
Classes and Objects

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Required: Review Tutorials on OOP in Java

Current slides are cross-referenced throughout this review
tutorials on Java OOP:
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#refurbished_store

2 of 90

Optional: Tutorial Videos to Help You Review

● Link to Tutorial Series:
https://www.eecs.yorku.ca/˜jackie/teaching/
tutorials/index.html#java_from_scratch_w21○ Week 1: Eclipse work environment○ Week 2c, 2d, 2e: Debugger in Eclipse○ Weeks 2, 3: Programming/Debugging Conditionals○ Weeks 4, 5: Programming/Debugging Arrays and Loops○ Weeks 6, 7, 8: Classes and Objects

● iPad Notes: https://www.eecs.yorku.ca/˜jackie/
teaching/tutorials/notes/EECS1022%20Tutorial%
20on%20Java.pdf

3 of 90

Required: Written Notes to Review

● Inferring Classes/Methods from JUnit Tests:
https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2024/F/EECS2030/notes/EECS2030_F24_
Inferring_Classes_from_JUnit.pdf

● Declaring and Manipulating Reference-Typed, Multi-Valued

Attributes: https://www.eecs.yorku.ca/˜jackie/
teaching/lectures/2024/F/EECS2030/notes/
EECS2030_F24_Tracing_PointCollectorTester.pdf

4 of 90

Learning Outcomes

Understand:
● Object Orientation
● Classes as Templates:○ attributes, constructors, (accessor and mutator) methods○ use of this
● Objects as Instances:○ use of new○ the dot notation, method invocations○ reference aliasing
● Reference-Typed Attributes: Single-Valued vs. Multi-Valued
● Non-Static vs. Static Variables
● Helper Methods

5 of 90

Separation of Concerns: App/Tester vs. Model
● In EECS1022/EECS1021:○ Model Component : One or More Java Classes

e.g., Person vs. SMS, Student, CourseRecord○ Another Java class that “manipulates” the model class(es)● Controller (e.g., BMIActivity, LEDController). Effects?
Visualized at a connected physical device (e.g., tablet, LED lightbulbs)● Tester (e.g., PersonTester, BankTester). Effects?
Seen (as textual outputs) at console
Asserting expected vs. actual Values in JUnit tests● In Java:○ We may define more than one classes.○ Each class may contain more than one methods.

Object-Oriented Programming (OOP) in Java:
○ Use classes to define templates
○ Use objects to instantiate classes○ At runtime, create objects and call methods on objects, to simulate

interactions between real-life entities.
6 of 90

Object Orientation:
Observe, Model, and Execute

Real World: Entities

Entities:
jim, jonathan, …

Entities:
p1(2, 3), p2(-1, -2), …

…

Compile-Time: Classes
(definitions of templates)

class Person {
 String name;
 double weight;
 double height;
}

class Potint {
 double x;
 double y;
}

…

Run-Time: Objects
(instantiations of templates)

Person
name
weight
height

“Jim”
80

1.80
jim

Person
name
weight
height

“Jonathan”
80

1.80
jonathan

Point
x
y

2
3

p1

Point
x
y

-1
-2

p2

…

Model Execute

○ Study this tutorial video that walks you through the idea of
object orientation .

○ We observe how real-world entities behave.
○ We model the common attributes and behaviour of a set of

entities in a single class.○ We execute the program by creating instances of classes, which
interact in a way analogous to that of real-world entities.

7 of 90

Object-Oriented Programming (OOP)

● In real life, lots of entities exist and interact with each other.
e.g., People gain/lose weight, marry/divorce, or get older.
e.g., Cars move from one point to another.
e.g., Clients initiate transactions with banks.

● Entities:○ Possess attributes;○ Exhibit bebaviour ; and○ Interact with each other.
● Goals: Solve problems programmatically by○ Classifying entities of interest

Entities in the same class share common attributes and bebaviour.○ Manipulating data that represent these entities
Each entity is represented by specific values.

8 of 90

OO Thinking: Templates vs. Instances (1.1)

Points on a two-dimensional plane are identified by their signed
distances from the X- and Y-axises. A point may move
arbitrarily towards any direction on the plane. Given two points,
we are often interested in knowing the distance between them.

● A template called Point defines the common
○ attributes (e.g., x, y) [≈ nouns]
○ behaviour (e.g., move up, get distance from) [≈ verbs]

9 of 90

OO Thinking: Templates vs. Instances (1.2)

● A template (e.g., class Point) defines what’s shared by a set
of related entities (i.e., 2-D points).○ Common attributes (x, y)○ Common behaviour (move left, move up)

● Each template may be instantiated as multiple instances,
each with instance-specific values for attributes x and y:○ Point instance p1 is located at (3,4)○ Point instance p2 is located at (−4,−3)

● Instances of the same template may exhibit distinct behaviour .○ When p1 moves up for 1 unit, it will end up being at (3,5)○ When p2 moves up for 1 unit, it will end up being at (−4,−2)○ Then, p1’s distance from origin: [
√

32 + 52]○ Then, p2’s distance from origin: [
�(−4)2 + (−2)2]

10 of 90

OO Thinking: Templates vs. Instances (2.1)

A person is a being, such as a human, that has certain
attributes and behaviour constituting personhood: a person
ages and grows on their heights and weights.

● A template called Person defines the common
○ attributes (e.g., age, weight, height) [≈ nouns]
○ behaviour (e.g., get older, gain weight) [≈ verbs]

11 of 90

OO Thinking: Templates vs. Instances (2.2)
● A template (e.g., class Person) defines what’s shared by a

set of related entities (i.e., persons).○ Common attributes (age, weight, height)○ Common behaviour (get older, lose weight, grow taller)
● Each template may be instantiated as multiple instances,

each with instance-specific values for attributes age, weight,
and height.○ Person instance jim is

50-years old, 1.8-meters tall and 80-kg heavy○ Person instance jonathan is
65-years old, 1.73-meters tall and 90-kg heavy● Instances of the same template may exhibit distinct behaviour .○ When jim gets older, he becomes 51○ When jonathan gets older, he becomes 66.○ jim’s BMI is based on his own height and weight [80

1.82]○ jonathan’s BMI is based on his own height and weight [90
1.732]

12 of 90

OOP: Classes ≈ Templates

In Java, you use a class to define a template that enumerates
attributes that are common to a set of entities of interest.

public class Person {
private int age;
private String nationality;
private double weight;
private double height;

}

public class Point {
private double x;
private double y;

}

13 of 90

Java Data Types (1)
A (data) type denotes a set of related runtime values.
1. Primitive Types○ Integer Type

● int [set of 32-bit integers]● long [set of 64-bit integers]○ Floating-Point Number Type
● double [set of 64-bit FP numbers]○ Character Type
● char [set of single characters]○ Boolean Type
● boolean [set of true and false]

2. Reference Type : Complex Type with Attributes and Methods○ String [set of references to character sequences]○ Person [set of references to Person objects]○ Point [set of references to Point objects]○ Scanner [set of references to Scanner objects]
14 of 90

Java Data Types (2)
● A variable that is declared with a type but uninitialized is

implicitly assigned with its default value .○ Primitive Type● int i; [0 is implicitly assigned to i]
● double d; [0.0 is implicitly assigned to d]
● boolean b; [false is implicitly assigned to b]○ Reference Type● String s; [null is implicitly assigned to s]
● Person jim; [null is implicitly assigned to jim]
● Point p1; [null is implicitly assigned to p1]
● Scanner input; [null is implicitly assigned to input]● You can use a primitive variable that is uninitialized .

Make sure the default value is what you want!● Calling a method on a uninitialized reference variable crashes
your program. [NullPointerException]
Always initialize reference variables!

15 of 90

OOP: Methods (1.1)
● A method is a named block of code, reusable via its name.

{
 …
 /* implementation of method m */
}

m

…
RT

T1T1 p1p1

T2T2 p2p2

TnTn pnpn

● The Header of a method consists of:○ Return type [RT (which can be void)]○ Name of method [m]○ Zero or more parameter names [p1, p2, . . . , pn]○ The corresponding parameter types [T1, T2, . . . , Tn]● A call to method m has the form: m(a1,a2, . . . ,an)
Types of argument values a1, a2, . . . , an must match the the
corresponding parameter types T1, T2, . . . , Tn.

16 of 90

OOP: Methods (1.2)
● In the body of the method, you may○ Declare new local variables (whose scope is within that method).○ Use or change values of attributes.○ Use values of parameters, if any.

public class Person {
private String nationality;
public void changeNationality(String newNationality) {
nationality = newNationality; } }

● Call a method , with a context object , by passing arguments.
public class PersonTester {
public static void main(String[] args) {
Person jim = new Person(50, "British");
Person jonathan = new Person(60, "Canadian");
jim.changeNationality("Korean");
jonathan.changeNationality("Korean"); } }

17 of 90

OOP: Methods (2)
● Each class C defines a list of methods.
○ A method m is a named block of code.

● We reuse the code of method m by calling it on an object obj
of class C.

For each method call obj.m(. . .):○ obj is the context object of type C○ m is a method defined in class C○ We intend to apply the code effect of method m to object obj.
e.g., jim.getOlder() vs. jonathan.getOlder()
e.g., p1.moveUp(3) vs. p2.moveUp(3)

● All objects of class C share the same definition of method m.
● However:
∵ Each object may have distinct attribute values.
∴ Applying the same definition of method m has distinct effects.

18 of 90

OOP: Methods (3)
1. Constructor○ Same name as the class. No return type. Initializes attributes.○ Called with the new keyword.○ e.g., Person jim = new Person(50, "British");

2. Mutator○ Changes (re-assigns) attributes○ void return type○ Cannot be used when a value is expected○ e.g., double h = jim.setHeight(78.5) is illegal!
3. Accessor○ Uses attributes for computations (without changing their values)○ Any return type other than void○ An explicit return statement (typically at the end of the method)

returns the computation result to where the method is being used.
e.g., double bmi = jim.getBMI();
e.g., println(p1.getDistanceFromOrigin());

19 of 90

OOP: Class Constructors (1.1)

● The purpose of defining a class is to be able to create
instances out of it.

● To instantiate a class, we use one of its constructors .
● A constructor○ declares input parameters○ uses input parameters to initialize some or all of its attributes

20 of 90

OOP: Class Constructors (1.2)

For each class, you may define one or more constructors :○ Names of all constructors must match the class name.○ No return types need to be specified for constructors.○ Overloaded constructor have distinct lists of parameter types.
● Person(String n), Person(String n, int age) ✓● Person(String n, int age), Person(int age, String n) ✓● Person(String fN, int age), Person(String lN, int id) ×○ Each parameter that is used to initialize an attribute must have a

matching type.○ The body of each constructor specifies how some or all
attributes may be initialized .

21 of 90

OOP: Class Constructors (2.1)

public class Point {
private double x;
private double y;

public Point(double initX, double initY) {
x = initX;
y = initY;

}

public Point(char axis, double distance) {
if (axis == ’x’) { x = distance; }
else if (axis == ’y’) { y = distance; }
else { /* Error: invalid axis */ }

}
}

22 of 90

OOP: Class Constructors (2.2)
public class Person {
private int age;
private String nationality;
private double weight;
private double height;
public Person(int initAge, String initNat) {
age = initAge;
nationality = initNat;

}
public Person (double initW, double initH) {
weight = initW;
height = initH;

}
public Person(int initAge, String initNat,

double initW, double initH) {
. . . /* initialize all attributes using the parameters */

}
}

23 of 90

Visualizing Objects at Runtime (1)
● To trace a program with sophisticated manipulations of objects,

it’s critical for you to visualize how objects are:○ Created using constructors
Person jim = new Person(50, "British", 80, 1.8);○ Inquired using accessor methods

double bmi = jim.getBMI();○ Modified using mutator methods
jim.gainWeightBy(10);● To visualize an object:

○ Draw a rectangle box to represent contents of that object:

● Title indicates the name of class from which the object is instantiated.
● Left column enumerates names of attributes of the instantiated class.
● Right column fills in values of the corresponding attributes.

○ Draw arrow(s) for variable(s) that store the object’s address .
24 of 90

Visualizing Objects at Runtime (2.1)
After calling a constructor to create an object:
Person jim = new Person(50, "British", 80, 1.8);

“British”nationality

Person

jim

80

1.8

weight

height

50age

25 of 90

Visualizing Objects at Runtime (2.2)
After calling an accessor to inquire about context object jim:
double bmi = jim.getBMI();

● Contents of the object pointed to by jim remain intact.● Retuned value 80(1.8)2 of jim.getBMI() stored in variable bmi.

“British”nationality

Person

jim

80

1.8

weight

height

50age

26 of 90

Visualizing Objects at Runtime (2.3)
After calling a mutator to modify the state of context object jim:
jim.gainWeightBy(10);

● Contents of the object pointed to by jim change.● Address of the object remains unchanged.⇒ jim points to the same object!

“British”nationality

Person

jim

80 90

1.8

weight

height

50age

27 of 90

Visualizing Objects at Runtime (2.4)
After calling the same accessor to inquire the modified state of
context object jim:
bmi = jim.getBMI();

● Contents of the object pointed to by jim remain intact.● Retuned value 90(1.8)2 of jim.getBMI() stored in variable bmi.

“British”nationality

Person

jim

80 90

1.8

weight

height

50age

28 of 90

Object Creation (1.1)

Point p1 = new Point(2, 4);

1. RHS (Source) of Assignment: new Point(2, 4) creates
a new Point object in memory.

2.0

4.0

x

y

Point

2. LHS (Target) of Assignment: Point p1 declares a variable
that is meant to store the address of some Point object .

3. Assignment: Executing = stores new object’s address in p1.

2.0

4.0

x

y

Point

p1

29 of 90

Object Creation (1.2)
Person jim = new Person(50, "British");

1. RHS (Source) of Assignment: new Person(50, "British")

creates a new Person object in memory.

50

“British”

age

nationality

Person

0.0

0.0

weight

height

2. LHS (Target) of Assignment: Point jim declares a variable
that is meant to store the address of some Person object .

3. Assignment: Executing = stores new object’s address in jim.

50

“British”

age

nationality

Person

jim

0.0

0.0

weight

height

30 of 90

Object Creation (2)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

By default, the address stored in p1 gets printed.
Instead, print out attributes separately:

System.out.println("(" + p1.getX()+", "+p1.getY() + ")");

(2.0, 4.0)

31 of 90

OOP: Object Creation (3.1.1)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PointTester {
public static void main(String[] args) {
Point p1 = new Point(3, 4);
Point p2 = new Point(-3 -2);
Point p3 = new Point(’x’, 5);
Point p4 = new Point(’y’, -7);

}
}

32 of 90

OOP: Object Creation (3.1.2)

3.0

4.0

x

y

Person

p1

Point p1 = new Point(3, 4)

-3.0

-2.0

x

y

Person

p2

Point p2 = new Point(-3, -2)

5.0

0

x

y

Person

p3

Point p3 = new Point(‘x’, 5)

0

-7.0

x

y

Person

p4

Point p4 = new Point(‘y’, -7)

33 of 90

OOP: Object Creation (3.2.1)

A constructor may only initialize some attributes and leave others
uninitialized .

public class PersonTester {
public static void main(String[] args) {
/* initialize age and nationality only */
Person jim = new Person(50, "BRI");
/* initialize age and nationality only */
Person jonathan = new Person(65, "CAN");
/* initialize weight and height only */
Person alan = new Person(75, 1.80);
/* initialize all attributes of a person */
Person mark = new Person(40, "CAN", 69, 1.78);

}
}

34 of 90

OOP: Object Creation (3.2.2)

50age

nationality

Person

jim

0.0

0.0

weight

height

“BRI”

Person jim = new Person(50, “BRI”)

65age

nationality

Person

jonathan

0.0

0.0

weight

height

“CAN”

Person jonathan = new Person(65, “CAN”)

0age

nationality

Person

alan

75.0

1.80

weight

height

null

Person alan = new Person(75, 1.80)

40age

nationality

Person

mark

69.0

1.78

weight

height

“CAN”

Person mark = new Person(40, “CAN”, 69, 1.78)

35 of 90

OOP: Object Creation (4)

● When using the constructor, pass valid argument values:○ The type of each argument value must match the corresponding
parameter type.○ e.g., Person(50, "BRI") matches
Person(int initAge, String initNationality)○ e.g., Point(3, 4) matches
Point(double initX, double initY)

● When creating an instance, uninitialized attributes implicitly get
assigned the default values .○ Set uninitialized attributes properly later using mutator methods

Person jim = new Person(50, "British");
jim.setWeight(85);
jim.setHeight(1.81);

36 of 90

OOP: The Dot Notation (1)
● A binary operator:○ LHS an object○ RHS an attribute or a method● Given a variable of some reference type that is not null:○ We use a dot to retrieve any of its attributes .

Analogous to ’s in English
e.g., jim.nationality means jim’s nationality○ We use a dot to invoke any of its mutator methods , in order to
change values of its attributes.
e.g., jim.changeNationality("CAN") changes the
nationality attribute of jim○ We use a dot to invoke any of its accessor methods , in order to
use the result of some computation on its attribute values.
e.g., jim.getBMI() computes and returns the BMI calculated
based on jim’s weight and height○ Return value of an accessor method must be stored in a variable.
e.g., double jimBMI = jim.getBMI()

37 of 90

The this Reference (1)
● Each class may be instantiated to multiple objects at runtime.
public class Point {
private double x; private double y;
public void moveUp(double units) { y += units; }

}

● Each time when we call a method of some class, using the dot
notation, there is a specific target /context object.

1 Point p1 = new Point(2, 3);
2 Point p2 = new Point(4, 6);
3 p1.moveUp(3.5);
4 p2.moveUp(4.7);

○ p1 and p2 are called the call targets or context objects .○ Lines 3 and 4 apply the same definition of the moveUp method.○ But how does Java distinguish the change to p1.y versus the
change to p2.y?

38 of 90

The this Reference (2)
● In the method definition, each attribute has an implicit this

which refers to the context object in a call to that method.
public class Point {
private double x;
private double y;
public Point(double newX, double newY) {
this.x = newX;
this.y = newY;

}
public void moveUp(double units) {
this.y = this.y + units;

}
}

● Each time when the class definition is used to create a new
Point object , the this reference is substituted by the name of
the new object.

39 of 90

The this Reference (3)
● After we create p1 as an instance of Point
Point p1 = new Point(2, 3);

● When invoking p1.moveUp(3.5), a version of moveUp that is
specific to p1 will be used:
public class Point {
private double x;
private double y;
public Point(double newX, double newY) {

p1 .x = newX;

p1 .y = newY;
}
public void moveUp(double units) {

p1 .y = p1 .y + units;
}

}
40 of 90

The this Reference (4)
● After we create p2 as an instance of Point
Point p2 = new Point(4, 6);

● When invoking p2.moveUp(4.7), a version of moveUp that is
specific to p2 will be used:
public class Point {
private double x;
private double y;
public Point(double newX, double newY) {

p2 .x = newX;

p2 .y = newY;
}
public void moveUp(double units) {

p2 .y = p2 .y + units;
}

}
41 of 90

The this Reference (5)
The this reference can be used to disambiguate when the
names of input parameters clash with the names of class
attributes.
public class Point {
private double x;
private double y;
public Point(double x, double y) {
this.x = x;
this.y = y;

}
public void setX(double x) {
this.x = x;

}
public void setY(double y) {
this.y = y;

}
}

42 of 90

The this Reference (6.1): Common Error

The following code fragment compiles but is problematic:

1 public class Person {
2 private String name;
3 private int age;
4 public Person(String name, int age) {
5 name = name;
6 age = age;
7 }
8 public void setAge(int age) {
9 age = age;

10 }
11 }

○ Why? [variable shadowing]
Target (LHS) of the assignment (L5) refers to parameter name (L4).○ Fix?

43 of 90

The this Reference (6.2): Common Error

Always remember to use this when input parameter names
clash with class attribute names.

public class Person {
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;

}
public void setAge(int age) {
this.age = age;

}
}

44 of 90

OOP: Mutator Methods

● These methods change values of attributes.
● We call such methods mutators (with void return type).

public class Person {
. . .
public void gainWeight(double units) {
this.weight = this.weight + units;

}
}

public class Point {
. . .
public void moveUp() {
this.y = this.y + 1;

}
}

45 of 90

OOP: Accessor Methods
● These methods return the result of computation based on

attribute values.● We call such methods accessors (with non-void return type).
public class Person {
. . .
public double getBMI() {
double bmi = this.height / (this.weight * this.weight);
return bmi;

} }

public class Point {
. . .
public double getDistanceFromOrigin() {
double dist =

Math.sqrt(this.x * this.x + this.y * this.y);
return dist;

} }

46 of 90

OOP: Method Calls
1 Point p1 = new Point (3, 4);

2 Point p2 = new Point (-4, -3);

3 System.out.println(p1. getDistanceFromOrigin());

4 System.out.println(p2. getDistanceFromOrigin());

5 p1. moveUp(1) ;

6 p2. moveUp(1) ;

7 System.out.println(p1. getDistanceFromOrigin());

8 System.out.println(p2. getDistanceFromOrigin());

● Lines 1 and 2 create two different instances of Point● Lines 3 and 4: invoking the same accessor method on two different
instances returns distinct values● Lines 5 and 6: invoking the same mutator method on two different instances
results in independent changes● Lines 3 and 7: invoking the same accessor method on the same instance
may return distinct values, why? Line 5

See the lecture recording on tracing the above program here.
47 of 90

OOP: Use of Mutator vs. Accessor Methods

● Calls to mutator methods cannot be used as values.○ e.g., System.out.println(jim.setWeight(78.5)); ×○ e.g., double w = jim.setWeight(78.5); ×○ e.g., jim.setWeight(78.5); ✓
● Calls to accessor methods should be used as values.○ e.g., jim.getBMI(); ×○ e.g., System.out.println(jim.getBMI()); ✓○ e.g., double w = jim.getBMI(); ✓

48 of 90

OOP: Method Parameters

● Principle 1: A constructor needs an input parameter for
every attribute that you wish to initialize.
e.g., Person(double w, double h) vs.
Person(String fName, String lName)

● Principle 2: A mutator method needs an input parameter for
every attribute that you wish to modify.
e.g., In Point, void moveToXAxis() vs.
void moveUp(double unit)

● Principle 3: An accessor method needs input parameters if
the attributes alone are not sufficient for the intended
computation to complete.
e.g., In Point, double getDistFromOrigin() vs.
double getDistFrom(Point other)

49 of 90

OOP: Reference Aliasing (1)
1 int i = 3;
2 int j = i; System.out.println(i == j);/*true*/
3 int k = 3; System.out.println(k == i && k == j);/*true*/

○ Line 2 copies the number stored in i to j.○ After Line 4, i, j, k refer to three separate integer placeholder,
which happen to store the same value 3.

1 Point p1 = new Point(2, 3);
2 Point p2 = p1; System.out.println(p1 == p2);/*true*/
3 Point p3 = new Point(2, 3);
4 Systme.out.println(p3 == p1 || p3 == p2);/*false*/
5 Systme.out.println(p3.x == p1.x && p3.y == p1.y);/*true*/
6 Systme.out.println(p3.x == p2.x && p3.y == p2.y);/*true*/

○ Line 2 copies the address stored in p1 to p2.○ Both p1 and p2 refer to the same object in memory!○ p3, whose contents are same as p1 and p2, refer to a different
object in memory.

50 of 90

OOP: Reference Aliasing (2.1)

Problem: Consider assignments to primitive variables:

1 int i1 = 1;
2 int i2 = 2;
3 int i3 = 3;
4 int[] numbers1 = {i1, i2, i3};
5 int[] numbers2 = new int[numbers1.length];
6 for(int i = 0; i < numbers1.length; i ++) {
7 numbers2[i] = numbers1[i];
8 }
9 numbers1[0] = 4;

10 System.out.println(numbers1[0]);
11 System.out.println(numbers2[0]);

51 of 90

OOP: Reference Aliasing (2.2)
Exercise: Consider assignments to reference variables:
1 Person alan = new Person("Alan");
2 Person mark = new Person("Mark");
3 Person tom = new Person("Tom");
4 Person jim = new Person("Jim");
5 Person[] persons1 = {alan, mark, tom};
6 Person[] persons2 = new Person[persons1.length];
7 for(int i = 0; i < persons1.length; i ++) {
8 persons2[i] = persons1[i]; }
9 persons1[0].setAge(70);

10 System.out.println(jim.getAge());
11 System.out.println(alan.getAge());
12 System.out.println(persons2[0].getAge());
13 persons1[0] = jim;
14 persons1[0].setAge(75);
15 System.out.println(jim.getAge());
16 System.out.println(alan.getAge());
17 System.out.println(persons2[0].getAge());

See the lecture recording on tracing the above program here.
52 of 90

Java Data Types (3.1)
● An attribute may store the reference to another object.
public class Person { private Person spouse; }

● Methods may take as parameters references to other objects.
public class Person {
public void marry(Person other) { . . . } }

● Return values from methods may be references to objects.
public class Point {
public void moveUp(double i) { this.y = this.y + i; }
Point movedUpBy(double i) {
Point np = new Point(this.x, this.y);
np.moveUp(i);
return np;

}
}

See the lecture recording on tracing the above program here.53 of 90

Java Data Types (3.2.1)
An attribute may be multi-valued, reference-typed
e.g., of type Point[] , storing references to Point objects.

1 public class PointCollector {
2 private Point[] points; private int nop;/* number of points */
3 public PointCollector() { this.points = new Point[100]; }
4 public void addPoint(double x, double y) {
5 this.points[this.nop] = new Point(x, y); this.nop++; }
6 public Point[] getPointsInQuadrantI() {
7 Point[] ps = new Point[this.nop];
8 int count = 0; /* number of points in Quadrant I */
9 for(int i = 0; i < this.nop; i++) {

10 Point p = this.points[i];
11 if(p.getX() > 0 && p.getY() > 0) { ps[count] = p; count++; } }

12 Point[] q1Points = new Point[count];
13 /* ps contains null if count < nop */
14 for(int i = 0; i < count; i++) { q1Points[i] = ps[i] }

15 return q1Points ;
16 } }

Required Reading: Point and PointCollector
54 of 90

Java Data Types (3.2.2)
1 public class PointCollectorTester {
2 public static void main(String[] args) {
3 PointCollector pc = new PointCollector();
4 System.out.println(pc.getNumberOfPoints()); /* 0 */
5 pc.addPoint(3, 4);
6 System.out.println(pc.getNumberOfPoints()); /* 1 */
7 pc.addPoint(-3, 4);
8 System.out.println(pc.getNumberOfPoints()); /* 2 */
9 pc.addPoint(-3, -4);

10 System.out.println(pc.getNumberOfPoints()); /* 3 */
11 pc.addPoint(3, -4);
12 System.out.println(pc.getNumberOfPoints()); /* 4 */
13 Point[] ps = pc.getPointsInQuadrantI();
14 System.out.println(ps.length); /* 1 */
15 System.out.println("(" +
16 ps[0].getX() + ", " + ps[0].getY() + ")"); /* (3, 4) */
17 }
18 }

See the lecture recording on tracing the above program here.
55 of 90

Anonymous Objects (1)
● What’s the difference between these two fragments of code?

1 double square(double x) {
2 double sqr = x * x;
3 return sqr; }

1 double square(double x) {
2 return x * x; }

After L2, the result of x * x:○ LHS: it can be reused (without recalculating) via the name sqr.○ RHS: it is not stored anywhere and returned right away.● Same principles applies to objects:
1 Person getP(String n) {
2 Person p = new Person(n) ;
3 return p; }

1 Person getP(String n) {
2 return new Person(n) ; }

new Person(n) is an object whose address is not stored in a variable.○ LHS: L2 stores the address of this anonymous object in p.○ RHS: L2 returns the address of this anonymous object directly.
56 of 90

Anonymous Objects (2.1)
Anonymous objects can also be used as assignment sources
or argument values:
class Member {
private Order[] orders;
private int noo;
/* constructor ommitted */
public void addOrder(Order o) {
this.orders[this.noo] = o;
this.noo++;

}
public void addOrder(String n, double p, double q) {
this.addOrder(new Order(n, p, q));
/* Equivalent implementation:

* this.orders[this.noo] = new Order(n, p, q); noo ++;

*/
}

}

57 of 90

Anonymous Objects (2.2)

One more example on using anonymous objects:

public class MemberTester {
public static void main(String[] args) {
Member m = new Member("Alan");
Order o = new Order("Americano", 4.7, 3);
m.addOrder(o);
m.addOrder(new Order("Cafe Latte", 5.1, 4));

}
}

58 of 90

The this Reference (7.1): Exercise

Consider the Person class

public class Person {
private String name;
private Person spouse;
public Person(String name) {
this.name = name;

}
}

How do you implement a mutator method marry which marries
the current Person object to an input Person object?

59 of 90

The this Reference (7.2): Exercise

public void marry(Person other) {
if(this.spouse != null || other.spouse != null) {
/* Error: both must be single */

}
else { this.spouse = other; other.spouse = this; }

}

When we call jim.marry(elsa): this is substituted by the
context object jim, and other by the argument elsa.
public void marry(Person ⇠⇠⇠other elsa) {
. . .
jim.spouse = elsa;
elsa.spouse = jim;

. . .
}

60 of 90

OOP: The Dot Notation (2)
● LHS of dot can be more complicated than a variable :
○ It can be a path that brings you to an object
public class Person {
private String name;/* public accessor: name() */
private Person spouse;/* public accessor: spouse() */

}

○ Say we have Person jim = new Person("Jim Davies")○ Inquire about jim’s name? [jim.name()]○ Inquire about jim’s spouse’s name? [jim.spouse().name()]○ But what if jim is single (i.e., jim.spouse() == null)?
Calling jim.spouse().name() will cause NullPointerException!!○ Quesion. Assuming that:● jim is not single. [jim.spouse() != null]● The marriage is mutual. [jim.spouse().spouse() == jim]
What does jim.spouse().spouse().name() mean?

Answer. jim.name()
61 of 90

OOP: Helper Methods (1)
● After you complete and test your program, feeling confident that

it is correct , you may find that there are lots of repetitions.
● When similar fragments of code appear in your program, we

say that your code “smells”!● We may eliminate repetitions of your code by:
○ Factoring out recurring code fragments into a new method.
○ This new method is called a helper method :
● You can replace every occurrence of the recurring code fragment by a

call to this helper method, with appropriate argument values.
● That is, we reuse the body implementation, rather than repeating it

over and over again, of this helper method via calls to it.

● This process is called refactoring of your code:
Modify the code structure without compromising correctness.

See the lecture recording on helper methods here.
62 of 90

OOP: Helper (Accessor) Methods (2.1)

public class PersonCollector {
private Person[] ps;
private final int MAX = 100;/* max # of persons to store */
private int nop; /* number of persons */
public PersonCollector() {
this.ps = new Person[MAX];

}
public void addPerson(Person p) {
this.ps[this.nop] = p;
this.nop++;

}
/* Tasks:

* 1. An accessor: boolean personExists(String n)

* 2. A mutator: void changeWeightOf(String n, double w)

* 3. A mutator: void changeHeightOf(String n, double h)

*/
}

63 of 90

OOP: Helper (Accessor) Methods (2.2.1)
public class PersonCollector {
/* ps, MAX, nop, PersonCollector(), addPerson */
public boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {
if(ps[i].getName().equals(n)) { found = true; } }

return found;
}
public void changeWeightOf(String n, double w) {
for(int i = 0; i < nop; i ++) {
if(ps[i].getName().equals(n)) { ps[i].setWeight(w); } }

}
public void changeHeightOf(String n, double h) {
for(int i = 0; i < nop; i ++) {
if(ps[i].getName().equals(n)) { ps[i].setHeight(h); } }

}
}

64 of 90

OOP: Helper (Accessor) Methods (2.2.2)
public class PersonCollector {/* code smells:repetitions! */
/* ps, MAX, nop, PersonCollector(), addPerson */
public boolean personExists(String n) {
boolean found = false;
for(int i = 0; i < nop; i ++) {

if(ps[i].getName().equals(n)) { found = true; } }
return found;

}
public void changeWeightOf(String n , double w) {

for(int i = 0; i < nop; i ++) {

if(ps[i].getName().equals(n)) { ps[i] .setWeight(w);} }
}
public void changeHeightOf(String n , double h) {

for(int i = 0; i < nop; i ++) {

if(ps[i].getName().equals(n)) { ps[i] .setHeight(h);} }
}

}65 of 90

OOP: Helper (Accessor) Methods (2.3)
public class PersonCollector { /* Code Smell Eliminated */
/* ps, MAX, nop, PersonCollector(), addPerson */
private int indexOf (String n) { /* Helper Methods */
int i = -1;
for(int j = 0; j < nop; j ++) {
if(ps[j].getName().equals(n)) { i = j; }

}
return i; /* -1 if not found; >= 0 if found. */

}
public boolean personExists(String n) {
return this.indexOf (n) >= 0; }

public void changeWeightOf(String n, double w) {
int i = indexOf (n); if(i >= 0) { ps[i].setWeight(w); }

}
public void changeHeightOf(String n, double h) {
int i = indexOf (n); if(i >= 0) { ps[i].setHeight(h); }

}
}

66 of 90

OOP: Helper (Accessor) Methods (3.1)

Problems:
● A Point class with x and y coordinate values.
● Accessor double getDistanceFromOrigin().
p.getDistanceFromOrigin() returns the distance
between p and (0, 0).

● Accessor double getDistancesTo(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, and between p and p2.

● Accessor double getTriDistances(Point p1, Point p2).
p.getDistancesTo(p1, p2) returns the sum of distances
between p and p1, between p and p2, and between p1 and p2.

67 of 90

OOP: Helper (Accessor) Methods (3.2)
class Point { /* code smells:repetitions! */
double x; double y;

double getDistanceFromOrigin() {
return Math.sqrt(Math.pow(this.x - 0, 2) + Math.pow(this.y - 0, 2)); }

double getDistancesTo(Point p1, Point p2) {
return

Math.sqrt(Math.pow(this.x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(this.x - p2.x, 2) + Math.pow(y - p2.y, 2)); }

double getTriDistances(Point p1, Point p2) {
return

Math.sqrt(Math.pow(this.x - p1.x, 2) + Math.pow(y - p1.y, 2))
+
Math.sqrt(Math.pow(this.x - p2.x, 2) + Math.pow(y - p2.y, 2))
+
Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2));

}
}

68 of 90

OOP: Helper (Accessor) Methods (3.3)

● The code pattern
Math.sqrt(Math.pow(. . . - . . ., 2) + Math.pow(. . . - . . ., 2))

is written down explicitly every time we need to use it.
● Create a helper method out of it, with the right parameter and

return types:

double getDistanceFrom(double otherX, double otherY) {
return Math.sqrt(
Math.pow(ohterX - this.x, 2)
+
Math.pow(otherY - this.y, 2));

}

69 of 90

OOP: Helper (Accessor) Methods (3.4)
public class Point { /* Code Smell Eliminated */
private double x; private double y;
double getDistanceFrom(double otherX, double otherY) {
return Math.sqrt(Math.pow(ohterX - this.x, 2) +

Math.pow(otherY - this.y, 2));
}
double getDistanceFromOrigin() {
return this.getDistanceFrom(0, 0);

}
double getDistancesTo(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y);
}
double getTriDistances(Point p1, Point p2) {
return this.getDistanceFrom(p1.x, p1.y) +

this.getDistanceFrom(p2.x, p2.y) +
p1.getDistanceFrom(p2.x, p2.y)

}
}

70 of 90

OOP: Helper (Mutator) Methods (4.1)

public class Student {
private String name;
private double balance;
public Student(String n, double b) {
name = n;
balance = b;

}

/* Tasks:

* 1. A mutator void receiveScholarship(double val)

* 2. A mutator void payLibraryOverdue(double val)

* 3. A mutator void payCafeCoupons(double val)

* 4. A mutator void transfer(Student other, double val)

*/
}

71 of 90

OOP: Helper (Mutator) Methods (4.2.1)

public class Student {
/* name, balance, Student(String n, double b) */
public void receiveScholarship(double val) {
balance = balance + val;

}
public void payLibraryOverdue(double val) {
balance = balance - val;

}
public void payCafeCoupons(double val) {
balance = balance - val;

}
public void transfer(Student other, double val) {
balance = balance - val;
other.balance = other.balance + val;

}
}

72 of 90

OOP: Helper (Mutator) Methods (4.2.2)

public class Student { /* code smells:repetitions! */
/* name, balance, Student(String n, double b) */
public void receiveScholarship(double val) {

balance = balance + val;
}
public void payLibraryOverdue(double val) {

balance = balance − val;
}
public void payCafeCoupons(double val) {

balance = balance − val;
}
public void transfer(Student other, double val) {

balance = balance − val;
balance = other.balance + val;

}
}

73 of 90

OOP: Helper (Mutator) Methods (4.3)

public class Student { /* Code Smell Eliminated */
/* name, balance, Student(String n, double b) */

public void deposit (double val) { /* Helper Method */
balance = balance + val;

}

public void withdraw (double val) { /* Helper Method */
balance = balance - val;

}

public void receiveScholarship(double val) { this. deposit (val); }

public void payLibraryOverdue(double val) { this. withdraw (val); }

public void payCafeCoupons(double val) { this. withdraw (val) }
public void transfer(Student other, double val) {

this. withdraw (val);

other. deposit (val);
}

}

74 of 90

Static Variables (1)

public class Account {
private int id;
private String owner;
public int getID() { return this.id; }
public Account(int id, String owner) {
this.id = id;
this.owner = owner;

}
}

class AccountTester {
Account acc1 = new Account(1, "Jim");
Account acc2 = new Account(2, "Jeremy");
System.out.println(acc1.getID() != acc2.getID());

}

But, managing the unique id’s manually is error-prone !
75 of 90

Static Variables (2)
class Account {

private static int globalCounter = 1 ;
private int id; String owner;
public Account(String owner) {
this.id = globalCounter ;

globalCounter ++ ;
this.owner = owner; } }

class AccountTester {
Account acc1 = new Account("Jim");
Account acc2 = new Account("Jeremy");
System.out.println(acc1.getID() != acc2.getID()); }

○ Each instance of a class (e.g., acc1, acc2) has a local copy of
each attribute or instance variable (e.g., id).● Changing acc1.id does not affect acc2.id.○ A static variable (e.g., globalCounter) belongs to the class.● All instances of the class share a single copy of the static variable.● Change to globalCounter via acc1 is also visible to acc2.

76 of 90

Static Variables (3)
public class Account {
private static int globalCounter = 1 ;
private int id; private String owner;
public Account(String owner) {
this.id = globalCounter ;

globalCounter ++ ;
this.owner = owner;

} }

● Static variable globalCounter is not instance-specific like
instance variable (i.e., attribute) id is.● To access a static variable:○ No context object is needed.○ Use of the class name suffices, e.g., Account.globalCounter.● Each time Account’s constructor is called to create a new
instance, the increment effect is visible to all existing objects
of Account.

77 of 90

Static Variables (4.1): Common Error
public class Client {
private Account[] accounts;
private static int numberOfAccounts = 0;
public void addAccount(Account acc) {
accounts[this.numberOfAccounts] = acc;
this.numberOfAccounts ++;

} }

public class ClientTester {
Client bill = new Client("Bill");
Client steve = new Client("Steve");
Account acc1 = new Account();
Account acc2 = new Account();
bill.addAccount(acc1);
/* correctly added to bill.getAccounts()[0] */

steve.addAccount(acc2);
/* mistakenly added to steve.getAccounts()[1]! */

}

78 of 90

Static Variables (4.2): Common Error
● Attribute numberOfAccounts should not be declared as
static as its value should be specific to the client object.● If it were declared as static, then every time the
addAccount method is called, although on different objects,
the increment effect of numberOfAccounts will be visible to
all Client objects.● Here is the correct version:
public class Client {
private Account[] accounts;
private int numberOfAccounts;
public void addAccount(Account acc) {
accounts[this.numberOfAccounts] = acc;
this.numberOfAccounts ++;

}
}

79 of 90

Static Variables (5.1): Common Error

1 public class Bank {
2 private string branchName;
3 public String getBrachName() { return this.branchName; }
4 private static int nextAccountNumber = 0;
5 public static String getInfo() {
6 nextAccountNumber++;
7 return this.branchName + nextAccountNumber;
8 }
9 }

● Non-static method cannot be referenced from a static context
● Line 5 declares that we can call the method getInfo without

instantiating an object of the class Bank.
● However, in Line 7, the static method references a non-static

attribute, for which we must instantiate a Bank object.
80 of 90

Static Variables (5.2): Common Error
1 public class Bank {
2 private String branchName;
3 public String getBrachName() { return this.branchName; }
4 private static int nextAccountNumber = 0;
5 public static String getInfo() {
6 nextAccountNumber++;
7 return this.branchName + nextAccountNumber;
8 }
9 }

● To call getInfo(), no instances of Bank are required:
Bank .getInfo();

● Contradictorily , to access branchName, a context object is
required:
Bank b = new Bank(); b.setBranch("Songdo IBK");
System.out.println(b .getBranchName());

81 of 90

Static Variables (5.3): Common Error

There are two possible ways to fix:
1. Remove all uses of non-static variables (i.e., branchName) in

the static method (i.e., getInfo).
2. Declare branchName as a static variable.○ This does not make sense.∵ branchName should be a value specific to each Bank instance.

82 of 90

Index (1)

Required: Review Tutorials on OOP in Java

Optional: Tutorial Videos to Help You Review

Required: Written Notes to Review

Learning Outcomes

Separation of Concerns: App/Tester vs. Model
Object Orientation:
Observe, Model, and Execute

Object-Oriented Programming (OOP)

OO Thinking: Templates vs. Instances (1.1)

OO Thinking: Templates vs. Instances (1.2)

OO Thinking: Templates vs. Instances (2.1)
83 of 90

Index (2)
OO Thinking: Templates vs. Instances (2.2)

OOP: Classes ≈ Templates

Java Data Types (1)

Java Data Types (2)

OOP: Methods (1.1)

OOP: Methods (1.2)

OOP: Methods (2)

OOP: Methods (3)

OOP: Class Constructors (1.1)

OOP: Class Constructors (1.2)

OOP: Class Constructors (2.1)
84 of 90

Index (3)
OOP: Class Constructors (2.2)

Visualizing Objects at Runtime (1)

Visualizing Objects at Runtime (2.1)

Visualizing Objects at Runtime (2.2)

Visualizing Objects at Runtime (2.3)

Visualizing Objects at Runtime (2.4)

Object Creation (1.1)

Object Creation (1.2)

Object Creation (2)

OOP: Object Creation (3.1.1)

OOP: Object Creation (3.1.2)
85 of 90

Index (4)
OOP: Object Creation (3.2.1)

OOP: Object Creation (3.2.2)

OOP: Object Creation (4)

OOP: The Dot Notation (1)

The this Reference (1)

The this Reference (2)

The this Reference (3)

The this Reference (4)

The this Reference (5)

The this Reference (6.1): Common Error

The this Reference (6.2): Common Error
86 of 90

Index (5)
OOP: Mutator Methods

OOP: Accessor Methods

OOP: Method Calls

OOP: Use of Mutator vs. Accessor Methods

OOP: Method Parameters

OOP: Reference Aliasing (1)

OOP: Reference Aliasing (2.1)

OOP: Reference Aliasing (2.2)

Java Data Types (3.1)

Java Data Types (3.2.1)

Java Data Types (3.2.2)
87 of 90

Index (6)
Anonymous Objects (1)

Anonymous Objects (2.1)

Anonymous Objects (2.2)

The this Reference (7.1): Exercise

The this Reference (7.2): Exercise

OOP: The Dot Notation (2)

OOP: Helper Methods (1)

OOP: Helper (Accessor) Methods (2.1)

OOP: Helper (Accessor) Methods (2.2.1)

OOP: Helper (Accessor) Methods (2.2.2)

OOP: Helper (Accessor) Methods (2.3)
88 of 90

Index (7)
OOP: Helper (Accessor) Methods (3.1)

OOP: Helper (Accessor) Methods (3.2)

OOP: Helper (Accessor) Methods (3.3)

OOP: Helper (Accessor) Methods (3.4)

OOP: Helper (Mutator) Methods (4.1)

OOP: Helper (Mutator) Methods (4.2.1)

OOP: Helper (Mutator) Methods (4.2.2)

OOP: Helper (Mutator) Methods (4.3)

Static Variables (1)

Static Variables (2)

Static Variables (3)
89 of 90

Index (8)
Static Variables (4.1): Common Error

Static Variables (4.2): Common Error

Static Variables (5.1): Common Error

Static Variables (5.2): Common Error

Static Variables (5.3): Common Error

90 of 90

Exceptions

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● Caller vs. Callee in a Method Invocation
● Error Handling via Console Message
● The Catch-or-Specify Requirement
● Example: To Handle or Not to Handle?
● Error Handling via Exceptions
● What to Do When an Exception is Thrown at Runtime
● More Examples on Exception Handling

2 of 39

Caller vs. Callee

● Within the body implementation of a method ({. . .}), we may
call other methods.

1 class C1 {
2 void m1() {
3 C2 o = new C2();
4 o.m2(); /* static type of o is C2 */

5 }
6 }

● From Line 4, we say:
○ Method C1.m1 (i.e., method m1 from class C1) is the caller of

method C2.m2.○ Method C2.m2 is the callee of method C1.m1.

3 of 39

Stack of Method Calls

● Execution of a Java project starts from the main method of
some class (e.g., CircleTester, BankApplication).

● Each line of method call involves the execution of that method’s
body implementation○ That method’s body implementation may also involve method

calls, which may in turn involve more method calls, and etc.○ It is typical that we end up with a chain of method calls !
○ We visualize this chain of method calls as a call stack .

For example:
● Account.withdraw [top of stack; latest called]● Bank.withdrawFrom● BankApplication.main [bottom of stack; earliest called]○ The closer a method is to the top of the call stack, the later its call

was made.

4 of 39

Error Reporting via Consoles: Circles (1)
1 class Circle {
2 double radius;
3 Circle() { /* radius defaults to 0 */ }
4 void setRadius(double r) {

5 if (r < 0) { System.out.println("Invalid radius."); }
6 else { radius = r; }
7 }
8 double getArea() { return radius * radius * 3.14; }
9 }

● A negative radius is considered as an invalid input value to
method setRadius.● What if the caller of Circle.setRadius passes a negative
value for r?○ An error message is printed to the console (Line 5) to warn the

caller of setRadius.
○ However, printing an error message to the console does not force

the caller of setRadius to stop and handle invalid values of r.
5 of 39

Error Reporting via Consoles: Circles (2)
1 class CircleCalculator {
2 public static void main(String[] args) {
3 Circle c = new Circle();
4 c.setRadius(-10);
5 double area = c.getArea();
6 System.out.println("Area: " + area);
7 }
8 }

● L4: CircleCalculator.main is caller of Circle.setRadius● A negative radius is passed to setRadius in Line 4.● The execution always flows smoothly from Lines 4 to Line 5,
even when there was an error message printed from Line 4.● It is not feasible to check if there is any kind of error message
printed to the console right after the execution of Line 4.● Solution: A way to force CircleCalculator.main, caller of
Circle.setRadius, to realize that things might go wrong.⇒When things do go wrong, immediate actions are needed.

6 of 39

Error Reporting via Consoles: Bank (1)
class Account {
int id; double balance;
Account(int id) { this.id = id; /* balance defaults to 0 */ }
void deposit(double a) {

if (a < 0) { System.out.println("Invalid deposit."); }
else { balance += a; }

}
void withdraw(double a) {

if (a < 0 || balance - a < 0) {

System.out.println("Invalid withdraw."); }
else { balance -= a; }

}
}

● A negative deposit or withdraw amount is invalid .● When an error occurs, a message is printed to the console.● However, printing error messages does not force the caller of
Account.deposit or Account.withdraw to stop and
handle invalid values of a.

7 of 39

Error Reporting via Consoles: Bank (2)
1 class Bank {
2 Account[] accounts; int numberOfAccounts;
3 Bank(int id) { . . . }
4 void withdrawFrom(int id, double a) {
5 for(int i = 0; i < numberOfAccounts; i ++) {
6 if(accounts[i].id == id) {
7 accounts[i].withdraw(a);
8 }
9 } /* end for */

10 } /* end withdraw */

11 }

● L7: Bank.withdrawFrom is caller of Account.withdraw
● What if in Line 7 the value of a is negative?

Error message Invalid withdraw printed from method
Account.withdraw to console.

● Impossible to force Bank.withdrawFrom, the caller of
Account.withdraw , to stop and handle invalid values of a.

8 of 39

Error Reporting via Consoles: Bank (3)
1 class BankApplication {
2 pubic static void main(String[] args) {
3 Scanner input = new Scanner(System.in);
4 Bank b = new Bank(); Account acc1 = new Account(23);
5 b.addAccount(acc1);
6 double a = input.nextDouble();
7 b.withdrawFrom(23, a);
8 System.out.println("Transaction Completed.");
9 }

○ There is a chain of method calls:● BankApplication.main calls Bank.withdrawFrom● Bank.withdrawFrom calls Account.withdraw .○ The actual update of balance occurs at the Account class.● What if in Line 7 the value of a is negative?
Invalid withdraw printed from Bank.withdrawFrom,

originated from Account.withdraw to console.● However, impossible to stop BankApplication.main from
continuing to execute Line 8, printing Transaction Completed.○ Solution: Define error checking only once and let it propagate.

9 of 39

What is an Exception?

● An exception is an event , which
○ occurs during the execution of a program○ disrupts the normal flow of the program’s instructions

● When an error occurs within a method:○ the method throws an exception:
● first creates an exception object● then hands it over to the runtime system○ the exception object contains information about the error:
● type [e.g., NegativeRadiusException]● the state of the program when the error occurred

10 of 39

What to Do When an Exception Is Thrown? (1)
● After a method throws an exception, the runtime system

searches the corresponding call stack for a method that
contains a block of code to handle the exception.○ This block of code is called an exception handler .

● An exception handler is appropriate if the type of the exception object
thrown matches the type that can be handled by the handler.● The exception handler chosen is said to catch the exception.○ The search goes from the top to the bottom of the call stack:● The method in which the error occurred is searched first.● The exception handler is not found in the current method being
searched⇒ Search the method that calls the current method, and etc.● When an appropriate handler is found, the runtime system passes the
exception to the handler.○ The runtime system searches all the methods on the call stack

without finding an appropriate exception handler⇒ The program terminates and the exception object is directly
“thrown” to the console!

11 of 39

What to Do When an Exception Is Thrown? (2)

Method where error occurred and an
exception object thrown

(top of call stack)

Method without an exception handler

Method with an exception handler

main method
(bottom of call stack)

method call

method call

method call

throws an
exception

forwards/
propagates
an exception

catches an
exception

12 of 39

The Catch or Specify Requirement (1)

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:
1. The “Catch” Solution: A try statement that catches and

handles the exception

(without propagating that exception to the method’s caller).

main(. . .) {
Circle c = new Circle();
try {
c.setRadius(-10);

}
catch(NegativeRaidusException e) {
. . .

}
}

13 of 39

The Catch or Specify Requirement (2)

Code (e.g., a method call) that might throw certain exceptions
must be enclosed by one of the two ways:
2. The “Specify” Solution: A method that specifies as part of its

header that it may (or may not) throw the exception

(which will be thrown to the method’s caller for handling).

class Bank {
Account[] accounts; /* attribute */

void withdraw (double amount)
throws InvalidTransactionException {

. . .
accounts[i].withdraw(amount);
. . .

}
}

14 of 39

Example: to Handle or Not to Handle? (1.1)
Consider the following three classes:

class A {
ma(int i) {
if(i < 0) { /* Error */ }
else { /* Do something. */ }

} }

class B {
mb(int i) {
A oa = new A();
oa.ma(i); /* Error occurs if i < 0 */

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i); /* Where can the error be handled? */

} }

15 of 39

Example: to Handle or Not to Handle? (1.2)

● We assume the following kind of error for negative values:
class NegValException extends Exception {

NegValException(String s) { super(s); }
}

● The above kind of exception may be thrown by calling A.ma.
● We will see three kinds of possibilities of handling this

exception:
Version 1:
Handle it in B.mb
Version 2:
Pass it from B.mb and handle it in Tester.main
Version 3:
Pass it from B.mb, then from Tester.main, then throw it to the
console.

16 of 39

Example: to Handle or Not to Handle? (2.1)
Version 1: Handle the exception in B.mb.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) {
A oa = new A();
try { oa.ma(i); }
catch(NegValException nve) { /* Do something. */ }

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i); /* Error, if any, would have been handled in B.mb. */

} }

17 of 39

Example: to Handle or Not to Handle? (2.2)
Version 1: Handle the exception in B.mb.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses to handle the error
right away using a try-catch block.

Method Tester.main method
need not worry about this error.

method call

method call

throws an
exception

catches an
exception

18 of 39

Example: to Handle or Not to Handle? (3.1)
Version 2: Handle the exception in Tester.main.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

} }

class Tester {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
try { ob.mb(i); }
catch(NegValException nve) { /* Do something. */ }

} }

19 of 39

Example: to Handle or Not to Handle? (3.2)
Version 2: Handle the exception in Tester.main.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses not to handle the
error and propagates it

to its caller (i.e., Tester.main).

Method Tester.main method
chooses to handle this error, so that

this NegValException is not
propagated further.

method call

method call

throws an
exception

catches an
exception

forwards/
propagates
an exception

20 of 39

Example: to Handle or Not to Handle? (4.1)
Version 3: Handle in neither of the classes.

class A {
ma(int i) throws NegValException {
if(i < 0) { throw new NegValException("Error."); }
else { /* Do something. */ }

} }

class B {
mb(int i) throws NegValException {
A oa = new A();
oa.ma(i);

} }

class Tester {
public static void main(String[] args) throws NegValException {
Scanner input = new Scanner(System.in);
int i = input.nextInt();
B ob = new B();
ob.mb(i);

} }

21 of 39

Example: to Handle or Not to Handle? (4.2)
Version 3: Handle in neither of the classes.

Method A.ma causes an error and an
NegValException object is thrown

Method B.mb chooses not to handle the
error and propagates it

to its caller (i.e., Tester.main).

Method Tester.main method
chooses not to handle the error, so that

this NegValException is propagated
further (i.e., thrown to console).

method call

method call

throws an
exception

forwards/
propagates
an exception

forwards/
propagates
an exception

22 of 39

Error Reporting via Exceptions: Circles (1)

public class InvalidRadiusException extends Exception {
public InvalidRadiusException(String s) {
super(s);

}
}

● A new kind of Exception: InvalidRadiusException
● For any method that can have this kind of error, we declare at

that method’s header that it may throw an
InvalidRaidusException object.

23 of 39

Error Reporting via Exceptions: Circles (2)

class Circle {
double radius;
Circle() { /* radius defaults to 0 */ }
void setRadius(double r) throws InvalidRadiusException {
if (r < 0) {
throw new InvalidRadiusException("Negative radius.");

}
else { radius = r; }

}
double getArea() { return radius * radius * 3.14; }

}

● As part of the header of setRadius, we declare that it may
throw an InvalidRadiusException object at runtime.

● Any method that calls setRadius will be forced to
deal with this potential error .

24 of 39

Error Reporting via Exceptions: Circles (3)
1 class CircleCalculator1 {
2 public static void main(String[] args) {
3 Circle c = new Circle();
4 try {
5 c.setRadius(-10);
6 double area = c.getArea();
7 System.out.println("Area: " + area);
8 }
9 catch(InvalidRadiusException e) {

10 System.out.println(e);
11 }
12 } }

● Line 5 is forced to be wrapped within a try-catch block, since it
may throw an InvalidRadiusException object.

● If an InvalidRadiusException object is thrown from Line
6, then the normal flow of execution is interrupted and we go to
the catch block starting from Line 9.

25 of 39

Error Reporting via Exceptions: Circles (4)

Exercise: Extend CircleCalculator1: repeatedly prompt
for a new radius value until a valid one is entered (i.e., the
InvalidRadiusException does not occur).

Enter a radius:
-5
Radius -5.0 is invalid, try again!
Enter a radius:
-1
Radius -1.0 is invalid, try again!
Enter a radius:
5
Circle with radius 5.0 has area: 78.5

26 of 39

Error Reporting via Exceptions: Circles (5)
1 public class CircleCalculator2 {
2 public static void main(String[] args) {
3 Scanner input = new Scanner(System.in);

4 boolean inputRadiusIsValid = false;

5 while(!inputRadiusIsValid) {
6 System.out.println("Enter a radius:");
7 double r = input.nextDouble();
8 Circle c = new Circle();
9 try { c.setRadius(r);

10 inputRadiusIsValid = true;

11 System.out.print("Circle with radius " + r);
12 System.out.println(" has area: "+ c.getArea()); }

13 catch(InvalidRadiusException e) { print("Try again!"); }

14 } } }

● At L7, if the user’s input value is:○ Non-Negative: L8 – L12. [inputRadiusIsValid set true]○ Negative: L8, L9, L13. [inputRadiusIsValid remains false]
27 of 39

Error Reporting via Exceptions: Bank (1)

public class InvalidTransactionException extends Exception {
public InvalidTransactionException(String s) {
super(s);

}
}

● A new kind of Exception:
InvalidTransactionException

● For any method that can have this kind of error, we declare at
that method’s header that it may throw an
InvalidTransactionException object.

28 of 39

Error Reporting via Exceptions: Bank (2)

class Account {
int id; double balance;
Account() { /* balance defaults to 0 */ }
void withdraw(double a) throws InvalidTransactionException {
if (a < 0 || balance - a < 0) {
throw new InvalidTransactionException("Invalid withdraw."); }

else { balance -= a; }
}

}

● As part of the header of withdraw, we declare that it may
throw an InvalidTransactionException object at
runtime.

● Any method that calls withdraw will be forced to
deal with this potential error .

29 of 39

Error Reporting via Exceptions: Bank (3)
class Bank {
Account[] accounts; int numberOfAccounts;
Account(int id) { . . . }
void withdraw(int id, double a)

throws InvalidTransactionException {
for(int i = 0; i < numberOfAccounts; i ++) {
if(accounts[i].id == id) {
accounts[i].withdraw(a);

}
} /* end for */ } /* end withdraw */ }

● As part of the header of withdraw, we declare that it may
throw an InvalidTransactionException object.

● Any method that calls withdraw will be forced to
deal with this potential error .

● We are propagating the potential error for the right party (i.e.,
BankApplication) to handle.

30 of 39

Error Reporting via Exceptions: Bank (4)
1 class BankApplication {
2 pubic static void main(String[] args) {
3 Bank b = new Bank();
4 Account acc1 = new Account(23);
5 b.addAccount(acc1);
6 Scanner input = new Scanner(System.in);
7 double a = input.nextDouble();
8 try {
9 b.withdraw(23, a);

10 System.out.println(acc1.balance); }
11 catch (InvalidTransactionException e) {
12 System.out.println(e); } } }

● Lines 9 is forced to be wrapped within a try-catch block, since
it may throw an InvalidTransactionException object.

● If an InvalidTransactionException object is thrown from
Line 9, then the normal flow of execution is interrupted and we
go to the catch block starting from Line 11.

31 of 39

More Examples (1)

double r = . . .;
double a = . . .;
try{
Bank b = new Bank();
b.addAccount(new Account(34));
b.deposit(34, 100);
b.withdraw(34, a);
Circle c = new Circle();
c.setRadius(r);
System.out.println(r.getArea());

}
catch(NegativeRadiusException e) {
System.out.println(r + " is not a valid radius value.");
e.printStackTrace();

}
catch(InvalidTransactionException e) {
System.out.println(r + " is not a valid transaction value.");
e.printStackTrace();

}

32 of 39

More Example (2.1)

The Integer class supports a method for parsing Strings:
public static int parseInt(String s)

throws NumberFormatException

e.g., Integer.parseInt("23") returns 23
e.g., Integer.parseInt("twenty-three") throws a
NumberFormatException

Write a fragment of code that prompts the user to enter a string
(using nextLine from Scanner) that represents an integer.
If the user input is not a valid integer, then prompt them to enter
again.

33 of 39

More Example (2.2)

Scanner input = new Scanner(System.in);
boolean validInteger = false;
while (!validInteger) {
System.out.println("Enter an integer:");
String userInput = input.nextLine();
try {
int userInteger = Integer.parseInt(userInput);
validInteger = true;

}
catch(NumberFormatException e) {
System.out.println(userInput + " is not a valid integer.");
/* validInteger remains false */

}
}

34 of 39

Beyond this lecture. . .

● Practice creating a new exception class upon a method
throwing it in the body of implementation (e.g.,
InvalidRadiusException,
InvalidTransactionException).

● Play with the source code:○ ExceptionsCircleAndBank.zip○ ExceptionsToHandleOrNotToHandle.zip

Tip. Change input values so as to explore, in Eclipse debugger ,

possible (normal vs. abnormal) execution paths .

35 of 39

Index (1)

Learning Outcomes

Caller vs. Callee

Stack of Method Calls

Error Reporting via Consoles: Circles (1)

Error Reporting via Consoles: Circles (2)

Error Reporting via Consoles: Bank (1)

Error Reporting via Consoles: Bank (2)

Error Reporting via Consoles: Bank (3)

What is an Exception?

What to Do When an Exception Is Thrown? (1)

What to Do When an Exception Is Thrown? (2)
36 of 39

Index (2)
The Catch or Specify Requirement (1)

The Catch or Specify Requirement (2)

Example: to Handle or Not to Handle? (1.1)

Example: to Handle or Not to Handle? (1.2)

Example: to Handle or Not to Handle? (2.1)

Example: to Handle or Not to Handle? (2.2)

Example: to Handle or Not to Handle? (3.1)

Example: to Handle or Not to Handle? (3.2)

Example: to Handle or Not to Handle? (4.1)

Example: to Handle or Not to Handle? (4.2)

Error Reporting via Exceptions: Circles (1)
37 of 39

Index (3)
Error Reporting via Exceptions: Circles (2)

Error Reporting via Exceptions: Circles (3)

Error Reporting via Exceptions: Circles (4)

Error Reporting via Exceptions: Circles (5)

Error Reporting via Exceptions: Bank (1)

Error Reporting via Exceptions: Bank (2)

Error Reporting via Exceptions: Bank (3)

Error Reporting via Exceptions: Bank (4)

More Examples (1)

More Example (2.1)

More Example (2.2)
38 of 39

Index (4)
Beyond this lecture. . .

39 of 39

Test-Driven Development (TDD) with JUnit

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● Testing the Solution to a Bounded Counter Problem
● Deriving Test Cases for a Bounded Variable
● Application of Normal vs. Disrupted Execution Flows
● Intention of a Test: Exceptions Expected vs. Not Expected

● Test Driven Development (TDD) via Regression Testing

2 of 42

Motivating Example: Two Types of Errors (1)

Consider two kinds of exceptions for a counter:
public class ValueTooLargeException extends Exception {

ValueTooLargeException(String s) { super(s); }

}

public class ValueTooSmallException extends Exception {

ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two exception
classes must be handled (catch-or-specify requirement):
○ Either specify throws . . . in the method header/API

(i.e., propagate it to the immediate caller in the call stack)○ Or handle it in a try-catch block

3 of 42

Motivating Example: Two Types of Errors (2)
Approach 1 – Specify : Indicate in the method header/API that
a specific exception might be thrown.

Example 1: Method that throws the exception
class C1 {

void m1(int x) throws ValueTooSmallException {

if(x < 0) {

throw new ValueTooSmallException("val " + x);

}

}

}

Example 2: Method that calls another which throws the exception
class C2 {

C1 c1;

void m2(int x) throws ValueTooSmallException {

c1.m1(x);

}

}

4 of 42

Motivating Example: Two Types of Errors (3)

Approach 2 – Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int x = input.nextInt();

C2 c2 = new c2();

try {

c2.m2(x);

}

catch(ValueTooSmallException e) { . . . }

}

}

5 of 42

A Simple Counter (1)
Consider a class for keeping track of an integer counter value:
public class Counter {

public final static int MAX_VALUE = 3;

public final static int MIN_VALUE = 0;

private int value;

public Counter() {

this.value = Counter.MIN_VALUE;

}

public int getValue() {

return value;

}

. . . /* more later! */

○ Access private attribute value using public accessor getValue.○ Two class-wide (i.e., static) constants (i.e., final) for lower and
upper bounds of the counter value.○ Initialize the counter value to its lower bound.

○ Requirement :

The counter value must be within its lower and upper bounds.
6 of 42

Exceptional Scenarios

● Sound Software Engineering Practice:
Design a test strategy even before code is completed.

● Q: Possible exceptional scenarios for such a counter?
○ An attempt to increment above the counter’s upper bound.○ An attempt to decrement below the counter’s lower bound.

7 of 42

A Simple Counter (2)
/* class Counter */

public void increment() throws ValueTooLargeException {

if(value == Counter.MAX_VALUE) {

throw new ValueTooLargeException("value is " + value);

}

else { value ++; }

}

public void decrement() throws ValueTooSmallException {

if(value == Counter.MIN_VALUE) {

throw new ValueTooSmallException("value is " + value);

}

else { value --; }

}

}

○ Change the counter value via two mutator methods.○ Changes on the counter value may trigger an exception:
● Attempt to increment when counter already reaches its maximum.● Attempt to decrement when counter already reaches its minimum.

8 of 42

Components of a Test

● Manipulate the relevant object(s).
e.g., Initialize a counter object c, then call c.increment().
e.g., Initialize a counter object c, then call c.decrement().

● What do you expect to happen ?
e.g., value of counter is such that Counter.MIN VALUE + 1
e.g., ValueTooSmallException is thrown

● What does your program actually produce ?
e.g., call c.getValue() to find out.
e.g., Use a try-catch block to find out (to be discussed!).

● A test:○ Passes if expected outcome occurs.
○ Fails if expected outcome does not occur.

9 of 42

Why JUnit?

● Automate the testing of correctness of your Java classes.
● Derive the list of tests. Transform it into a JUnit Test Class.
● JUnit tests are callers/clients of your classes. Each test may:○ Either attempt to use a method in a legal way (i.e., satisfying its

precondition), and report:
● Success if the result is as expected● Failure if the result is not as expected○ Or attempt to use a method in an illegal way (i.e., not satisfying

its precondition), and report:
● Success if the expected exception

(e.g., ValueTooSmallException) occurs.● Failure if the expected exception does not occur.

● Regression Testing : Any change introduced to your
software must not compromise its established correctness.

10 of 42

Test-Driven Development (TDD)

JUnit
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

extend, maintain

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.● Red bar reported: Fix the class under test (CUT) until green bar.● Green bar reported: Add more tests and Fix CUT when necessary.
11 of 42

How to Use JUnit: Packages

Step 1:○ In Eclipse, create a Java project ExampleTestingCounter○ Separation of concerns :
● Group classes for implementation (i.e., Counter)

into package implementation.● Group classes classes for testing (to be created)
into package tests.

12 of 42

How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.⇒ If you have n Java classes to test , create n JUnit test cases.
13 of 42

How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

14 of 42

How to Use JUnit: Adding JUnit Library
Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

15 of 42

How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.

16 of 42

How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○17 of 42

How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○18 of 42

How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.● The result of running a test is considered:○ Failure if either● an assertion failure (e.g., caused by fail, assertTrue,

assertEquals) occurs● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) thrown○ Success if neither assertion failures nor (unexpected)

exceptions occur.● After running all tests:○ A green bar means that all tests succeed.⇒ Keep challenging yourself if more tests may be added.○ A red bar means that at least one test fails.⇒ Keep fixing the class under test and re-running all tests, until
you receive a green bar.● Question: What is the easiest way to making test a success?

Answer: Delete the call fail("Not yet implemented").
19 of 42

How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.⇒ Neither assertion failures nor exceptions will occur.⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.∴We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

20 of 42

How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○21 of 42

How to Use JUnit: Commons Assertions

● void assertNull(Object o)

● void assertEquals(int expected, int actual)

● void assertEquals(double exp, double act, double epsilon)

● void assertArrayEquals(expected, actuals)

● void assertTrue(boolean condition)

● void fail(String message)

22 of 42

JUnit Assertions: Examples (1)
Consider the following class:
public class Point {

private int x; private int y;

public Point(int x, int y) { this.x = x; this.y = y; }

public int getX() { return this.x; }

public int getY() { return this.y; }

}

Then consider these assertions. Do they pass or fail?
Point p;

assertNull(p); ✓
assertTrue(p == null); ✓
assertFalse(p != null); ✓
assertEquals(3, p.getX()); × /* NullPointerException */

p = new Point(3, 4);

assertNull(p); ×
assertTrue(p == null); ×
assertFalse(p != null); ×
assertEquals(3, p.getX()); ✓
assertTrue(p.getX() == 3 && p.getY() == 4); ✓

23 of 42

JUnit Assertions: Examples (2)
● Consider the following class:

public class Circle {

private double radius;

public Circle(double radius) { this.radius = radius; }

public int getArea() { return 3.14 * radius * radius; }

}

● How do we test c.getArea()?○ Mathematically: 3.4 × 3.4 × 3.14 = 36.2984○ However, base-10 numbers cannot be represented perfectly in
the binary format.○ When comparing fractional numbers, allow some tolerance :

36.2984 − 0.01 ≤ c.getArea() ≤ 36.2984 + 0.01

● Then consider these assertions. Do they pass or fail?
Circle c = new Circle(3.4);

assertEquals(36.2984, c.getArea(), 0.01); ✓
24 of 42

More JUnit Assertion Methods

25 of 42

Testing Strategy

● What is the complete list of cases for testing Counter?
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2● Let’s turn the two cases in the 1st row into two JUnit tests:○ Test for the green cell succeeds if:

● No failures and exceptions occur; and● The new counter value is 1.○ Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).

26 of 42

Testing: Correct vs. Incorrect Imp.

● The real value of a test is:○ Not only to reaffirm when your implementation is correct ,○ But also to reject when your implementation is incorrect .
● What if the method decrement was implemented incorrectly?

class Counter {

. . .
public void decrement() throws ValueTooSmallException {

if(value < Counter.MIN_VALUE) {

throw new ValueTooSmallException("value is " + value);

}

else { value --; }

}

}

● A “good” test should reject such an incorrect implementation.

27 of 42

Test Case 1: Increment from Min (1)
1 @Test
2 public void testIncAfterCreation() {

3 Counter c = new Counter();

4 assertEquals(Counter.MIN_VALUE, c.getValue());

5 try {

6 c.increment();

7 assertEquals(1, c.getValue());

8 }

9 catch(ValueTooLargeException e) {

10 /* Exception is not expected to be thrown. */

11 fail ("ValueTooLargeException is not expected.");

12 }

13 }

● L3 sets c.value to 0.● Line 6 requires a try-catch block ∵ potential ValueTooLargeException● Lines 4, 7 11 are all assertions:○ Lines 4 & 7 assert that c.getValue() returns the expected values.○ Line 11: an assertion failure ∵ unexpected ValueTooLargeException● Line 7 can be rewritten as assertTrue(1 == c.getValue()).
28 of 42

Test Case 1: Increment from Min (2)
1 @Test
2 public void testIncAfterCreation() {

3 Counter c = new Counter();

4 assertEquals(Counter.MIN_VALUE, c.getValue());

5 try {

6 c.increment();

7 assertEquals(1, c.getValue());

8 }

9 catch(ValueTooLargeException e) {

10 /* Exception is not expected to be thrown. */

11 fail ("ValueTooLargeException is not expected.");

12 }

13 }

At L6, if method decrement is implemented:○ Correctly ⇒ a ValueTooLargeException does not occur.⇒ Execution continues to L7, L8, L13, then the program terminates.○ Incorrectly ⇒ an unexpected ValueTooLargeException occurs.⇒ Execution jumps to L9, L10 – L11, then the test program terminates.
29 of 42

Test Case 2: Decrement from Min (1)

1 @Test

2 public void testDecFromMinValue() {

3 Counter c = new Counter();

4 assertEquals(Counter.MIN_VALUE, c.getValue());

5 try {

6 c.decrement();

7 fail ("ValueTooSmallException is expected.");

8 }

9 catch(ValueTooSmallException e) {

10 /* Exception is expected to be thrown. */

11 }

12 }

● L3 sets c.value to 0.● Line 6 requires a try-catch block ∵ potential ValueTooSmallException● Lines 4 & 7 are both assertions:○ Lines 4 asserts that c.getValue() returns the expected value (i.e.,
Counter.MIN_VALUE).○ Line 7: an assertion failure ∵ expected ValueTooSmallException not thrown

30 of 42

Test Case 2: Decrement from Min (2)

1 @Test

2 public void testDecFromMinValue() {

3 Counter c = new Counter();

4 assertEquals(Counter.MIN_VALUE, c.getValue());

5 try {

6 c.decrement();

7 fail ("ValueTooSmallException is expected.");

8 }

9 catch(ValueTooSmallException e) {

10 /* Exception is expected to be thrown. */

11 }

12 }

At L6, if method decrement is implemented:○ Correctly ⇒ a ValueTooLargeException occurs.⇒ Execution jumps to L9, L10 – L12, then the program terminates.○ Incorrectly ⇒ expected ValueTooLargeException does not occur.⇒ Execution continues to L7, then the test program terminates.

31 of 42

Test Case 3: Increment from Max
1 @Test

2 public void testIncFromMaxValue() {

3 Counter c = new Counter();

4 try {

5 c.increment(); c.increment(); c.increment();

6 }

7 catch (ValueTooLargeException e) {

8 fail("ValueTooLargeException was thrown unexpectedly.");

9 }

10 assertEquals(Counter.MAX_VALUE, c.getValue());

11 try {

12 c.increment();

13 fail("ValueTooLargeException was NOT thrown as expected.");

14 }

15 catch (ValueTooLargeException e) {

16 /* Do nothing: ValueTooLargeException thrown as expected. */

17 }

18 }

○ L4 – L9: a VTLE is not expected; L11 – 17: a VTLE is expected.
32 of 42

Exercise: Console Tester vs. JUnit Test
Q. Can this console tester work like the JUnit test testIncFromMaxValue does?

1 public class CounterTester {

2 public static void main(String[] args) {

3 Counter c = new Counter();

4 println("Current val: " + c.getValue());

5 try {

6 c.increment(); c.increment(); c.increment();

7 println("Current val: " + c.getValue());

8 }

9 catch (ValueTooLargeException e) {

10 println("Error: ValueTooLargeException thrown unexpectedly.");

11 }

12 try {

13 c.increment();

14 println("Error: ValueTooLargeException NOT thrown.");

15 } /* end of inner try */

16 catch (ValueTooLargeException e) {

17 println("Success: ValueTooLargeException thrown.");

18 }

19 } /* end of main method */

20 } /* end of CounterTester class */

A. Say one of the first 3 c.increment() mistakenly throws VTLE.● After L10 is executed, flow of execution still continues to L12.● This allows the 4th c.increment to be executed!
33 of 42

Exercise: Combining catch Blocks?
Q: Can we rewrite testIncFromMaxValue to:

1 @Test

2 public void testIncFromMaxValue() {

3 Counter c = new Counter();

4 try {

5 c.increment();

6 c.increment();

7 c.increment();

8 assertEquals(Counter.MAX_VALUE, c.getValue());

9 c.increment();

10 fail("ValueTooLargeException was NOT thrown as expected.");

11 }

12 catch (ValueTooLargeException e) { }

13 }

No!
At Line 12, we would not know which line throws the VTLE:○ If it was any of the calls in L5 – L7, then it’s not right .○ If it was L9, then it’s right .

34 of 42

Using Loops in JUnit Test Cases

Loops can make it effective on generating test cases:
1 @Test

2 public void testIncDecFromMiddleValues() {

3 Counter c = new Counter();

4 try {

5 for(int i = Counter.MIN_VALUE; i < Counter.MAX_VALUE; i ++) {

6 int currentValue = c.getValue();

7 c.increment();

8 assertEquals(currentValue + 1, c.getValue());

9 }

10 for(int i = Counter.MAX_VALUE; i > Counter.MIN_VALUE; i --) {

11 int currentValue = c.getValue();

12 c.decrement();

13 assertEquals(currentValue - 1, c.getValue());

14 }

15 }

16 catch(ValueTooLargeException e) {

17 fail("ValueTooLargeException is thrown unexpectedly");

18 }

19 catch(ValueTooSmallException e) {

20 fail("ValueTooSmallException is thrown unexpectedly");

21 }

22 }

35 of 42

Exercises

1. Run all 8 tests and make sure you receive a green bar.
2. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.○ Re-run all 8 tests and you should receive a red bar. [Why?]○ Undo error injections & Re-Run all 8 tests. [What happens?]

36 of 42

Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml

37 of 42

Beyond this lecture. . .

Play with the source code ExampleTestingCounter.zip

Tip. Change input values so as to explore, in Eclipse debugger ,

possible (normal vs. abnormal) execution paths .

38 of 42

Index (1)

Learning Outcomes

Motivating Example: Two Types of Errors (1)

Motivating Example: Two Types of Errors (2)

Motivating Example: Two Types of Errors (3)

A Simple Counter (1)

Exceptional Scenarios

A Simple Counter (2)

Components of a Test

Why JUnit?

Test-Driven Development (TDD)

How to Use JUnit: Packages
39 of 42

Index (2)
How to Use JUnit: New JUnit Test Case (1)

How to Use JUnit: New JUnit Test Case (2)

How to Use JUnit: Adding JUnit Library

How to Use JUnit: Generated Test Case

How to Use JUnit: Running Test Case

How to Use JUnit: Generating Test Report

How to Use JUnit: Interpreting Test Report

How to Use JUnit: Revising Test Case

How to Use JUnit: Re-Running Test Case

How to Use JUnit: Common Assertions

JUnit Assertions: Examples (1)
40 of 42

Index (3)
JUnit Assertions: Examples (2)

More JUnit Assertion Methods

Testing Strategy

Testing: Correct vs. Incorrect Imp.

Test Case 1: Increment from Min (1)

Test Case 1: Increment from Min (2)

Test Case 2: Decrement from Min (1)

Test Case 2: Decrement from Min (2)

Test Case 3: Increment from Max

Exercise: Console Tester vs. JUnit Test

Exercise: Combining catch Blocks?
41 of 42

Index (4)
Using Loops in JUnit Test Cases

Exercises

Resources

Beyond this lecture. . .

42 of 42

Object Equality

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● Object equality : To Override or Not to Override
● Asserting Object Equality : assertSame vs. assertEquals
● Short-Circuit Effect (SCE): && vs. ||
● Equality for Array-, Reference-Typed Attributes

2 of 22

Equality (1)

● Recall that○ A primitive variable stores a primitive value.
e.g., double d1 = 7.5; double d2 = 7.5;○ A reference variable stores the address to some object (rather
than storing the object itself).
e.g., Point p1 = new Point(2, 3) assigns to p1 the
address of the new Point object
e.g., Point p2 = new Point(2, 3) assigns to p2 the
address of another new Point object● The binary operator == may be applied to compare:

○ Primitive variables: their values are compared
e.g., d1 == d2 evaluates to true○ Reference variables: the addresses they store are compared
(rather than comparing contents of the objects they refer to)
e.g., p1 == p2 evaluates to false because p1 and p2 are
addresses of different objects, even if their contents are identical.

3 of 22

Equality (2.1)

● Implicitly:○ Every class is a child/sub class of the Object class.○ The Object class is the parent/super class of every class.● There is a useful accessor method that every class inherits

from the Object class:○ public boolean equals(Object obj)

● Indicates whether some other object obj is “equal to” this one.● The default definition inherited from Object:
public boolean equals(Object obj) {

return (this == obj);

}

e.g., Say p1 and p2 are of type PointV1
in which the equals method is not redefined /overridden,
then p1.equals(p2) boils down to (p1 == p2).○ Very often when you define new classes, you want to

redefine / override the inherited definition of equals.
4 of 22

Equality (2.2): Common Error

int i = 10;

int j = 12;

boolean sameValue = i.equals(j);

Compilation Error

The equals method is only applicable to reference types.
Fix

Write i == j instead.

5 of 22

Equality (3)

public class PointV1 {

private int x; private int y;

public PointV1(int x, int y) { this.x = x; this.y = y; }

}

1 String s = "(2, 3)";

2 PointV1 p1 = new PointV1(2, 3);

3 PointV1 p2 = new PointV1(2, 3);

4 PointV1 p3 = new PointV1(4, 6);

5 System.out.println(p1 == p2); /* false */

6 System.out.println(p2 == p3); /* false */

7 System.out.println(p1.equals(p1)); /* true */

8 System.out.println(p1.equals(null)); /* false */

9 System.out.println(p1.equals(s)); /* false */

10 System.out.println(p1.equals(p2)); /* false */

11 System.out.println(p2.equals(p3)); /* false */

● The equals method is not explicitly redefined/overridden in class
PointV1⇒ The default version inherited from class Object is called.
e.g., Executing p1.equals(null) boils down to (p1 == null).● To compare contents of PointV1 objects, redefine/override equals.

6 of 22

Equality (4.1)

To compare contents rather than addresses, override equals.
public class PointV2 {

private int x; private int y;

public boolean equals (Object obj) {

if(this == obj) { return true; }

if(obj == null) { return false; }

if(this.getClass() != obj.getClass()) { return false; }

PointV2 other = (PointV2) obj;

return this.x == other.x && this.y == other.y;

}

}

1 String s = "(2, 3)";

2 PointV2 p1 = new PointV2(2, 3);

3 PointV2 p2 = new PointV2(2, 3);

4 PointV2 p3 = new PointV2(4, 6);

5 System.out.println(p1 == p2); /* false */

6 System.out.println(p2 == p3); /* false */

7 System.out.println(p1.equals(p1)); /* true */

8 System.out.println(p1.equals(null)); /* false */

9 System.out.println(p1.equals(s)); /* false */

10 System.out.println(p1.equals(p2)); /* true */

11 System.out.println(p2.equals(p3)); /* false */

7 of 22

Equality (4.2)

● When making a method call p.equals(o):○ Say variable p is declared of type PointV2○ Variable o can be declared of any type (e.g., PointV2, String)● We define p and o as equal if:○ Either p and o refer to the same object;○ Or:
● o does not store the null address.● p and o at runtime point to objects of the same type.● The x and y coordinates are the same.

● Q: In the equals method of Point, why is there no such a line:
class PointV2 {

public boolean equals(Object obj) {

if(this == null) { return false; }

A: If this was null, a NullPointerException would have
occurred, preventing the body of equals from being executed.

8 of 22

Equality (4.3)

1 public class PointV2 {

2 public boolean equals(Object obj) {

3 . . .
4 if(this.getClass() != obj.getClass()) { return false; }

5 PointV2 other = (PointV2) obj;

6 return this.x == other.x && this.y == other.y;

7 }

8 }

○ Object obj at L2 declares a parameter obj of type Object.

○ PointV2 other at L5 declares a variable p of type PointV2.
We call such types declared at compile time as static type.○ Applicable attributes/methods callable upon a variable depends on its static type.

e.g., We may only call the small list of methods defined in Object

class on obj, which does not include x and y (specific to PointV2).○ If we are certain that an object’s “actual” type is different from its static type, then
we can cast it.

e.g., Given that this.getClass() == obj.getClass(), we are
sure that obj is also a Point, so we can cast it to PointV2.○ The cast (PointV2) obj creates an alias of obj, upon which (or upon its alias

such as other) more methods can be invoked.
9 of 22

Equality (5)

Two notions of equality for variables of reference types:

● Reference Equality : use == to compare addresses

● Object Equality : define equals method to compare contents

1 PointV2 p1 = new PointV2(3, 4);

2 PointV2 p2 = new PointV2(3, 4);

3 PointV2 p3 = new PointV2(4, 5);

4 System.out.println(p1 == p1); /* true */

5 System.out.println(p1.equals(p1)); /* true */

6 System.out.println(p1 == p2); /* false */

7 System.out.println(p1.equals(p2)); /* true */

8 System.out.println(p2 == p3); /* false */

9 System.out.println(p2.equals(p3)); /* false */

● Being reference-equal implies being object-equal.
● Being object-equal does not imply being reference-equal.
10 of 22

Requirements of equals

Given that reference variables x, y, z are not null:● ¬ x .equals(null)
● Reflexive :

x .equals(x)
● Symmetric

x .equals(y) ⇐⇒ y .equals(x)
● Transitive

x .equals(y) ∧ y .equals(z)⇒ x .equals(z)
API of equals

11 of 22

Equality in JUnit (1.1)

● assertSame(exp1, exp2)○ Passes if exp1 and exp2 are references to the same object≈ assertTrue(exp1 == exp2)≈ assertFalse(exp1 != exp2)

PointV1 p1 = new PointV1(3, 4);

PointV1 p2 = new PointV1(3, 4);

PointV1 p3 = p1;

assertSame(p1, p3); ✓
assertSame(p2, p3); ×

● assertEquals(exp1, exp2)○ ≈ exp1 == exp2 if exp1 and exp2 are primitive type

int i = 10;

int j = 20;

assertEquals(i, j); ×

12 of 22

Equality in JUnit (1.2)

● assertEquals(exp1, exp2)
○ ≈ exp1.equals(exp2) if exp1 and exp2 are reference type

Case 1: If equals is not explicitly overridden in exp1’s dynamic type≈ assertSame(exp1, exp2)

PointV1 p1 = new PointV1(3, 4);

PointV1 p2 = new PointV1(3, 4);

PointV2 p3 = new PointV2(3, 4);

assertEquals(p1, p2); × /* ∵ different PointV1 objects */

assertEquals(p2, p3); × /* ∵ different object addresses */

Case 2: If equals is explicitly overridden in exp1’s dynamic type≈ exp1.equals(exp2)
PointV1 p1 = new PointV1(3, 4);

PointV1 p2 = new PointV1(3, 4);

PointV2 p3 = new PointV2(3, 4);

assertEquals(p1, p2); × /* ≈ p1.equals(p2) ≈ p1 == p2 */

assertEquals(p2, p3); × /* ≈ p2.equals(p3) ≈ p2 == p3 */

assertEquals(p3, p2); × /* ≈ p3.equals(p2) ≈ p3.getClass()==p2.getClass() */

13 of 22

Equality in JUnit (2)

@Test
public void testEqualityOfPointV1() {

PointV1 p1 = new PointV1(3, 4); PointV1 p2 = new PointV1(3, 4);

assertFalse(p1 == p2); assertFalse(p2 == p1);

/* assertSame(p1, p2); assertSame(p2, p1); */ /* both fail */

assertFalse(p1.equals(p2)); assertFalse(p2.equals(p1));

assertTrue(p1.getX() == p2.getX() && p1.getY() == p2.getY());

}

@Test
public void testEqualityOfPointV2() {

PointV2 p3 = new PointV2(3, 4); PointV2 p4 = new PointV2(3, 4);

assertFalse(p3 == p4); assertFalse(p4 == p3);

/* assertSame(p3, p4); assertSame(p4, p3); */ /* both fail */

assertTrue(p3.equals(p4)); assertTrue(p4.equals(p3));

assertEquals(p3, p4); assertEquals(p4, p3);

}

@Test
public void testEqualityOfPointV1andPointv2() {

PointV1 p1 = new PointV1(3, 4); PointV2 p2 = new PointV2(3, 4);

/* These two assertions do not compile because p1 and p2 are of different types. */

/* assertFalse(p1 == p2); assertFalse(p2 == p1); */

/* assertSame can take objects of different types and fail. */

/* assertSame(p1, p2); */ /* compiles, but fails */

/* assertSame(p2, p1); */ /* compiles, but fails */

/* version of equals from Object is called */

assertFalse(p1.equals(p2));

/* version of equals from PointP2 is called */

assertFalse(p2.equals(p1));

}

14 of 22

Equality (6.1)

Exercise: Persons are equal if names and measures are equal.
1 public class Person {

2 private String firstName; private String lastName;

3 private double weight; private double height;

4 public boolean equals(Object obj) {

5 if(this == obj) { return true; }

6 if(obj == null || this.getClass() != obj.getClass()) { return false; }

7 Person other = (Person) obj;

8 return

9 this.weight == other.weight

10 && this.height == other.height

11 && this.firstName.equals(other.firstName)

12 && this.lastName.equals(other.lastName);

13 }

14 }

Q: At L6, will we get a NullPointerException if obj is null?
A: No ∵ Short-Circuit Effect of ||

obj is null, then obj == null evaluates to true⇒ no need to evaluate the RHS
The left operand obj == null acts as a guard constraint for the
right operand this.getClass() != obj.getClass().

15 of 22

Equality (6.2)

Exercise: Persons are equal if names and measures are equal.

1 public class Person {

2 private String firstName; private String lastName;

3 private double weight; private double height;

4 public boolean equals(Object obj) {

5 if(this == obj) { return true; }

6 if(obj == null || this.getClass() != obj.getClass()) { return false; }

7 Person other = (Person) obj;

8 return

9 this.weight == other.weight

10 && this.height == other.height

11 && this.firstName.equals(other.firstName)

12 && this.lastName.equals(other.lastName);

13 }

14 }

Q: At L6, if swapping the order of two operands of disjunction:
this.getClass() != obj.getClass() || obj == null

Will we get a NullPointerException if obj is null?
A: Yes ∵ Evaluation of operands is from left to right.

16 of 22

Equality (6.3)

Exercise: Persons are equal if names and measures are equal.

1 public class Person {

2 private String firstName; private String lastName;

3 private double weight; private double height;

4 public boolean equals(Object obj) {

5 if(this == obj) { return true; }

6 if(obj == null || this.getClass() != obj.getClass()) { return false; }

7 Person other = (Person) obj;

8 return

9 this.weight == other.weight

10 && this.height == other.height

11 && this.firstName.equals(other.firstName)

12 && this.lastName.equals(other.lastName);

13 }

14 }

Q: At L11 & L12, where is the equals method defined?
A: The equals method overridden in the String class.
When implementing the equals method for your own class, reuse

the equals methods overridden in other classes wherever possible.
17 of 22

Equality (6.4)

Person collectors are equal if containing equal lists of persons.
class PersonCollector {

private Person[] persons;

private int nop; /* number of persons */

public PersonCollector() { . . . }

public void addPerson(Person p) { . . . }

public int getNop() { return this.nop; }

public Person[] getPersons() { . . . }

}

Redefine/Override the equals method in PersonCollector.
1 public boolean equals(Object obj) {

2 if(this == obj) { return true; }

3 if(obj == null || this.getClass() != obj.getClass()) { return false; }

4 PersonCollector other = (PersonCollector) obj;

5 boolean equal = false;

6 if(this.nop == other.nop) {

7 equal = true;

8 for(int i = 0; equal && i < this.nop; i ++) {

9 equal = this.persons[i].equals(other.persons[i]);

10 }

11 }

12 return equal;

13 }

18 of 22

Equality in JUnit (3)

@Test
public void testPersonCollector() {

Person p1 = new Person("A", "a", 180, 1.8);

Person p2 = new Person("A", "a", 180, 1.8);

Person p3 = new Person("B", "b", 200, 2.1);

Person p4 = p3;

assertFalse(p1 == p2); assertTrue(p1.equals(p2));

assertTrue(p3 == p4); assertTrue(p3.equals(p4));

PersonCollector pc1 = new PersonCollector();

PersonCollector pc2 = new PersonCollector();

assertFalse(pc1 == pc2); assertTrue(pc1.equals(pc2));

pc1.addPerson(p1);

assertFalse(pc1.equals(pc2));

pc2.addPerson(p2);

assertFalse(pc1.getPersons()[0] == pc2.getPersons()[0]);

assertTrue(pc1.getPersons()[0].equals(pc2.getPersons()[0]));

assertTrue(pc1.equals(pc2));

pc1.addPerson(p3);

pc2.addPerson(p4);

assertTrue(pc1.getPersons()[1] == pc2.getPersons()[1]);

assertTrue(pc1.getPersons()[1].equals(pc2.getPersons()[1]));

assertTrue(pc1.equals(pc2));

pc1.addPerson(new Person("A", "a", 175, 1.75));

pc2.addPerson(new Person("A", "a", 165, 1.55));

assertFalse(pc1.getPersons()[2] == pc2.getPersons()[2]);

assertFalse(pc1.getPersons()[2].equals(pc2.getPersons()[2]));

assertFalse(pc1.equals(pc2));

}

19 of 22

Beyond this lecture. . .

● Play with the source code
ExampleEqualityPointsPersons.zip

Tip. Use the debugger to step into executing the
various versions of equals method.

● Go back to your Review Tutorial: Extend the Product, Entry,
and RefurbishedStore classes by overridden versions of
the equals method.

20 of 22

Index (1)

Learning Outcomes

Equality (1)

Equality (2.1)

Equality (2.2): Common Error

Equality (3)

Equality (4.1)

Equality (4.2)

Equality (4.3)

Equality (5)

Requirements of equals

Equality in JUnit (1.1)

21 of 22

Index (2)

Equality in JUnit (1.2)

Equality in JUnit (2)

Equality (6.1)

Equality (6.2)

Equality (6.3)

Equality (6.4)

Equality in JUnit (3)

Beyond this lecture. . .

22 of 22

Aggregation and Composition

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● Call by Value: Primitive vs. Reference Argument Values
● Aggregation vs. Composition: Terminology and Modelling

● Aggregation: Building Sharing Links & Navigating Objects
● Composition: Implementation via Copy Constructors

● Design Decision : Aggregation or Composition?

2 of 37

Call by Value (1)

● Consider the general form of a call to some mutator method

m, with context object co and argument value arg:
co.m(arg)

○ Argument variable arg is not passed directly to the method call.○ Instead, argument variable arg is passed indirectly: a copy of
the value stored in arg is made and passed to the method call.

● What can be the type of variable arg? [Primitive or Reference]○ arg is primitive type (e.g., int, char, boolean, etc.):
Call by Value : Copy of arg’s stored value

(e.g., 2, ‘j’, true) is made and passed.○ arg is reference type (e.g., String, Point, Person, etc.):
Call by Value : Copy of arg’s stored reference/address

(e.g., Point@5cb0d902) is made and passed.

3 of 37

Call by Value (2.1)

For illustration, let’s assume the following variant of the Point
class:

public class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() { return this.x; }
public int getY() { return this.y; }
public void moveVertically(int y){ this.y += y; }
public void moveHorizontally(int x){ this.x += x; }

}

4 of 37

Call by Value (2.2.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByVal() {
3 Util u = new Util();
4 int i = 10;
5 assertTrue(i == 10);
6 u.reassignInt(i);
7 assertTrue(i == 10);
8 }

● Before the mutator call at L6, primitive variable i stores 10.

● When executing the mutator call at L6, due to call by value , a
copy of variable i is made.
⇒ The assignment i = i + 1 is only effective on this copy, not
the original variable i itself.

● ∴ After the mutator call at L6, variable i still stores 10.
5 of 37

Call by Value (2.2.2)

Before reassignInt During reassignInt After reassignInt

10inti

10inti

10intj

10inti

11intj

6 of 37

Call by Value (2.3.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_1() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.reassignRef(p);
7 assertTrue(p == refOfPBefore);
8 assertTrue(p.getX() == 3);
9 assertTrue(p.getY() == 4);

10 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made.⇒ The assignment p = np is only effective on this copy, not the original
variable p itself.● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,

same as refOfPBefore).
7 of 37

Call by Value (2.3.2)

Before reassignRef During reassignRef After reassignRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

3

4

x

y

Point

p

q
6

8

x

y

Point

8 of 37

Call by Value (2.4.1)
public class Util {
void reassignInt(int j) {
j = j + 1; }

void reassignRef(Point q) {
Point np = new Point(6, 8);
q = np; }

void changeViaRef(Point q) {
q.moveHorizontally(3);
q.moveVertically(4); } }

1 @Test
2 public void testCallByRef_2() {
3 Util u = new Util();
4 Point p = new Point(3, 4);
5 Point refOfPBefore = p;
6 u.changeViaRef(p);
7 assertTrue(p == refOfPBefore);
8 assertTrue(p.getX() == 6);
9 assertTrue(p.getY() == 8);

10 }

● Before the mutator call at L6, reference variable p stores the address of
some Point object (whose x is 3 and y is 4).

● When executing the mutator call at L6, due to call by value , a

copy of address stored in p is made. [Alias: p and q store same address.]

⇒ q.moveHorizontally impacts the same object referenced by p and q.● ∴ After the mutator call at L6, variable p still stores the original address (i.e.,
same as refOfPBefore), but its x and y values have been modified via q.

9 of 37

Call by Value (2.4.2)

Before changeViaRef During changeViaRef After changeViaRef

3

4

x

y

Point

p

3

4

x

y

Point

p

q

6

8

x

y

Point

p

q

10 of 37

Aggregation vs. Composition: Terminology
Container object: an object that contains others.
Containee object: an object that is contained within another.● e.g., Each course has a faculty member as its instructor.○ Container : Course Containee: Faculty.● e.g., Each student is registered in a list of courses; Each faculty
member teaches a list of courses.○ Container : Student, Faculty Containees: Course.

e.g., eecs2030 taken by jim (student) and taught by tom (faculty).
⇒ Containees may be shared by different instances of containers.
e.g., When EECS2030 is finished, jim and jackie still exist!
⇒ Containees may exist independently without their containers.● e.g., In a file system, each directory contains a list of files.○ Container : Directory Containees: File.
e.g., Each file has exactly one parent directory.
⇒ A containee may be owned by only one container .
e.g., Deleting a directory also deletes the files it contains.
⇒ Containees may co-exist with their containers.

11 of 37

Aggregation: Independent Containees
Shared by Containers (1.1)

Course Faculty
prof
1

public class Course {
private String title;
private Faculty prof;
public Course(String title) {
this.title = title;

}
public void setProf(Faculty prof) {
this.prof = prof;

}
public Faculty getProf() {
return this.prof;

}
}

public class Faculty {
private String name;
public Faculty(String name) {
this.name = name;

}
public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}
}

12 of 37

Aggregation: Independent Containees
Shared by Containers (1.2)
@Test
public void testAggregation1() {
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
Faculty prof = new Faculty("Jackie");
eecs2030.setProf(prof);
eecs3311.setProf(prof);
assertTrue(eecs2030.getProf() == eecs3311.getProf());
/* aliasing */
prof.setName("Jeff");
assertTrue(eecs2030.getProf() == eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));

Faculty prof2 = new Faculty("Jonathan");
eecs3311.setProf(prof2);
assertTrue(eecs2030.getProf() != eecs3311.getProf());
assertTrue(eecs2030.getProf().getName().equals("Jeff"));
assertTrue(eecs3311.getProf().getName().equals("Jonathan"));

}

13 of 37

Aggregation: Independent Containees
Shared by Containers (2.1)

Student
cs
*

Course Faculty

te
* prof

1

public class Student {
private String id; Course[] cs; int noc; /* # of courses */
public Student(String id) { . . . }
public void addCourse(Course c) { . . . }
public Course[] getCS() { . . . }

}

public class Course { private String title; private Faculty prof; }

public class Faculty {
private String name; Course[] te; int not; /* # of teaching */
public Faculty(String name) { . . . }
public void addTeaching(Course c) { . . . }
public Course[] getTE() { . . . }

}

14 of 37

Aggregation: Independent Containees
Shared by Containers (2.2)
@Test
public void testAggregation2() {
Faculty p = new Faculty("Jackie");
Student s = new Student("Jim");
Course eecs2030 = new Course("Advanced OOP");
Course eecs3311 = new Course("Software Design");
eecs2030.setProf(p);
eecs3311.setProf(p);
p.addTeaching(eecs2030);
p.addTeaching(eecs3311);
s.addCourse(eecs2030);
s.addCourse(eecs3311);

assertTrue(eecs2030.getProf() == s.getCS()[0].getProf());
assertTrue(s.getCS()[0].getProf()

== s.getCS()[1].getProf());
assertTrue(eecs3311 == s.getCS()[1]);
assertTrue(s.getCS()[1] == p.getTE()[1]);

}

15 of 37

The Dot Notation (3.1)
In real life, the relationships among classes are sophisticated.

Student
cs
*

Course Faculty

te
* prof

1

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

● Assume: private attributs and public accessors● Aggregation links between classes constrain how you can
navigate among these classes.

● In the context of class Student:○ Writing cs denotes the array of registered courses.○ Writing cs[i] (where i is a valid index) navigates to the class
Course, which changes the context to class Course.

16 of 37

OOP: The Dot Notation (3.2)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Student {
. . . /* attributes */
/* Get the student’s id */
public String getID() { return this.id; }
/* Get the title of the ith course */
public String getTitle(int i) {
return this.cs[i].getTitle();

}
/* Get the instructor’s name of the ith course */
public String getName(int i) {
return this.cs[i].getProf.getName();

}
}

17 of 37

OOP: The Dot Notation (3.3)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Course {
. . . /* attributes */
/* Get the course’s title */
public String getTitle() { return this.title; }
/* Get the instructor’s name */
public String getName() {
return this.prof.getName();

}
/* Get title of ith teaching course of the instructor */
public String getTitle(int i) {
return this.prof.getTE()[i].getTitle();

}
}

18 of 37

OOP: The Dot Notation (3.4)

public class Student {
private String id;
private Course[] cs;

}

public class Course {
private String title;
private Faculty prof;

}

public class Faculty {
private String name;
private Course[] te;

}

public class Faculty {
. . . /* attributes */
/* Get the instructor’s name */
public String getName() {
return this.name;

}
/* Get the title of ith teaching course */
public String getTitle(int i) {
return this.te[i].getTitle();

}
}

19 of 37

Composition: Dependent Containees
Owned by Containers (1.1)

Directory File
files
*

parent
1

Requirement: Files are not shared among directories.

Assume: private attributs
and public accessors
class File {
String name;
File(String name) {
this.name = name;

}
}

class Directory {
String name;
File[] files;
int nof; /* num of files */
Directory(String name) {
this.name = name;
files = new File[100];

}
void addFile(String fileName) {
files[nof] = new File(fileName);
nof ++;

}
}

20 of 37

Composition: Dependent Containees
Owned by Containers (1.2.1)

1 @Test
2 public void testComposition() {
3 Directory d1 = new Directory("D");
4 d1.addFile("f1.txt");
5 d1.addFile("f2.txt");
6 d1.addFile("f3.txt");
7 assertTrue(d1.getFiles()[0].getName().equals("f1.txt"));
8 }

● L4: 1st File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L5: 2nd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

● L6: 3rd File object is created and owned exclusively by d1.
No other directories are sharing this File object with d1.

21 of 37

Composition: Dependent Containees
Owned by Containers (1.2.2)

Right before test method testComposition terminates:

Directory

d1
files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name
“D”

“f1.txt” “f2.txt” “f3.txt”

22 of 37

Composition: Dependent Containees
Owned by Containers (1.3)

Problem: Implement a copy constructor for Directory.
A copy constructor is a constructor which initializes attributes
from the argument object other (of the same type

Directory).

class Directory {
Directory(Directory other) {
/* Initialize attributes via attributes of ‘other’. */

}
}

Hints:
● The implementation should be consistent with the effect of

copying and pasting a directory.
● Separate copies of files are created.
23 of 37

Composition: Dependent Containees
Owned by Containers (1.4.1)

Version 1: Shallow Copy by copying all attributes using =.
class Directory {
Directory(Directory other) {
/* value copying for primitive type */
nof = other.nof;
/* address copying for reference type */
name = other.name; files = other.files; } }

Is a shallow copy satisfactory to support composition?
i.e., Does it still forbid sharing to occur? [NO]
@Test
public void testShallowCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() == d2.getFiles()); /* violation of composition */
d2.getFiles()[0].changeName("f11.txt");
assertFalse(d1.getFiles()[0].getName().equals("f1.txt"));

}

24 of 37

Composition: Dependent Containees
Owned by Containers (1.4.2)

Right before test method testShallowCopyConstructor
terminates:

Directory

d1
files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f11.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name

d2.filesd2

d2.files[0] d2.files[1] d2.files[2]

d2.name

25 of 37

Composition: Dependent Containees
Owned by Containers (1.5.1)

Version 2: a Deep Copy

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < other.nof; i ++) {
File src = other.files[i];
File nf = new File(src);
this.addFile(nf);

}
}
void addFile(File f) { . . . }

}

@Test
public void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() != d2.getFiles()); /* composition preserved */
d2.getFiles()[0].changeName("f11.txt");
assertTrue(d1.getFiles()[0].getName().equals("f1.txt"));

}

26 of 37

Composition: Dependent Containees
Owned by Containers (1.5.2)

Right before test method testDeepCopyConstructor
terminates:

Directory

d1
files

0 1
d1.files

File

name

2

null

3

null

4

null

5

null

6

null

7

null

…

d1.files[0] d1.files[1] d1.files[2]

null

99

3nof

nof

File

name

File

name

name

“D”

“f1.txt” “f2.txt” “f3.txt”

Directory

files

3nof

name
d2.files

d2

d2.files[0] d2.files[1] d2.files[2]

0 1 2

null

3

null

4

null

5

null

6

null

7

null

…

null

99

“D”

File

name

File

name

File

name

“f11.txt” “f2.txt” “f3.txt”

nof

d2.name

27 of 37

Composition: Dependent Containees
Owned by Containers (1.5.3)

Q: Composition Violated?

class File {
File(File other) {
this.name =
new String(other.name);

}
}

class Directory {
Directory(String name) {
this.name = new String(name);
files = new File[100]; }

Directory(Directory other) {
this (other.name);
for(int i = 0; i < other.nof; i ++) {
File src = other.files[i];
this.addFile(src);

}
}
void addFile(File f) { . . . }

}

@Test
public void testDeepCopyConstructor() {
Directory d1 = new Directory("D");
d1.addFile("f1.txt"); d1.addFile("f2.txt"); d1.addFile("f3.txt");
Directory d2 = new Directory(d1);
assertTrue(d1.getFiles() != d2.getFiles()); /* composition preserved */
d2.getFiles()[0].changeName("f11.txt");
assertTrue(d1.getFiles()[0] == d2.getFiles()[0]); /* composition violated! */

}

28 of 37

Composition: Dependent Containees
Owned by Containers (1.6)

Exercise: Implement the accessor in class Directory

class Directory {
File[] files;
int nof;
File[] getFiles() {
/* Your Task */

}
}

so that it preserves composition, i.e., does not allow
references of files to be shared.

29 of 37

Aggregation vs. Composition (1)

Terminology:○ Container object: an object that contains others.○ Containee object: an object that is contained within another.

Aggregation :
○ Containees (e.g., Course) may be shared among containers

(e.g., Student, Faculty).○ Containees exist independently without their containers.○ When a container is destroyed, its containees still exist.

Composition :
○ Containers (e.g, Directory, Department) own exclusive

access to their containees (e.g., File, Faculty).○ Containees cannot exist without their containers.○ Destroying a container destroys its containeees cascadingly .

30 of 37

Aggregation vs. Composition (2)

Aggregations and Compositions may exist at the same time!
e.g., Consider a workstation:○ Each workstation owns CPU, monitor, keyword. [compositions]○ All workstations share the same network. [aggregations]

31 of 37

Aggregation vs. Composition (3)
Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book be
implemented as an aggregation or a composition?

author as an aggregation author as a composition

Hyperlinked author page Physical printed copies

32 of 37

Beyond this lecture. . .

Reproduce the aggregation and composition code examples
in Eclipse.
Tip. Use the debugger to verify whether or not there is sharing.

33 of 37

Index (1)

Learning Outcomes

Call by Value (1)

Call by Value (2.1)

Call by Value (2.2.1)

Call by Value (2.2.2)

Call by Value (2.3.1)

Call by Value (2.3.2)

Call by Value (2.4.1)

Call by Value (2.4.2)

Aggregation vs. Composition: Terminology

34 of 37

Index (2)

Aggregation: Independent Containees
Shared by Containers (1.1)
Aggregation: Independent Containees
Shared by Containers (1.2)
Aggregation: Independent Containees
Shared by Containers (2.1)
Aggregation: Independent Containees
Shared by Containers (2.2)

The Dot Notation (3.1)

OOP: The Dot Notation (3.2)

OOP: The Dot Notation (3.3)

OOP: The Dot Notation (3.4)

35 of 37

Index (3)

Composition: Dependent Containees
Owned by Containers (1.1)
Composition: Dependent Containees
Owned by Containers (1.2.1)
Composition: Dependent Containees
Owned by Containers (1.2.2)
Composition: Dependent Containees
Owned by Containers (1.3)
Composition: Dependent Containees
Owned by Containers (1.4.1)
Composition: Dependent Containees
Owned by Containers (1.4.2)

36 of 37

Index (4)
Composition: Dependent Containees
Owned by Containers (1.5.1)
Composition: Dependent Containees
Owned by Containers (1.5.2)
Composition: Dependent Containees
Owned by Containers (1.5.3)
Composition: Dependent Containees
Owned by Containers (1.6)

Aggregation vs. Composition (1)

Aggregation vs. Composition (2)

Aggregation vs. Composition (3)

Beyond this lecture. . .

37 of 37

Inheritance

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● Alternative designs to inheritance
● Using inheritance for code reuse
● Static Types, Expectations, Dynamic Types

● Polymorphism
(variable assignments, method arguments & return values)

● Dynamic Binding
● Type Casting

2 of 110

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

3 of 110

Why Inheritance: A Motivating Example
Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 10 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Write Java classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

4 of 110

No Inheritance: ResidentStudent Class
public class ResidentStudent {
private String name;
private Course[] courses; private int noc;

private double premiumRate; /* assume a mutator for this */

public ResidentStudent (String name) {
this.name = name;
this.courses = new Course[10];

}
public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}
public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}

return tuition * this. premiumRate ;
}

}

5 of 110

No Inheritance: NonResidentStudent Class
public class NonResidentStudent {
private String name;
private Course[] courses; private int noc;

private double discountRate; /* assume a mutator for this */

public NonResidentStudent (String name) {
this.name = name;
this.courses = new Course[10];

}
public void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}
public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}

return tuition * this. discountRate ;
}

}

6 of 110

No Inheritance: Testing Student Classes
public class Course {
private String title; private double fee;
public Course(String title, double fee) {
this.title = title; this.fee = fee;

}
}

public class StudentTester {
public static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

7 of 110

No Inheritance:
Issues with the Student Classes

● Implementations for the two student classes seem to work.
But can you see any potential problems with it?
Hint. Maintenance of code

● The code of the two student classes share a lot in common.○ Duplicates of code make it hard to maintain your software!○ This means that when there is a change of policy on the common
part, we need modify more than one places.○ This violates the so-called single-choice design principle.

8 of 110

No Inheritance: Maintainability of Code (1)

What if the way for registering a course changes?
e.g.,
public void register(Course c) throws TooManyCoursesException {
if (this.noc >= MAX_ALLOWANCE) {
throw new TooManyCoursesException("Too many courses");

}
else {
this.courses[this.noc] = c;
this.noc ++;

}
}

Changes needed for register method in both student classes!

9 of 110

No Inheritance: Maintainability of Code (2)

What if the way for calculating the base tuition changes?
e.g.,
public double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}
/* . . . can be premiumRate or discountRate */
return tuition * inflationRate * . . .;

}

Changes needed for getTuition method in both student classes!

10 of 110

No Inheritance:
A Collection of Various Kinds of Students

How can we define a class StudentManagementSystem that
contains a list of resident and non-resident students?

public class StudentManagementSystem {
private ResidentStudent[] rss;
private NonResidentStudent[] nrss;
private int nors; /* number of resident students */
private int nonrs; /* number of non-resident students */
public void addRS(ResidentStudent rs){ rss[nors]=rs; nors++; }
public void addNRS(NonResidentStudent nrs){ nrss[nonrs]=nrs;nonrs++; }
public void registerAll(Course c) {
for(int i = 0; i < nors; i ++) { rss[i].register(c); }
for(int i = 0; i < nonrs; i ++) { nrss[i].register(c); }

}
}

But what if we later on introduce more kinds of students?
Very inconvenient to handle each list of students separately !

a polymorphic collection of students
11 of 110

Visibility: Project, Packages, Classes

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

12 of 110

Visibility of Classes

● Only one modifier for declaring visibility of classes: public.
● Use of private is forbidden for declaring a class.

e.g., private class Chair is not allowed!!
● Visibility of a class may be declared using a modifier,

indicating that it is accessible:
1. Across classes within its residing package [no modifier]

e.g., Declare class Chair { . . . }
2. Across packages [public]

e.g., Declare public class Chair { . . . }
● Consider class Chair which resides in:○ package furniture○ project CollectionOfStuffs

13 of 110

Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

class Chair

Desk

Circle

Square

14 of 110

Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

public class Chair

Desk

Circle

Square

15 of 110

Visibility of Attributes/Methods:
Using Modifiers to Define Scopes● Two modifiers for declaring visibility of attributes/methods: public and private● Visibility of an attribute or a method may be declared using a modifier,

indicating that it is accessible:
1. Within its residing class (most restrictive) [private]

e.g., Declare attribute private int i;

e.g., Declare method private void m(){};
2. Across classes within its residing package [no modifier]

e.g., Declare attribute int i;

e.g., Declare method void m(){};
3. Across packages (least restrictive) [public]

e.g., Declare attribute public int i;

e.g., Declare method public void m(){};● Consider attributes i and m residing in:
Class Chair; Package furniture; Project CollectionOfStuffs.

16 of 110

Visibility of Attr./Meth.: Across All Methods
Within the Resident Class (private)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

private i, m

17 of 110

Visibility of Attr./Meth.: Across All Classes
Within the Resident Package (no modifier)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

i, m

18 of 110

Visibility of Attr./Meth.: Across All Packages
Within the Resident Project (public)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

public i, m

19 of 110

Use of the protected Modifier

● private attributes are not inherited to subclasses.
● package-level attributes (i.e., with no modifier) and

project-level attributes (i.e., public) are inherited.
● What if we want attributes to be:○ visible to sub-classes outside the current package, but still○ invisible to other non-sub-classes outside the current package?

Use protected !

20 of 110

Visibility of Attr./Meth.: Across All Methods
Same Package and Sub-Classes (protected)

animal

animal

furniture

shape

CollectionOfStuffs

Cat

Dog

Chair

Desk

Circle

Square

protected i, m

BubbleChair

RockingChair

extends extends

21 of 110

Visibility of Attributes/Methods

```````modifier
scope CLASS PACKAGE SUBCLASS SUBCLASS NON-SUBCLASS

(same pkg) (different pkg) (across Project)

public

protected

no modifier

private

For the rest of this lecture, for simplicity, we assume that:
All relevant parent/child classes are in the same package .
⇒ Attributes with no modifiers (package-level visibility) suffice.
⇒ Methods with no modifiers (package-level visibility) suffice.

22 of 110



Inheritance Architecture

ResidentStudent NonResidentStudent

Student

extends
extends

23 of 110

Inheritance: The Student Parent/Super Class
class Student {
String name;
Course[] courses; int noc;
Student (String name) {
this.name = name;
this.courses = new Course[10];

}
void register(Course c) {
this.courses[this.noc] = c;
this.noc ++;

}
double getTuition() {
double tuition = 0;
for(int i = 0; i < this.noc; i ++) {
tuition += this.courses[i].fee;

}
return tuition; /* base amount only */

}
}

24 of 110

Inheritance:
The ResidentStudent Child/Sub Class

1 class ResidentStudent extends Student {

2 double premiumRate; /* there’s a mutator method for this */

3 ResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();
7 return base * premiumRate ;
8 }
9 }

● L1 declares that ResidentStudent inherits all attributes and
methods (except constructors) from Student.● There is no need to repeat the register method● Use of super in L3 is as if calling Student(name)● Use of super in L6 returns what getTuition() in Student returns.● Use super to refer to attributes/methods defined in the super class:
super.name , super.register(c) .

25 of 110

Inheritance:
The NonResidentStudent Child/Sub Class

1 class NonResidentStudent extends Student {

2 double discountRate; /* there’s a mutator method for this */

3 NonResidentStudent (String name) { super(name); }
4 /* register method is inherited */
5 double getTuition() {
6 double base = super.getTuition();
7 return base * discountRate ;
8 }
9 }

● L1 declares that NonResidentStudent inherits all attributes and
methods (except constructors) from Student.● There is no need to repeat the register method● Use of super in L3 is as if calling Student(name)● Use of super in L6 returns what getTuition() in Student returns.● Use super to refer to attributes/methods defined in the super class:
super.name , super.register(c) .

26 of 110



Inheritance Architecture Revisited

ResidentStudent NonResidentStudent

Student

extends
extends

● The class that defines the common attributes and methods is
called the parent or super class.

● Each “extended” class is called a child or sub class.
27 of 110

Using Inheritance for Code Reuse

Inheritance in Java allows you to:○ Define common attributes and methods in a separate class.
e.g., the Student class○ Define an “extended” version of the class which:
● inherits definitions of all attributes and methods

e.g., name, courses, noc
e.g., register
e.g., base amount calculation in getTuition

This means code reuse and elimination of code duplicates!
● defines new attributes and methods if necessary

e.g., setPremiumRate for ResidentStudent
e.g., setDiscountRate for NonResidentStudent● redefines/overrides methods if necessary
e.g., compounded tuition for ResidentStudent
e.g., discounted tuition for NonResidentStudent

28 of 110

Visualizing Parent/Child Objects (1)

● A child class inherits all non-private attributes from its parent
class.
⇒ A child instance has at least as many attributes as an
instance of its parent class.
Consider the following instantiations:
Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

● How will these initial objects look like?

29 of 110

Visualizing Parent/Child Objects (2)

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

null

0

null

1

… null

8

null

9

0

Student

name

numberOfCourses

registeredCourses

“Stella”
s

null

0

null

1

… null

8

null

9

0

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

null

0

null

1

… null

8

null

9

discountRate

premiumRate

30 of 110



Testing the Two Student Sub-Classes
public class StudentTester {
public static void main(String[] args) {
Course c1 = new Course("EECS2030", 500.00); /* title and fee */
Course c2 = new Course("EECS3311", 500.00); /* title and fee */
ResidentStudent jim = new ResidentStudent("J. Davis");
jim.setPremiumRate(1.25);
jim.register(c1); jim.register(c2);
NonResidentStudent jeremy = new NonResidentStudent("J. Gibbons");
jeremy.setDiscountRate(0.75);
jeremy.register(c1); jeremy.register(c2);
System.out.println("Jim pays " + jim.getTuition());
System.out.println("Jeremy pays " + jeremy.getTuition());

}
}

● The software can be used in the exact same way as before
(because we did not modify method headers).● But now the internal structure of code has been made
maintainable using inheritance .

31 of 110

Inheritance Architecture:
Static Types & Expectations

NonResidentStudent

Student

ResidentStudent

String name
Course[] courses /* registered courses (rcs) */
int noc /* number of courses */

Student(String name)
void register(Course c)
double getTuition()

/* new attributes, new methods */
ResidentStudent(String name)
double premiumRate
void setPremiumRate(double r)
/* redefined/overridden methods */
double getTuition()

/* new attributes, new methods */
NonResidentStudent(String name)
double discountRate
void setDiscountRate(double r)
/* redefined/overridden methods */
double getTuition()

Student s = new Student("Stella");
ResidentStudent rs = new ResidentStudent("Rachael");
NonResidentStudent nrs = new NonResidentStudent("Nancy");

name rcs noc reg getT pr setPR dr setDR

s. ✓ ×
rs. ✓ ✓ ×
nrs. ✓ × ✓

32 of 110

Polymorphism: Intuition (1)

1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● Which one of L4 and L5 is valid? Which one is invalid?
● Hints:○ L1: What kind of address can s store? [ Student ]

∴ The context object s is expected to be used as:
● s.register(eecs2030) and s.getTuition()○ L2: What kind of address can rs store? [ ResidentStudent ]
∴ The context object rs is expected to be used as:
● rs.register(eecs2030) and rs.getTuition()● rs.setPremiumRate(1.50) [increase premium rate]

33 of 110

Polymorphism: Intuition (2)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */● rs = s (L5) should be invalid :

“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate● Since rs is declared of type ResidentStudent, a subsequent
call rs.setPremiumRate(1.50) can be expected.● rs is now pointing to a Student object.● Then, what would happen to rs.setPremiumRate(1.50)?

CRASH ∵ rs.premiumRate is undefined !!
34 of 110



Polymorphism: Intuition (3)
1 Student s = new Student("Stella");
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.25);
4 s = rs; /* Is this valid? */
5 rs = s; /* Is this valid? */

● s = rs (L4) should be valid :
“Stella”name

StudentStudent s

“Rachael”name

ResidentStudent

ResidentStudent rs

registeredCourses
0

null

1 2

…

28 29

null null null null

0

null

1 2

…

28 29

null null null null

registeredCourses

0numberOfCourses

0numberOfCourses

1.25premiumRate● Since s is declared of type Student, a subsequent call
s.setPremiumRate(1.50) is never expected.● s is now pointing to a ResidentStudent object.● Then, what would happen to s.getTuition()?

OK ∵ s.premiumRate is never directly used !!
35 of 110

Dynamic Binding: Intuition (1)
1 Course eecs2030 = new Course("EECS2030", 100.0);
2 Student s;
3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition()); /* 125.0 */
8 s = nrs; System.out.println( s .getTuition()); /* 75.0 */

After s = rs (L7), s points to a ResidentStudent object.⇒ Calling s .getTuition() applies the premiumRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

36 of 110

Dynamic Binding: Intuition (2)
1 Course eecs2030 = new Course("EECS2030", 100.0);
2 Student s;
3 ResidentStudent rs = new ResidentStudent("Rachael");
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 rs.setPremiumRate(1.25); rs.register(eecs2030);
6 nrs.setDiscountRate(0.75); nrs.register(eecs2030);
7 s = rs; System.out.println( s .getTuition()); /* 125.0 */
8 s = nrs; System.out.println( s .getTuition()); /* 75.0 */

After s = nrs (L8), s points to a NonResidentStudent object.⇒ Calling s .getTuition() applies the discountRate.

“Rachael”name

ResidentStudentResidentStudent rs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

1.25premiumRate

“Nancy”name

NonResidentStudentNonResidentStudent nrs
0 1 2

…

28 29

null null null null

registeredCourses

1numberOfCourses

0.75discountRate

“CSE114”title

Course

100.0fee

Student s

37 of 110

Multi-Level Inheritance Architecture

DomesticResidentStudent DomesticNonResidentStudent ForeignResidentStudent ForeignNonResidentStudent

DomesticStudent ForeignStudent

Student

38 of 110



Multi-Level Inheritance Hierarchy:
Smart Phones

IPhoneSE IPhone13Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP50Pro HuaweiMate40Pro GalaxyS21 GalaxyS21Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ 
/* cinematic mode */
quickTake 

/* dual-matrix camera */
zoomage

39 of 110

Inheritance Forms a Type Hierarchy
● A (data) type denotes a set of related runtime values.○ Every class can be used as a type: the set of runtime objects.● Use of inheritance creates a hierarchy of classes:○ (Implicit) Root of the hierarchy is Object.○ Each extends declaration corresponds to an upward arrow.○ The extends relationship is transitive: when A extends B and B

extends C, we say A indirectly extends C.
e.g., Every class implicitly extends the Object class.● Ancestor vs. Descendant classes:○ The ancestor classes of a class A are: A itself and all classes that
A directly, or indirectly, extends.● A inherits all code (attributes and methods) from its ancestor classes.∴ A’s instances have a wider range of expected usages (i.e.,

attributes and methods) than instances of its ancestor classes.○ The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, extends A.● Code defined in A is inherited to all its descendant classes.

40 of 110

Inheritance Accumulates Code for Reuse● The lower a class is in the type hierarchy, the more code it accumulates
from its ancestor classes:○ A descendant class inherits all code from its ancestor classes.○ A descendant class may also:● Declare new attributes● Define new methods● Redefine / Override inherited methods● Consequently:○ When being used as context objects ,

instances of a class’ descendant classes have a wider range of

expected usages (i.e., attributes and methods).○ Given a reference variable, expected to store the address of an object of
a particular class, we may substitute it with ( re-assign it to) an object of
any of its descendant classes.○ e.g., When expecting a SmartPhone object, we may
substitute it with either a IPhone13Pro or a Samsung object.○ Justification: A descendant class contains at least as many methods
as defined in its ancestor classes (but not vice versa!).

41 of 110

Static Types Determine Expectations
● A reference variable’s static type is what we declare it to be.
○ Student jim declares jim’s ST as Student.
○ SmartPhone myPhone declares myPhone’s ST as SmartPhone.
○ The static type of a reference variable never changes .

● For a reference variable v , its static type C defines the
expected usages of v as a context object .

● A method call v.m(. . .) is compilable if m is defined in C .○ e.g., After declaring Student jim , we
● may call register and getTuition on jim● may not call setPremiumRate (specific to a resident student) or
setDiscountRate (specific to a non-resident student) on jim○ e.g., After declaring SmartPhone myPhone , we

● may call dial and surfWeb on myPhone● may not call facetime (specific to an IOS phone) or skype (specific
to an Android phone) on myPhone

42 of 110



Substitutions via Assignments
● By declaring C1 v1, reference variable v1 will store the

address of an object “of class C1” at runtime.● By declaring C2 v2, reference variable v2 will store the
address of an object “of class C2” at runtime.● Assignment v1 = v2 copies address stored in v2 into v1.
○ v1 will instead point to wherever v2 is pointing to. [ object alias ]

……

…C1 v1

……

…C2 v2

● In such assignment v1 = v2, we say that we substitute an
object of (static) type C1 by an object of (static) type C2.● Substitutions are subject to rules!

43 of 110

Rules of Substitution
When expecting an object of static type A:○ It is safe to substitute it with an object whose static type is any

of the descendant class of A (including A).
● ∵ Each descendant class of A, being the new substitute, is

guaranteed to contain all (non-private) attributes/methods defined in A.● e.g., When expecting an IOS phone, you can substitute it with either
an IPhoneSE or IPhone13Pro.○ It is unsafe to substitute it with an object whose static type is

any of the ancestor classes of A’s parent (excluding A).
● ∵ Class A may have defined new methods that do not exist in any of its

parent’s ancestor classes .
● e.g., When expecting IOS phone, unsafe to substitute it with a
SmartPhone ∵ facetime not supported in Android phone.○ It is also unsafe to substitute it with an object whose static type

is neither an ancestor nor a descendant of A.● e.g., When expecting IOS phone, unsafe to substitute it with a
HuaweiP50Pro ∵ facetime not supported in Android phone.

44 of 110

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that
it is currently pointing to at runtime.
○ The dynamic type of a reference variable may change

whenever we re-assign that variable to a different object.○ There are two ways to re-assigning a reference variable.

45 of 110

Visualizing Static Type vs. Dynamic Type

0

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”Student s

premiumRate

...

● Each segmented box denotes a runtime object.● Arrow denotes a variable (e.g., s) storing the object’s address.
Usually, when the context is clear, we leave the variable’s static

type implicit (Student).
● Title of box indicates type of runtime object, which denotes the

dynamic type of the variable (ResidentStudent).
46 of 110



Reference Variable:
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:
○ Substitution Principle : the new object’s class must be a

descendant class of the reference variable’s static type.○ e.g., Student jim = new ResidentStudent(. . .)
changes the dynamic type of jim to ResidentStudent.

○ e.g., jim = new NonResidentStudent(. . .)
changes the dynamic type of jim to NonResidentStudent.

○ e.g., ResidentStudent jeremy = new Student(. . .)

is illegal because Studnet is not a descendant class of the
static type of jeremy (i.e., ResidentStudent).

47 of 110

Reference Variable:
Changing Dynamic Type (2)

Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v = other ):
○ Substitution Principle : the static type of other must be a

descendant class of v’s static type.○ e.g., Say we declare
Student jim = new Student(. . .);
ResidentStudent rs = new ResidentStudnet(. . .);
NonResidentStudnet nrs = new NonResidentStudent(. . .);

● jim = rs ✓
changes the dynamic type of jim to the dynamic type of rs

● jim = nrs ✓
changes the dynamic type of jim to the dynamic type of nrs

● rs = jim ×
● nrs = jim ×

48 of 110

Polymorphism and Dynamic Binding (1)
● Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).○ Consequently, there are multiple possible versions of each
method that may be called.
● e.g., A Student variable may have the dynamic type of Student,

ResidentStudent, or NonResidentStudent,
● This means that there are three possible versions of the
getTuition() that may be called.

● Dynamic binding : When a method m is called on an object
variable, the version of m corresponding to its “current shape”
(i.e., one defined in the dynamic type of m) will be called.
Student jim = new ResidentStudent(. . .);
jim.getTuition(); /* version in ResidentStudent */
jim = new NonResidentStudent(. . .);
jim.getTuition(); /* version in NonResidentStudent */

49 of 110

Polymorphism and Dynamic Binding (2.1)

class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester1 {
public static void main(String[] args) {
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
jim = rs; /* legal */
rs = jim; /* illegal */

NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
jim = nrs; /* legal */
nrs = jim; /* illegal */

}
}

50 of 110



Polymorphism and Dynamic Binding (2.2)
class Student {. . .}
class ResidentStudent extends Student {. . .}
class NonResidentStudent extends Student {. . .}

class StudentTester2 {
public static void main(String[] args) {
Course eecs2030 = new Course("EECS2030", 500.0);
Student jim = new Student("J. Davis");
ResidentStudent rs = new ResidentStudent("J. Davis");
rs.setPremiumRate(1.5);

jim = rs ;

System.out.println( jim.getTuition() ); /* 750.0 */
NonResidentStudnet nrs = new NonResidentStudent("J. Davis");
nrs.setDiscountRate(0.5);

jim = nrs ;

System.out.println( jim.getTuition() ); /* 250.0 */
}

}

51 of 110

Polymorphism and Dynamic Binding (3.1)

IPhoneSE IPhone13Pro Huawei Samsung

IOS Android

SmartPhone

HuaweiP50Pro HuaweiMate40Pro GalaxyS21 GalaxyS21Plus

dial /* basic method */
surfWeb /* basic method */

surfWeb /* overridden using safari */
facetime /* new method */

surfWeb /* overridden using firefox */
skype /* new method */

sideSync /* new method */ 
/* cinematic mode */
quickTake 

/* dual-matrix camera */
zoomage

52 of 110

Polymorphism and Dynamic Binding (3.2)

class SmartPhoneTest1 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhoneSE();
Samsung ss = new GalaxyS21Plus();
myPhone = ip; /* legal */
myPhone = ss; /* legal */

IOS presentForHeeyeon;
presentForHeeyeon = ip; /* legal */
presentForHeeyeon = ss; /* illegal */

}
}

53 of 110

Polymorphism and Dynamic Binding (3.3)

class SmartPhoneTest2 {
public static void main(String[] args) {
SmartPhone myPhone;
IOS ip = new IPhone13Pro();
myPhone = ip;
myPhone. surfWeb (); /* version of surfWeb in IPhone13Pro */

Samsung ss = new GalaxyS21();
myPhone = ss;
myPhone. surfWeb (); /* version of surfWeb in GalaxyS21 */

}
}

54 of 110



Reference Type Casting: Motivation (1.1)
1 Student jim = new ResidentStudent("J. Davis");
2 ResidentStudent rs = jim;
3 rs.setPremiumRate(1.5);● L1 is legal: ResidentStudent is a descendant class of the static type of

jim (i.e., Student).● L2 is illegal: jim’s ST (i.e., Student) is not a descendant class of rs’s ST

(i.e., ResidentStudent).
Java compiler is unable to infer that jim’s dynamic type in L2 is
ResidentStudent!● Force the Java compiler to believe so via a cast in L2:

ResidentStudent rs = (ResidentStudent) jim;

● The cast (ResidentStudent) jim creates for jim a temporary alias

whose ST corresponds to the cast type (ResidentStudent).● Alias rs of ST ResidentStudent is then created via an assignment.
Note. jim’s ST always remains Student.● dynamic binding : After the cast , L3 will execute the correct version of

setPremiumRate (∵ DT of rs is ResidentStudent).
55 of 110

Reference Type Casting: Motivation (1.2)
ST: ResidentStudent��������������������������������������������������������������������������������������������������������������������������

ResidentStudent rs

valid substitution���= (ResidentStudent)
ST: Student���

jim���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
an alias whose ST is ResidentStudent

;

○ Variable rs is declared of static type (ST ) ResidentStudent.○ Variable jim is declared of ST Student.○ The cast (ResidentStudent) jim creates for jim a temporary alias,
whose ST corresponds to the cast type (ResidentStudent).
⇒ Such a cast makes the assignment valid.∵ RHS’s ST (ResidentStudent) is a descendant of LHS’s ST

(ResidentStudent).⇒ The assignment creates an alias rs with ST ResidentStudent.○ No new object is created.
Only an alias rs with a different ST (ResidentStudent) is created.○ After the assignment, jim’s ST remains Student.

56 of 110

Reference Type Casting: Motivation (2.1)
1 SmartPhone aPhone = new IPhone13Pro();
2 IPhone13Pro forHeeyeon = aPhone;
3 forHeeyeon.facetime(1.5);

● L1 is legal: IPhone13Pro is a descendant class of the static type of
aPhone (i.e., SmartPhone).● L2 is illegal: aPhone’s ST (i.e., SmartPhone) is not a descendant class of
forHeeyeon’s ST (i.e., IPhone13Pro).

Java compiler is unable to infer that aPhone’s dynamic type in L2 is
IPhone13Pro!● Force the Java compiler to believe so via a cast in L2:

IPhone13Pro forHeeyeon = (IPhone13Pro) aPhone;

● The cast (IPhone13Pro) aPhone creates for aPhone a temporary alias

whose ST corresponds to the cast type (IPhone13Pro).● Alias forHeeyeon of ST IPhone13Pro is then created via an assignment.
Note. aPhone’s ST always remains SmartPhone.● dynamic binding : After the cast , L3 will execute the correct version of

facetime (∵ DT of forHeeyeon is IPhone13Pro).
57 of 110

Reference Type Casting: Motivation (2.2)

ST: IPhone13Pro�������������������������������������������������������������������������������������������������������������������������������������������������������������������������
IPhone13Pro forHeeyeon

valid substitution���= (IPhone13Pro)
ST: SmartPhone���������������������������

aPhone�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
an alias whose ST is IPhone13Pro

;

○ Variable forHeeyeon is declared of static type (ST ) IPhone13Pro.○ Variable aPhone is declared of ST SmartPhone.○ The cast (IPhone13Pro) aPhone creates for aPhone a temporary alias,
whose ST corresponds to the cast type (IPhone13Pro).
⇒ Such a cast makes the assignment valid.∵ RHS’s ST (IPhone13Pro) is a descendant of LHS’s ST (IPhone13Pro).
⇒ The assignment creates an alias forHeeyeon with ST IPhone13Pro.○ No new object is created.
Only an alias forHeeyeon with a different ST (IPhone13Pro) is created.○ After the assignment, aPhone’s ST remains SmartPhone.

58 of 110



Type Cast: Named or Anonymous
Named Cast: Use intermediate variable to store the cast result.
SmartPhone aPhone = new IPhone13Pro();
IOS forHeeyeon = (IPhone13Pro) aPhone;
forHeeyeon.facetime();

Anonymous Cast: Use the cast result directly.
SmartPhone aPhone = new IPhone13Pro();
((IPhone13Pro) aPhone).facetime();

Common Mistake:

1 SmartPhone aPhone = new IPhone13Pro();
2 (IPhone13Pro) aPhone.facetime();

L2 ≡ (IPhone13Pro) (aPhone.facetime()) : Call, then cast.
⇒ This does not compile ∵ facetime() is not declared in the
static type of aPhone (SmartPhone).

59 of 110

Notes on Type Cast (1)
○ Given variable v of static type STv , it is compilable to cast v to

C , as long as C is an ancestor or descendant of STv .○ Without cast, we can only call methods defined in STv on v .○ Casting v to C creates for v an alias with ST C .
⇒ All methods that are defined in C can be called.

Android myPhone = new GalaxyS21Plus();
/* can call methods declared in Android on myPhone
* dial, surfweb, skype ✓ sideSync × */
SmartPhone sp = (SmartPhone) myPhone;
/* Compiles OK ∵ SmartPhone is an ancestor class of Android
* expectations on sp narrowed to methods in SmartPhone
* sp.dial, sp.surfweb ✓ sp.skype, sp.sideSync × */
GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;
/* Compiles OK ∵ GalaxyS21Plus is a descendant class of Android
* expectations on ga widened to methods in GalaxyS21Plus
* ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

60 of 110

Reference Type Casting: Danger (1)
1 Student jim = new NonResidentStudent("J. Davis");

2 ResidentStudent rs = (ResidentStudent) jim;
3 rs.setPremiumRate(1.5);

● L1 is legal : NonResidentStudent is a descendant of the
static type of jim (Student).● L2 is legal (where the cast type is ResidentStudent):○ cast type is descendant of jim’s ST (Student).○ cast type is descendant of rs’s ST (ResidentStudent).● L3 is legal ∵ setPremiumRate is in rs’ ST

ResidentStudent.● Java compiler is unable to infer that jim’s dynamic type in L2
is actually NonResidentStudent.● Executing L2 will result in a ClassCastException .∵ Attribute premiumRate (expected from a ResidentStudent)
is undefined on the NonResidentStudent object being cast.

61 of 110

Reference Type Casting: Danger (2)
1 SmartPhone aPhone = new GalaxyS21Plus();
2 IPhone13Pro forHeeyeon = (IPhone13Pro) aPhone;
3 forHeeyeon.quickTake();

● L1 is legal : GalaxyS21Plus is a descendant of the static
type of aPhone (SmartPhone).● L2 is legal (where the cast type is Iphone6sPlus):○ cast type is descendant of aPhone’s ST (SmartPhone).○ cast type is descendant of forHeeyeon’s ST (IPhone13Pro).● L3 is legal ∵ quickTake is in forHeeyeon’ ST

IPhone13Pro.● Java compiler is unable to infer that aPhone’s dynamic type in
L2 is actually GalaxyS21Plus.● Executing L2 will result in a ClassCastException .∵ Methods facetime, quickTake (expected from an
IPhone13Pro) is undefined on the GalaxyS21Plus object
being cast.62 of 110



Notes on Type Cast (2.1)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;
4 /* Compiles OK ∵ GalaxyS21Plus is a descendant class of SmartPhone
5 * can now call methods declared in GalaxyS21Plus on ga

6 * ga.dial, ga.surfweb, ga.skype, ga.sideSync ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST GalaxyS21Plus (e.g., sideSync).

63 of 110

Notes on Type Cast (2.2)
Given a variable v of static type STv and dynamic type DTv :
● (C) v is compilable if C is STv ’s ancestor or descendant.
● Casting v to C’s ancestor /descendant narrows/widens expectations.
● However, being compilable does not guarantee runtime-error-free!

1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 IPhone13Pro ip = (IPhone13Pro) myPhone;
4 /* Compiles OK ∵ IPhone13Pro is a descendant class of SmartPhone
5 * can now call methods declared in IPhone13Pro on ip

6 * ip.dial, ip.surfweb, ip.facetime, ip.quickTake ✓ */

● Type cast in L3 is compilable .

● Executing L3 will cause ClassCastException .
L3: myPhone’s DT Samsung cannot meet expectations of the
temporary ST IPhone13Pro (e.g., quickTake).

64 of 110

Notes on Type Cast (2.3)

A cast (C) v is compilable and runtime-error-free if C is
located along the ancestor path of DTv .

e.g., Given Android myPhone = new Samsung();
○ Cast myPhone to a class along the ancestor path of its DT

Samsung.○ Casting myPhone to a class with more expectations than its DT

Samsung (e.g., GalaxyS21Plus) will cause
ClassCastException.○ Casting myPhone to a class irrelevant to its DT Samsung (e.g.,
HuaweiMate40Pro) will cause ClassCastException.

65 of 110

Required Reading:
Static Types, Dynamic Types, Casts

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2024/F/EECS2030/notes/EECS2030_F24_
Notes_Static_Types_Cast.pdf

66 of 110



Compilable Cast vs. Exception-Free Cast
class A { }
class B extends A { }
class C extends B { }
class D extends A { }

1 B b = new C();
2 D d = (D) b;

● After L1:○ ST of b is B○ DT of b is C● Does L2 compile? [ NO ]∵ cast type D is neither an ancestor nor a descendant of b’s ST B● Would D d = (D) ((A) b) fix L2? [ YES ]∵ cast type D is an ancestor of b’s cast, temporary ST A● ClassCastException when executing this fixed L2? [ YES ]∵ cast type D is not an ancestor of b’s DT C
67 of 110

Reference Type Casting: Runtime Check (1)

1 Student jim = new NonResidentStudent("J. Davis");

2 if (jim instanceof ResidentStudent ) {

3 ResidentStudent rs = ( ResidentStudent ) jim;
4 rs.setPremiumRate(1.5);
5 }

● L1 is legal : NonResidentStudent is a descendant class of
the static type of jim (i.e., Student).

● L2 checks if jim’s DT is a descendant of ResidentStudent.
FALSE ∵ jim’s dynamic type is NonResidentStudent!

● L3 is legal : jim’s cast type (i.e., ResidentStudent) is a
descendant class of rs’s ST (i.e., ResidentStudent).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

68 of 110

Reference Type Casting: Runtime Check (2)

1 SmartPhone aPhone = new GalaxyS21Plus();
2 if (aPhone instanceof IPhone13Pro ) {

3 IOS forHeeyeon = ( IPhone13Pro ) aPhone;
4 forHeeyeon.facetime();
5 }

● L1 is legal : GalaxyS21Plus is a descendant class of the
static type of aPhone (i.e., SmartPhone).

● L2 checks if aPhone’s DT is a descendant of IPhone13Pro.
FALSE ∵ aPhone’s dynamic type is GalaxyS21Plus!

● L3 is legal : aPhone’s cast type (i.e., IPhone13Pro) is a
descendant class of forHeeyeon’s static type (i.e., IOS).

● L3 will not be executed at runtime, hence no
ClassCastException, thanks to the check in L2!

69 of 110

Notes on the instanceof Operator (1)
Given a reference variable v and a class C, you write

v instanceof C

to check if the dynamic type of v, at the moment of being
checked, is a descendant class of C (so that (C) v is safe).

SmartPhone myPhone = new Samsung();
println(myPhone instanceof Android);
/* true ∵ Samsung is a descendant of Android */
println(myPhone instanceof Samsung);
/* true ∵ Samsung is a descendant of Samsung */
println(myPhone instanceof GalaxyS21);
/* false ∵ Samsung is not a descendant of GalaxyS21 */
println(myPhone instanceof IOS);
/* false ∵ Samsung is not a descendant of IOS */
println(myPhone instanceof IPhone13Pro);
/* false ∵ Samsung is not a descendant of IPhone13Pro */

⇒ Samsung is the most specific type which myPhone can be
safely cast to.
70 of 110



Notes on the instanceof Operator (2)
Given a reference variable v and a class C,
v instanceof C checks if the dynamic type of v, at the

moment of being checked, is a descendant class of C.
1 SmartPhone myPhone = new Samsung();
2 /* ST of myPhone is SmartPhone; DT of myPhone is Samsung */
3 if(myPhone instanceof Samsung) {
4 Samsung samsung = (Samsung) myPhone;
5 }
6 if(myPhone instanceof GalaxyS21Plus) {
7 GalaxyS21Plus galaxy = (GalaxyS21Plus) myPhone;
8 }
9 if(myphone instanceof HuaweiMate40Pro) {

10 Huawei hw = (HuaweiMate40Pro) myPhone;
11 }

● L3 evaluates to true. [safe to cast]● L6 and L9 evaluate to false. [unsafe to cast]
This prevents L7 and L10, causing ClassCastException if
executed, from being executed.

71 of 110

Static Types, Casts, Polymorphism (1.1)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone13Pro(); ✓
2 sp.dial(); ✓
3 sp.facetime(); ×
4 sp.quickTake(); ×

Static type of sp is SmartPhone
⇒ can only call methods defined in SmartPhone on sp

72 of 110

Static Types, Casts, Polymorphism (1.2)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 IOS ip = new IPhone13Pro(); ✓
2 ip.dial(); ✓
3 ip.facetime(); ✓
4 ip.quickTake(); ×

Static type of ip is IOS
⇒ can only call methods defined in IOS on ip

73 of 110

Static Types, Casts, Polymorphism (1.3)

class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 IPhone13Pro ip6sp = new IPhone13Pro(); ✓
2 ip6sp.dial(); ✓
3 ip6sp.facetime(); ✓
4 ip6sp.quickTake(); ✓

Static type of ip6sp is IPhone13Pro
⇒ can call all methods defined in IPhone13Pro on ip6sp

74 of 110



Static Types, Casts, Polymorphism (1.4)
class SmartPhone {
void dial() { . . . }

}
class IOS extends SmartPhone {
void facetime() { . . . }

}
class IPhone13Pro extends IOS {
void quickTake() { . . . }

}

1 SmartPhone sp = new IPhone13Pro(); ✓
2 ( (IPhone13Pro) sp).dial(); ✓
3 ( (IPhone13Pro) sp).facetime(); ✓
4 ( (IPhone13Pro) sp).quickTake(); ✓

L4 is equivalent to the following two lines:
IPhone13Pro ip6sp = (IPhone13Pro) sp;
ip6sp.quickTake();

75 of 110

Static Types, Casts, Polymorphism (2)
Given a reference variable declaration
C v;

○ Static type of reference variable v is class C○ A method call v.m is valid if m is a method defined in class C.○ Despite the dynamic type of v , you are only allowed to call
methods that are defined in the static type C on v .○ If you are certain that v ’s dynamic type can be expected more than
its static type, then you may use an insanceof check and a cast.
Course eecs2030 = new Course("EECS2030", 500.0);
Student s = new ResidentStudent("Jim");
s.register(eecs2030);
if(s instanceof ResidentStudent) {

( (ResidentStudent) s).setPremiumRate(1.75);

System.out.println(( (ResidentStudent) s).getTuition());
}

76 of 110

Polymorphism: Method Parameters (1)
1 class StudentManagementSystem {
2 Student [] ss; /* ss[i] has static type Student */ int c;
3 void addRS(ResidentStudent rs) { ss[c] = rs; c ++; }
4 void addNRS(NonResidentStudent nrs) { ss[c] = nrs; c++; }
5 void addStudent(Student s) { ss[c] = s; c++; } }

● L3: ss[c] = rs is valid. ∵ RHS’s ST ResidentStudent is a
descendant class of LHS’s ST Student.● Say we have a StudentManagementSystem object sms:○ sms.addRS(o) attempts the following assignment (recall call by

value), which replaces parameter rs by a copy of argument o:
rs = o;

○ Whether this argument passing is valid depends on o’s static type.● In the signature of a method m, if the type of a parameter is
class C, then we may call method m by passing objects whose
static types are C’s descendants.

77 of 110

Polymorphism: Method Parameters (2.1)

In the StudentManagementSystemTester:
Student s1 = new Student();
Student s2 = new ResidentStudent();
Student s3 = new NonResidentStudent();
ResidentStudent rs = new ResidentStudent();
NonResidentStudent nrs = new NonResidentStudent();
StudentManagementSystem sms = new StudentManagementSystem();
sms.addRS(s1); ×
sms.addRS(s2); ×
sms.addRS(s3); ×
sms.addRS(rs); ✓
sms.addRS(nrs); ×
sms.addStudent(s1); ✓
sms.addStudent(s2); ✓
sms.addStudent(s3); ✓
sms.addStudent(rs); ✓
sms.addStudent(nrs); ✓

78 of 110



Polymorphism: Method Parameters (2.2)
In the StudentManagementSystemTester:

1 Student s = new Student("Stella");
2 /* s’ ST: Student; s’ DT: Student */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×
○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .● Valid call ∵ s’ temporary ST (ResidentStudent) is now a
descendant class of addRS’s parameter rs’ ST (ResidentStudent).○ But, there will be a ClassCastException at runtime!∵ s’ DT (Student) is not a descendant of ResidentStudent.○ We should have written:

if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

79 of 110

Polymorphism: Method Parameters (2.3)
In the StudentManagementSystemTester:

1 Student s = new NonResidentStudent("Nancy");
2 /* s’ ST: Student; s’ DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×
○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .● Valid call ∵ s’ temporary ST (ResidentStudent) is now a
descendant class of addRS’s parameter rs’ ST (ResidentStudent).○ But, there will be a ClassCastException at runtime!∵ s’ DT (NonResidentStudent) not descendant of ResidentStudent.○ We should have written:

if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to false, meaning it is
unsafe to cast, thus preventing ClassCastException.

80 of 110

Polymorphism: Method Parameters (2.4)
In the StudentManagementSystemTester:

1 Student s = new ResidentStudent("Rachael");
2 /* s’ ST: Student; s’ DT: ResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(s); ×
○ L4 compiles with a cast: sms.addRS((ResidentStudent) s)

● Valid cast ∵ (ResidentStudent) is a descendant of s’ ST .● Valid call ∵ s’ temporary ST (ResidentStudent) is now a
descendant class of addRS’s parameter rs’ ST (ResidentStudent).○ And, there will be no ClassCastException at runtime!∵ s’ DT (ResidentStudent) is descendant of ResidentStudent.○ We should have written:

if(s instanceof ResidentStudent) {
sms.addRS((ResidentStudent) s);

}

The instanceof expression will evaluate to true, meaning it is
safe to cast.

81 of 110

Polymorphism: Method Parameters (2.5)

In the StudentManagementSystemTester:
1 NonResidentStudent nrs = new NonResidentStudent();
2 /* ST: NonResidentStudent; DT: NonResidentStudent */
3 StudentManagementSystem sms = new StudentManagementSystem();
4 sms.addRS(nrs); ×

Will L4 with a cast compile?
sms.addRS( (ResidentStudent) nrs)

NO ∵ (ResidentStudent) is not a descendant of nrs’s ST

(NonResidentStudent).

82 of 110



Why Inheritance:
A Polymorphic Collection of Students

How do you define a class StudentManagementSystem that
contains a list of resident and non-resident students?
class StudentManagementSystem {
Student[] students;
int numOfStudents;

void addStudent(Student s) {
students[numOfStudents] = s;
numOfStudents ++;

}

void registerAll (Course c) {
for(int i = 0; i < numberOfStudents; i ++) {
students[i].register(c)

}
}

}

a collection of students without inheritance83 of 110

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)

1 ResidentStudent rs = new ResidentStudent("Rachael");
2 rs.setPremiumRate(1.5);
3 NonResidentStudent nrs = new NonResidentStudent("Nancy");
4 nrs.setDiscountRate(0.5);
5 StudentManagementSystem sms = new StudentManagementSystem();
6 sms.addStudent( rs ); /* polymorphism */
7 sms.addStudent( nrs ); /* polymorphism */
8 Course eecs2030 = new Course("EECS2030", 500.0);
9 sms.registerAll(eecs2030);

10 for(int i = 0; i < sms.numberOfStudents; i ++) {
11 /* Dynamic Binding:
12 * Right version of getTuition will be called */

13 System.out.println(sms.students[i]. getTuition() );
14 }

84 of 110

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)
At runtime, attribute sms.ss is a polymorphic array:● Static type of each item is as declared: Student● Dynamic type of each item is a descendant of Student :

ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

85 of 110

Polymorphism: Return Types (1)

1 class StudentManagementSystem {
2 Student[] ss; int c;
3 void addStudent(Student s) { ss[c] = s; c++; }
4 Student getStudent(int i) {
5 Student s = null;
6 if(i < 0 || i >= c) {
7 throw new InvalidStudentIndexException("Invalid index.");
8 }
9 else {

10 s = ss[i];
11 }
12 return s;
13 } }

L4: Student is static type of getStudent’s return value.
L10: ss[i]’s ST (Student) is descendant of s’ ST (Student).
Question: What can be the dynamic type of s after L10?
Answer: All descendant classes of Student.

86 of 110



Polymorphism: Return Types (2)
1 Course eecs2030 = new Course("EECS2030", 500);
2 ResidentStudent rs = new ResidentStudent("Rachael");
3 rs.setPremiumRate(1.5); rs.register(eecs2030);
4 NonResidentStudent nrs = new NonResidentStudent("Nancy");
5 nrs.setDiscountRate(0.5); nrs.register(eecs2030);
6 StudentManagementSystem sms = new StudentManagementSystem();
7 sms.addStudent(rs); sms.addStudent(nrs);
8 Student s = sms.getStudent(0)����������������������������������������������������������������������������������������������������������������

static return type: Student

; /* dynamic type of s? */

9 print(s instanceof Student && s instanceof ResidentStudent);/*true*/
10 print(s instanceof NonResidentStudent); /* false */

11 print( s.getTuition() );/*Version in ResidentStudent called:750*/
12 ResidentStudent rs2 = sms.getStudent(0); ×
13 s = sms.getStudent(1)����������������������������������������������������������������������������������������������������������������

static return type: Student

; /* dynamic type of s? */

14 print(s instanceof Student && s instanceof NonResidentStudent);/*true*/
15 print(s instanceof ResidentStudent); /* false */

16 print( s.getTuition() );/*Version in NonResidentStudent called:250*/
17 NonResidentStudent nrs2 = sms.getStudent(1); ×

87 of 110

Polymorphism: Return Types (3)
At runtime, attribute sms.ss is a polymorphic array:
● Static type of each item is as declared: Student

● Dynamic type of each item is a descendant of Student :
ResidentStudent , NonResidentStudent

StudentManagementSystem

sms
ss

0 1
sms.ss

null

2

null

3

null

4

null

5

null

6

null

7

null

…

sms.getStudent(0)

null

99

2c

1

ResidentStudent

name

numberOfCourses

registeredCourses

“Rachael”
rs

0

null

1

… null

8

null

9

1.5premiumRate

1

NonResidentStudent

name

numberOfCourses

registeredCourses

“Nancy”
nrs

0

null

1

… null

8

null

9

0.5discountRate

500

Course

title

fee
eecs2030

“EECS2030”

sms.getStudent(1)

88 of 110

Static Type vs. Dynamic Type:
When to consider which?

● Whether or not Java code compiles depends only on the
static types of relevant variables.
∵ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.

● The behaviour of Java code being executed at runtime (e.g.,
which version of method is called due to dynamic binding,
whether or not a ClassCastException will occur, etc.)
depends on the dynamic types of relevant variables.
⇒ Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

89 of 110

Summary: Type Checking Rules
CODE CONDITION TO BE TYPE CORRECT

x = y Is y’s ST a descendant of x’s ST ?

x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?

z = x.m(y)
Is method m defined in x’s ST ?
Is y’s ST a descendant of m’s parameter’s ST ?
Is ST of m’s return value a descendant of z’s ST ?

(C) y Is C an ancestor or a descendant of y’s ST ?

x = (C) y
Is C an ancestor or a descendant of y’s ST ?
Is C a descendant of x’s ST ?

x.m((C) y)
Is C an ancestor or a descendant of y’s ST ?
Is method m defined in x’s ST ?
Is C a descendant of m’s parameter’s ST ?

Even if (C) y compiles OK, there will be a runtime
ClassCastException if C is not an ancestor of y’s DT !
90 of 110



Root of the Java Class Hierarchy
● Implicitly:○ Every class is a child/sub class of the Object class.
○ The Object class is the parent/super class of every class.● There are two useful accessor methods that every class
inherits from the Object class:○ boolean equals(Object other)

Indicates whether some other object is “equal to” this one.● The default definition inherited from Object:

boolean equals(Object other) {
return (this == other); }

○ String toString()
Returns a string representation of the object.● Very often when you define new classes, you want to

redefine / override the inherited definitions of equals and
toString.

91 of 110

Overriding and Dynamic Binding (1)

Object is the common parent/super class of every class.
○ Every class inherits the default version of equals○ Say a reference variable v has dynamic type D:
● Case 1 D overrides equals⇒ v.equals(. . .) invokes the overridden version in D● Case 2 D does not override equals

Case 2.1 At least one ancestor classes of D override equals⇒ v.equals(. . .) invokes the overridden version in the closest

ancestor class

Case 2.2 No ancestor classes of D override equals⇒ v.equals(. . .) invokes default version inherited from Object.○ Same principle applies to the toString method, and all
overridden methods in general.

92 of 110

Overriding and Dynamic Binding (2.1)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
} class A {

/*equals not overridden*/
}
class B extends A {
/*equals not overridden*/

}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ Object ]

93 of 110

Overriding and Dynamic Binding (2.2)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
/*equals not overridden*/

}
class C extends B {
boolean equals(Object obj) {
/* overridden version */

}
}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ C ]

94 of 110



Overriding and Dynamic Binding (2.3)

Object

A

B

C

boolean equals (Object obj) {
  return this == obj;
}

boolean equals (Object obj) {
  /* overridden version */
}

class A {
/*equals not overridden*/

}
class B extends A {
boolean equals(Object obj) {
/* overridden version */

}
}
class C extends B {
/*equals not overridden*/

}

1 Object c1 = new C();
2 Object c2 = new C();
3 println(c1.equals(c2));

L3 calls which version of
equals? [ B ]

95 of 110

Behaviour of Inherited toString Method (1)

Point p1 = new Point(2, 4);
System.out.println(p1);

Point@677327b6

● Implicitly, the toString method is called inside the println
method.

● By default, the address stored in p1 gets printed.
● We need to redefine / override the toString method,

inherited from the Object class, in the Point class.

96 of 110

Behaviour of Inherited toString Method (2)

class Point {
double x;
double y;
public String toString() {
return "(" + this.x + ", " + this.y + ")";

}
}

After redefining/overriding the toString method:
Point p1 = new Point(2, 4);
System.out.println(p1);

(2, 4)

97 of 110

Behaviour of Inherited toString Method (3)

Exercise: Override the equals and toString methods for
the ResidentStudent and NonResidentStudent classes.

98 of 110



Beyond this lecture. . .

● Implement the inheritance hierarchy of Students and
reproduce all lecture examples.

● Implement the inheritance hierarchy of Smart Phones and
reproduce all lecture examples.
Hints. Pay attention to:○ Valid? Compiles?○ ClassCastException?

● Study the ExampleTypeCasts example: draw the
inheritance hierarchy and experiment with the various
substitutions and casts.

99 of 110

Index (1)

Learning Outcomes

Why Inheritance: A Motivating Example

Why Inheritance: A Motivating Example

No Inheritance: ResidentStudent Class

No Inheritance: NonResidentClass

No Inheritance: Testing Student Classes
No Inheritance:
Issues with the Student Classes

No Inheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

100 of 110

Index (2)

No Inheritance:
A Collection of Various Kinds of Students

Visibility: Project, Packages, Classes

Visibility of Classes
Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)
Visibility of Classes: Across All Classes
Within the Resident Package (no modifier)
Visibility of Attributes/Methods:
Using Modifiers to Define Scopes
Visibility of Attr./Meth.: Across All Methods
Within the Resident Class (private)

101 of 110

Index (3)

Visibility of Attr./Meth.: Across All Classes
Within the Resident Package (no modifier)
Visibility of Attr./Meth.: Across All Packages
Within the Resident Project (public)

Use of the protected Modifier
Visibility of Attr./Meth.: Across All Methods
Within the Resident Package and Sub-Classes (protected)

Visibility of Attr./Meth.

Inheritance Architecture

Inheritance: The Student Parent/Super Class
Inheritance:
The ResidentStudent Child/Sub Class
102 of 110



Index (4)

Inheritance:
The NonResidentStudent Child/Sub Class

Inheritance Architecture Revisited

Using Inheritance for Code Reuse

Visualizing Parent/Child Objects (1)

Visualizing Parent/Child Objects (2)

Testing the Two Student Sub-Classes
Inheritance Architecture:
Static Types & Expectations

Polymorphism: Intuition (1)

Polymorphism: Intuition (2)

103 of 110

Index (5)

Polymorphism: Intuition (3)

Dynamic Binding: Intuition (1)

Dynamic Binding: Intuition (2)

Multi-Level Inheritance Architecture
Multi-Level Inheritance Hierarchy:
Smart Phones

Inheritance Forms a Type Hierarchy

Inheritance Accumulates Code for Reuse

Static Types Determine Expectations

Substitutions via Assignments

Rules of Substitution
104 of 110

Index (6)

Reference Variable: Dynamic Type

Visualizing Static Type vs. Dynamic Type
Reference Variable:
Changing Dynamic Type (1)
Reference Variable:
Changing Dynamic Type (2)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.1)

Polymorphism and Dynamic Binding (2.2)

Polymorphism and Dynamic Binding (3.1)

Polymorphism and Dynamic Binding (3.2)

105 of 110

Index (7)
Polymorphism and Dynamic Binding (3.3)

Reference Type Casting: Motivation (1.1)

Reference Type Casting: Motivation (1.2)

Reference Type Casting: Motivation (2.1)

Reference Type Casting: Motivation (2.2)

Type Cast: Named or Anonymous

Notes on Type Cast (1)

Reference Type Casting: Danger (1)

Reference Type Casting: Danger (2)

Notes on Type Cast (2.1)

Notes on Type Cast (2.2)
106 of 110



Index (8)

Notes on Type Cast (2.3)
Required Reading:
Static Types, Dynamic Types, Casts

Compilable Cast vs. Exception-Free Cast

Reference Type Casting: Runtime Check (1)

Reference Type Casting: Runtime Check (2)

Notes on the instanceof Operator (1)

Notes on the instanceof Operator (2)

Static Types, Casts, Polymorphism (1.1)

Static Types, Casts, Polymorphism (1.2)

Static Types, Casts, Polymorphism (1.3)
107 of 110

Index (9)
Static Types, Casts, Polymorphism (1.4)

Static Types, Casts, Polymorphism (2)

Polymorphism: Method Parameters (1)

Polymorphism: Method Parameters (2.1)

Polymorphism: Method Parameters (2.2)

Polymorphism: Method Parameters (2.3)

Polymorphism: Method Parameters (2.4)

Polymorphism: Method Parameters (2.5)
Why Inheritance:
A Polymorphic Collection of Students
Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (1)
108 of 110

Index (10)

Polymorphism and Dynamic Binding:
A Polymorphic Collection of Students (2)

Polymorphism: Return Types (1)

Polymorphism: Return Types (2)

Polymorphism: Return Types (3)
Static Type vs. Dynamic Type:
When to consider which?

Summary: Type Checking Rules

Root of the Java Class Hierarchy

Overriding and Dynamic Binding (1)

Overriding and Dynamic Binding (2.1)

109 of 110

Index (11)
Overriding and Dynamic Binding (2.2)

Overriding and Dynamic Binding (2.3)

Behaviour of Inherited toString Method (1)

Behaviour of Inherited toString Method (2)

Behaviour of Inherited toString Method (3)

Beyond this lecture. . .

110 of 110



Recursion

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
1. How to solve problems recursively

2. Example recursions on string and arrays
3. Some more advanced example (if time permitted)

2 of 37

Beyond this lecture . . .

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2

● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

3 of 37

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:○ Base Cases: Small problem instances immediately solvable.○ Recursive Cases:● Large problem instances not immediately solvable.● Solve by reusing solution(s) to strictly smaller problem instances.● Similar idea learnt in high school: [ mathematical induction ]● Recursion can be easily expressed programmatically in Java:
m (i) {

if(i == . . .) { /* base case: do something directly */ }

else {

m (j);/* recursive call with strictly smaller value */
}

}

○ In the body of a method m, there might be a call or calls to m itself .○ Each such self-call is said to be a recursive call .○ Inside the execution of m(i), a recursive call m(j) must be that j < i.
4 of 37



Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.
⇒ The stack contains activation records of all active methods.○ Top of stack denotes the current point of execution .○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top

of stack (which was suspended and just became active).
● Execution terminates when the stack becomes empty .

5 of 37

Recursion: Factorial (1)
● Recall the formal definition of calculating the n factorial:

n! = �������
1 if n = 0
n ⋅ (n − 1) ⋅ (n − 2) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1 if n ≥ 1

● How do you define the same problem recursively?

n! = �������
1 if n = 0
n ⋅ (n − 1)! if n ≥ 1

● To solve n!, we combine n and the solution to (n - 1)!.
int factorial (int n) {

int result;
if(n == 0) { /* base case */ result = 1; }

else { /* recursive case */

result = n * factorial (n - 1);

}

return result;
}

6 of 37

Common Errors of Recursive Methods
● Missing Base Case(s).

int factorial (int n) {

return n * factorial (n - 1);

}

Base case(s) are meant as points of stopping growing the
runtime stack.

● Recursive Calls on Non-Smaller Problem Instances.
int factorial (int n) {

if(n == 0) { /* base case */ return 1; }

else { /* recursive case */ return n * factorial (n); }

}

Recursive calls on strictly smaller problem instances are
meant for moving gradually towards the base case(s).

● In both cases, a StackOverflowException will be thrown.
7 of 37

Recursion: Factorial (2)

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

8 of 37



Recursion: Factorial (3)

○ When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.○ When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.
. . .○ factorial(0) returns 1 back to suspended call factorial(1).○ factorial(1) receives 1 from factorial(0), multiplies 1 to it, and
returns 1 back to the suspended call factorial(2).○ factorial(2) receives 1 from factorial(1), multiplies 2 to it, and
returns 2 back to the suspended call factorial(3).○ factorial(3) receives 2 from factorial(1), multiplies 3 to it, and
returns 6 back to the suspended call factorial(4).○ factorial(4) receives 6 from factorial(3), multiplies 4 to it, and
returns 24 back to the suspended call factorial(5).○ factorial(5) receives 24 from factorial(4), multiplies 5 to it, and
returns 120 as the result.

9 of 37

Recursion: Factorial (4)

● When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.g., factorial(4)):○ The execution of the current method (i.e., factorial(5)) is

suspended , and a structure known as an activation record or
activation frame is created to store information about the

progress of that method (e.g., values of parameters and local
variables).○ The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).○ When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its
execution.

● What kind of data structure does this activation-suspension
process correspond to? [ LIFO Stack ]

10 of 37

Recursion: Fibonacci Sequence (1)
● Can you identify the pattern of a Fibonacci sequence?

F = 1,1,2,3,5,8,13,21,34,55,89, . . .

● Here is the formal, recursive definition of calculating the nth

number in a Fibonacci sequence (denoted as Fn):

Fn =
�����������

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

int fib (int n) {

int result;
if(n == 1) { /* base case */ result = 1; }

else if(n == 2) { /* base case */ result = 1; }

else { /* recursive case */

result = fib (n - 1) + fib (n - 2);

}

return result;
}

11 of 37

Recursion: Fibonacci Sequence (2)
fib(5)

= { fib(5) = fib(4) + fib(3); push(fib(5)); suspended: �fib(5)�; active: fib(4) }
fib(4) + fib(3)

= { fib(4) = fib(3) + fib(2); suspended: �fib(4), fib(5)�; active: fib(3) }
( fib(3) + fib(2) ) + fib(3)

= { fib(3) = fib(2) + fib(1); suspended: �fib(3), fib(4), fib(5)�; active: fib(2) }
(( fib(2) + fib(1) ) + fib(2)) + fib(3)

= { fib(2) returns 1; suspended: �fib(3), fib(4), fib(5)�; active: fib(1) }
(( 1 + fib(1) ) + fib(2)) + fib(3)

= { fib(1) returns 1; suspended: �fib(3), fib(4), fib(5)�; active: fib(3) }(( 1 + 1 ) + fib(2)) + fib(3)= { fib(3) returns 1 + 1; pop(); suspended: �fib(4), fib(5)�; active: fib(2) }
(2 + fib(2) ) + fib(3)

= { fib(2) returns 1; suspended: �fib(4), fib(5)�; active: fib(4) }(2 + 1) + fib(3)= { fib(4) returns 2 + 1; pop(); suspended: �fib(5)�; active: fib(3) }
3 + fib(3)

= { fib(3) = fib(2) + fib(1); suspended: �fib(3),fib(5)�; active: fib(2) }
3 + ( fib(2) + fib(1))

= { fib(2) returns 1; suspended: �fib(3), fib(5)�; active: fib(1) }
3 + (1 + fib(1) )

= { fib(1) returns 1; suspended: �fib(3), fib(5)�; active: fib(3) }
3 + (1 + 1)= { fib(3) returns 1 + 1; pop() ; suspended: �fib(5)�; active: fib(5) }
3 + 2= { fib(5) returns 3 + 2; suspended: �� }
5

12 of 37



Java Library: String
public class StringTester {

public static void main(String[] args) {

String s = "abcd";

System.out.println(s.isEmpty()); /* false */
/* Characters in index range [0, 0) */
String t0 = s.substring(0, 0);

System.out.println(t0); /* "" */
/* Characters in index range [0, 4) */
String t1 = s.substring(0, 4);

System.out.println(t1); /* "abcd" */
/* Characters in index range [1, 3) */
String t2 = s.substring(1, 3);

System.out.println(t2); /* "bc" */
String t3 = s.substring(0, 2) + s.substring(2, 4);

System.out.println(s.equals(t3)); /* true */
for(int i = 0; i < s.length(); i ++) {

System.out.print(s.charAt(i));
}

System.out.println();
}

}

13 of 37

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.
System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string �→ Return true immediately.
Base Case 2: String of length 1 �→ Return true immediately.
Recursive Case: String of length ≥ 2 �→○ 1st and last characters match, and○ the rest (i.e., middle) of the string is a palindrome .

14 of 37

Recursion: Palindrome (2)

boolean isPalindrome (String word) {

if(word.length() == 0 || word.length() == 1) {

/* base case */
return true;

}

else {

/* recursive case */
char firstChar = word.charAt(0);
char lastChar = word.charAt(word.length() - 1);

String middle = word.substring(1, word.length() - 1);
return

firstChar == lastChar
/* See the API of java.lang.String.substring. */

&& isPalindrome (middle);
}

}

15 of 37

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.
System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"

System.out.println(reverseOf("ab")); "ba"

System.out.println(reverseOf("abc")); "cba"

System.out.println(reverseof("abcd")); "dcba"

Base Case 1: Empty string �→ Return empty string.
Base Case 2: String of length 1 �→ Return that string.
Recursive Case: String of length ≥ 2 �→

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 2) and 1).

16 of 37



Recursion: Reverse of a String (2)

String reverseOf (String s) {

if(s.isEmpty()) { /* base case 1 */
return "";

}

else if(s.length() == 1) { /* base case 2 */
return s;

}

else { /* recursive case */
String tail = s.substring(1, s.length());
String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

}

}

17 of 37

Recursion: Number of Occurrences (1)
Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.
System.out.println(occurrencesOf("", ’a’)); /* 0 */
System.out.println(occurrencesOf("a", ’a’)); /* 1 */
System.out.println(occurrencesOf("b", ’a’)); /* 0 */
System.out.println(occurrencesOf("baaba", ’a’)); /* 3 */
System.out.println(occurrencesOf("baaba", ’b’)); /* 2 */
System.out.println(occurrencesOf("baaba", ’c’)); /* 0 */

Base Case: Empty string �→ Return 0.
Recursive Case: String of length ≥ 1 �→

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

18 of 37

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) {

if(s.isEmpty()) {

/* Base Case */
return 0;

}

else {

/* Recursive Case */
char head = s.charAt(0);
String tail = s.substring(1, s.length());
if(head == c) {

return 1 + occurrencesOf (tail, c);
}

else {

return 0 + occurrencesOf (tail, c);
}

}

}

19 of 37

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.● Naively , explicitly create a new, smaller array:

void m(int[] a) {

if(a.length == 0) { /* base case */ }

else if(a.length == 1) { /* base case */ }

else {

int[] sub = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { sub[i - 1] = a[i]; }

m(sub) } }

● For efficiency , we pass the reference of the same array and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {

if(from > to) { /* base case */ }

else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [ Initial call; entire array ]● m(a, 1, a.length - 1) [ 1st r.c. on array of size a.length − 1 ]● m(a, a.length-1, a.length-1) [ Last r.c. on array of size 1 ]20 of 37



Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array �→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array �→○ 1st element positive, and○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]

a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]∵ No witness (i.e., a positive number) from an empty array

21 of 37

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}

else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}

else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);
}

}

22 of 37

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array �→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array �→○ 1st and 2nd elements are sorted in a non-descending order, and○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending order .
23 of 37

Recursion: Is an Array Sorted? (2)

boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}

else if(from == to) { /* base case 2: range of one element */
return true;

}

else {

return a[from] <= a[from + 1]

&& isSortedHelper (a, from + 1, to);
}

}

24 of 37



Tower of Hanoi: Specification
The Tower of Hanoi

Tower of Hanoi puzzle is attributed to the French
mathematician Edouard Lucas, who came up with it in 1883.
His formulation involved three pegs and eight distinctly-sized
disks stacked on one of the pegs from the biggest on the
bottom to the smallest on the top, like so:

● Given: A tower of 8 disks, initially
stacked in decreasing size on
one of 3 pegs

● Rules:○ Move only one disk at a time.○ Never move a larger disk onto a
smaller one.

● Problem: Transfer the entire
tower to one of the other pegs.

25 of 37

Tower of Hanoi: Lengend

Brahmins at a temple in Benares, India

have been carrying out movement of

“Sacred Tower of Brahma”,

consisting of sixty-four golden disks,

according to the same rules as in the

Tower of Hanoi game, and that

the completion of the tower would lead

to the end of the world.

26 of 37

Tower of Hanoi: A Recursive Solution

The general, a recursive solution requires 3 steps:

1. Transfer the n - 1 smallest disks to a second peg.
2. Move the largest peg to the third peg (free of disks).
3. Transfer the n - 1 smallest disks back onto the largest disk.

27 of 37

Tower of Hanoi in Java (1)
void towerOfHanoi(String[] disks) {

tohHelper (disks, 0, disks.length - 1, 1, 3);

}

void tohHelper(String[] disks, int from, int to, int ori, int des){
if(from > to) { }

else if(from == to) {

print("move " + disks[to] + " from " + ori + " to " + des);
}

else {

int intermediate = 6 - ori - des;
tohHelper (disks, from, to - 1, ori, intermediate);
print("move " + disks[to] + " from " + ori + " to " + des);
tohHelper (disks, from, to - 1, intermediate, des);

}

}

● tohHelper(disks, from, to, ori, des) moves disks{disks[from],disks[from + 1],. . . ,disks[to]} from peg ori to peg des.● Peg id’s are 1, 2, and 3⇒ The intermediate one is 6 − ori − des.
28 of 37



Tower of Hanoi in Java (2)

Say ds (disks) is {A,B,C}, where A < B < C.

tohH(ds, 0, 2���{A,B,C}
, p1, p3) =

�����������������������������������������������������������������������������

tohH(ds, 0, 1���{A,B}
, p1, p2) =

�������������������������������

tohH(ds, 0, 0���{A}
, p1, p3) = � Move A: p1 to p3

Move B: p1 to p2

tohH(ds, 0, 0���{A}
, p3, p2) = � Move A: p3 to p2

Move C: p1 to p3

tohH(ds, 0, 1���{A,B}
, p2, p3) =

�������������������������������

tohH(ds, 0, 0���{A}
, p2, p1) = � Move A: p2 to p1

Move B: p2 to p3

tohH(ds, 0, 0���{A}
, p1, p3) = � Move A: p1 to p3

29 of 37

Tower of Hanoi in Java (3)

towerOfHanio({A, B, C})

tohHelper({A, B, C}, 0, 2, p1, p3)

tohHelper({A, B, C}, 0, 1, p1, p2) tohHelper({A, B, C}, 0, 1, p2, p3)move C from p1 to p3

tohHelper({A, B, C}, 0, 0, p1, p3) move B from p1 to p2 tohHelper({A, B, C}, 0, 0, p3, p2)

move A from p1 to p3 move A from p3 to p2

tohHelper({A, B, C}, 0, 0, p2, p1) move B from p2 to p3 tohHelper({A, B, C}, 0, 0, p1, p3)

move A from p2 to p1 move A from p1 to p3

30 of 37

Running Time: Tower of Hanoi (1)

● Generalize the problem by considering n disks.
● Let T(n) denote the number of moves required to to transfer n

disks from one to another under the rules.● Recall the general solution pattern:
1. Transfer the n - 1 smallest disks to a second peg.
2. Move the largest peg to the third peg (free of disks).
3. Transfer the n - 1 smallest disks back onto the largest disk.
● We end up with the following recurrence relation that allows us

to compute T(n) for any n we like:

� T (1) = 1
T (n) = 2 ⋅ T (n − 1) + 1 where n > 0

● To solve this recurrence relation, we study the pattern of T(n)

and observe how it reaches the base case(s).
31 of 37

Running Time: Tower of Hanoi (2)
T (n) = 2���

1 term

×T (n − 1) + 1���
1 term= 2 × (2����������

2 terms

×T (n − 2) + 1) + 1����������
2 terms= 2 × (2 × (2����������������������������������������������

3 terms

×T (n − 3) + 1) + 1) + 1����������������������������������������������
3 terms= . . .

= 2 × (2 × (2 × (⋅ ⋅ ⋅ × (2������������������������������������������������������������������������������������������������������������������������������
n − 1 terms

×
T(n − (n−1))����

T (1) +1) + . . . ) + 1) + 1) + 1�����������������������������������������������������������������������������������������������������������������������������������
n − 1 terms= 2n−1 + (n − 1)
∴ T(n) is O(2

n
)

32 of 37



Tower of Hanoi: Lengend

Brahmins at a temple in Benares, India

have been carrying out movement of

“Sacred Tower of Brahma”,

consisting of sixty-four golden disks,

according to the same rules as in the

Tower of Hanoi game, and that

the completion of the tower would lead

to the end of the world.

Say one disk can be moved in one second.
Q. How long does it take to finish moving 64 disks (n = 64)?
A. 264 seconds ≈ 585 billion years (>> 5 billion centries)!

33 of 37

Beyond this lecture . . .
● Recursions on Arrays: Lab Exercise from EECS2030-F19● Notes on Recursion:
http://www.eecs.yorku.ca/˜jackie/teaching/

lectures/2024/F/EECS2030/notes/EECS2030_F24_

Notes_Recursion.pdf● API for String:
https://docs.oracle.com/javase/8/docs/api/

java/lang/String.html● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

34 of 37

Index (1)

Learning Outcomes

Beyond this lecture . . .

Recursion: Principle

Tracing Method Calls via a Stack

Recursion: Factorial (1)

Common Errors of Recursive Methods

Recursion: Factorial (2)

Recursion: Factorial (3)

Recursion: Factorial (4)

Recursion: Fibonacci Sequence (1)

Recursion: Fibonacci Sequence (2)
35 of 37

Index (2)
Java Library: String

Recursion: Palindrome (1)

Recursion: Palindrome (2)

Recursion: Reverse of a String (1)

Recursion: Reverse of a String (2)

Recursion: Number of Occurrences (1)

Recursion: Number of Occurrences (2)

Making Recursive Calls on an Array

Recursion: All Positive (1)

Recursion: All Positive (2)

Recursion: Is an Array Sorted? (1)
36 of 37



Index (3)
Recursion: Is an Array Sorted? (2)

Tower of Hanoi: Specification

Tower of Hanoi: Legend

Tower of Hanoi: A Recursive Solution

Tower of Hanoi in Java (1)

Tower of Hanoi in Java (2)

Tower of Hanoi in Java (3)

Running Time: Tower of Hanoi (1)

Running Time: Tower of Hanoi (2)

Tower of Hanoi: Legend

Beyond this lecture . . .

37 of 37

Wrap-Up

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

What You Learned (1)

● Procedural Programming in Java○ Exceptions○ Recursion (thinking, implementation, tracing)
● Data Structures○ Arrays

2 of 8

What You Learned (2)

● Object-Oriented Programming in Java○ classes, attributes, objects, reference data types○ methods: constructors, accessors, mutators, helpers○ dot notation, context objects○ aliasing○ inheritance:
● code reuse, single-choice principle, cohesion● expectations● rules of substitutions● static vs. dynamic types● polymorphism, dynamic binding● polymorphic method parameters● polymorphic collections● polymorphic method return types● compilable casts, ClassCastException, instanceof checks● method overriding and dynamic binding: e.g., equals

3 of 8



What You Learned (3)

● Integrated Development Environment (IDE): Eclipse○ Break Point and Debugger○ Unit Testing using JUnit○ Test Driven Development (TDD), Regression Testing

4 of 8

Optional Topics

https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS2030_F21

● Generics [ Week 10 & 11 ]

5 of 8

Beyond this course. . . (1)

● Introduction to Algorithms (3rd

Ed.) by Cormen, etc.

● DS by DS, Algo. by Algo.:
○ Understand math analysis
○ Read pseudo code○ Translate into Java code○ Write and pass JUnit tests

6 of 8

Beyond this course. . . (2)

● Design Patterns: Elements of

Reusable Object-Oriented

Software by Gamma, etc.

● Pattern by Pattern:
○ Understand the problem
○ Read the solution (not in Java)○ Translate into Java code○ Write and pass JUnit tests

7 of 8



Wish You All the Best

● What you have learned will be assumed in EECS2101.
● Logic is your friend: Learn/Review EECS1019/EECS1090.
● Do not abandon Java during the break!!
● Feel free to get in touch and let me know how you’re doing :D

8 of 8


