoke *functional applications*

[not total, inj.]

[total, not inj.]

Given a *function* f (either partial or total):

 f is injective/one-to-one/an injection if f does not map more than one members of S to a single member of T. isInjective(f)

 $\forall s_1, s_2, t \bullet (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)$

• If f is a **partial injection**, we write: $f \in S \rightarrow T$

• e.g., { Ø, {(1,a)}, {(2,a), (3,b)} } ⊆ {1,2,3}
$$\Rightarrow$$
 {a,b}
• e.g., {(1,b), (2,a), (3,b)} ∉ {1,2,3} \Rightarrow {a,b} [total, not inj.]
• e.g., {(1,b), (3,b)} ∉ {1,2,3} \Rightarrow {a,b} [partial, not inj.]
• ASCII syntax: f : >+>
f f is a *total injection*, we write: $f \in S \Rightarrow T$
• e.g., {1,2,3} \Rightarrow {a,b} = Ø

• e.g., $\{(2, d), (1, a), (3, c)\} \in \{1, 2, 3\} \rightarrow \{a, b, c, d\}$

• e.g.,
$$\{(2, d), (1, c)\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}$$

• e.g.,
$$\{(2, \mathbf{d}), (1, c), (3, \mathbf{d})\} \notin \{1, 2, 3\} \rightarrow \{a, b, c, d\}$$

• ASCII syntax:
$$f \cdot > >$$

Son syntax. I : > 32 of 41

Functions (3.2): Surjective Functions

LASSONDE

[total, inj., not sur.]

Given a *function* f (either <u>partial</u> or <u>total</u>):

• f is surjective/onto/a surjection if f maps to all members of T.

 $isSurjective(f) \iff ran(f) = T$

- If *f* is a *partial surjection*, we write: $f \in S \nleftrightarrow T$ • e.g., { {(1,b), (2,a)}, {(1,b), (2,a), (3,b)} } \subseteq {1,2,3} \nleftrightarrow {*a,b*} • e.g., {(2,a), (1,a), (3,a) } \notin {1,2,3} \twoheadrightarrow {*a,b*} [total, <u>not</u> sur.] • e.g., {(2,b), (1,b)} \notin {1,2,3} \twoheadrightarrow {*a,b*} [partial, <u>not</u> sur.] • ASCII syntax: f : +->>
- If f is a total surjection, we write: $f \in S \twoheadrightarrow T$
 - e.g., { {(2, a), (1, b), (3, a)}, {(2, b), (1, a), (3, b)} } ⊆ {1,2,3} \rightarrow {a,b} • e.g., {(2, a), (3, b)} \notin {1,2,3} \rightarrow {a,b} [not total, sur.]
 - e.g., $\{(2, a), (3, a), (1, a)\} \notin \{1, 2, 3\} \twoheadrightarrow \{a, b\}$ [total, not sur]

```
• ASCII syntax: f : -->>
```

33 of 41

Functions (3.3): Bijective Functions

Given a function *f*:

f is *bijective/a bijection/one-to-one correspondence* if *f* is *total, injective*, and *surjective*.

e.g., {1,2,3} → {a,b} = Ø

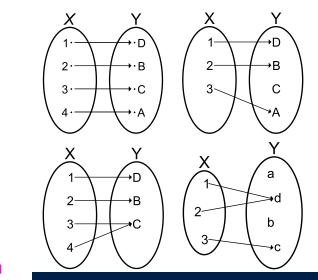
```
• e.g., \{ \{(1, a), (2, b), (3, c)\}, \{(2, a), (3, b), (1, c)\} \} \subseteq \{1, 2, 3\} \rightarrow \{a, b, c\}
• e.g., \{ \{(2, b), (3, c), (4, a)\} \notin \{1, 2, 3, 4\} \rightarrow \{a, b, c\}
```

• e.g., $\{(1, \mathbf{a}), (2, b), (3, c), (4, \mathbf{a})\} \notin \{1, 2, 3, 4\} \rightarrow \{a, b, c\}$ [total, not inj., sur.]

e.g., {(1,a), (2,c)} ∉ {1,2} ↦ {a,b,c}

• ASCII syntax: f : >->>

Functions (4.1): Exercises



35 of 41

Functions (4.2): Modelling Decisions

LASSONDE

- Should an array a declared as "String[] a" be modelled/formalized as a partial function (i.e., a ∈ Z → String) or a total function (i.e., a ∈ Z → String)?
 - **<u>Answer</u>**. $a \in \mathbb{Z} \rightarrow String$ is <u>not</u> appropriate as:
 - Indices are <u>non-negative</u> (i.e., a(i), where i < 0, is **undefined**).
 - $\circ~$ Each array size is $\underline{\text{finite}}:\,\underline{\text{not}}$ all positive integers are valid indices.
- 2. What does it mean if an array is *modelled/formalized* as a <u>partial</u> *injection* (i.e., *a* ∈ Z → *String*)?
 <u>Answer</u>. It means that the array does <u>not</u> contain any duplicates.
- 3. Can an integer array "int[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → Z)?
 Answer. Yes, if a stores all 2³² integers (i.e., [-2³¹, 2³¹ 1]).
- 4. Can a string array "String[] a" be modelled/formalized as a partial surjection (i.e., a ∈ Z → String)?
 Answer. No ∵ # possible strings is ∞.
- **5.** Can an integer array "int []" storing all 2^{32} values be *modelled/formalized* as a *bijection* (i.e., $a \in \mathbb{Z} \rightarrow \mathbb{Z}$)?

<u>Answer</u>. No, because it <u>cannot</u> be *total* (as discussed earlier).

36 of 41

Beyond this lecture

LASSONDE

- For the where_is ∈ Employee → Location model, what does it mean when it is:
 - Injective

[where_is ∈ Employee >>> Location]

SurjectiveBijective

- [where_is ∈ Employee → Location] [where_is ∈ Employee → Location]
- Review examples discussed in your earlier math courses on *logic* and *set theory*.

- Sets: Definitions and Membership
- Set Relations
- Set Relations: Exercises
- Set Operations
- Power Sets

Index (2)

- Set of Tuples
- Relations (1): Constructing a Relation
- Relations (2.1): Set of Possible Relations
- **Relations (2.2): Exercise**
- Relations (3.1): Domain, Range, Inverse
- Relations (3.2): Image

39 of 41

Index (1)

37 of 41

Learning Outcomes of this Lecture

Propositional Logic (1)

Propositional Logic: Implication (1)

Propositional Logic: Implication (2)

Propositional Logic: Implication (3)

Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (∀)

Predicate Logic (2.2): Existential Q. (∃)

Predicate Logic (3): Exercises

Predicate Logic (4): Switching Quantifications

38 of 41

Index (3)

- **Relations (3.3): Restrictions**
- **Relations (3.4): Subtractions**
- Relations (3.5): Overriding

Relations (4): Exercises

Functions (1): Functional Property

Functions (2.1): Total vs. Partial

Functions (2.2):

Relation Image vs. Function Application

Functions (2.3): Modelling Decision

Functions (3.1): Injective Functions

Functions (3.2): Surjective Functions

Index (4)

Functions (3.3): Bijective Functions

Functions (4.1): Exercises

Functions (4.2): Modelling Decisions

Beyond this lecture ...