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Learning Outcomes

This module is designed to help you learn about:
● Testing the Solution to a Bounded Counter Problem
● Deriving Test Cases for a Bounded Variable
● Application of Normal vs. Disrupted Execution Flows
● Intention of a Test: Exceptions Expected vs. Not Expected

● Test Driven Development (TDD) via Regression Testing
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Motivating Example: Two Types of Errors (1)

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}
public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two exception
classes must be handled ( catch-or-specify requirement ):

○ Either specify throws . . . in the method header/API
(i.e., propagate it to the immediate caller in the call stack )

○ Or handle it in a try-catch block
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Motivating Example: Two Types of Errors (2)
Approach 1 – Specify : Indicate in the method header/API that
a specific exception might be thrown.

Example 1: Method that throws the exception
class C1 {
void m1(int x) throws ValueTooSmallException {
if(x < 0) {
throw new ValueTooSmallException("val " + x);

}
}

}

Example 2: Method that calls another which throws the exception
class C2 {
C1 c1;
void m2(int x) throws ValueTooSmallException {
c1.m1(x);

}
}
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Motivating Example: Two Types of Errors (3)

Approach 2 – Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int x = input.nextInt();
C2 c2 = new c2();
try {
c2.m2(x);

}
catch(ValueTooSmallException e) { . . . }

}
}
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A Simple Counter (1)
Consider a class for keeping track of an integer counter value:
public class Counter {
public final static int MAX_VALUE = 3;
public final static int MIN_VALUE = 0;
private int value;
public Counter() {
this.value = Counter.MIN_VALUE;

}
public int getValue() {
return value;

}
. . . /* more later! */

○ Access private attribute value using public accessor getValue.
○ Two class-wide (i.e., static) constants (i.e., final) for lower and

upper bounds of the counter value.
○ Initialize the counter value to its lower bound.
○ Requirement :

The counter value must be within its lower and upper bounds.
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Exceptional Scenarios

● Sound Software Engineering Practice:
Design a test strategy even before code is completed.

● Q: Possible exceptional scenarios for such a counter?
○ An attempt to increment above the counter’s upper bound.
○ An attempt to decrement below the counter’s lower bound.
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A Simple Counter (2)
/* class Counter */
public void increment() throws ValueTooLargeException {
if(value == Counter.MAX_VALUE) {
throw new ValueTooLargeException("value is " + value);

}
else { value ++; }

}

public void decrement() throws ValueTooSmallException {
if(value == Counter.MIN_VALUE) {
throw new ValueTooSmallException("value is " + value);

}
else { value --; }

}
}

○ Change the counter value via two mutator methods.
○ Changes on the counter value may trigger an exception:

● Attempt to increment when counter already reaches its maximum.
● Attempt to decrement when counter already reaches its minimum.
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Components of a Test

● Manipulate the relevant object(s).
e.g., Initialize a counter object c, then call c.increment().
e.g., Initialize a counter object c, then call c.decrement().

● What do you expect to happen ?
e.g., value of counter is such that Counter.MIN VALUE + 1
e.g., ValueTooSmallException is thrown

● What does your program actually produce ?
e.g., call c.getValue() to find out.
e.g., Use a try-catch block to find out (to be discussed!).

● A test:
○ Passes if expected outcome occurs.
○ Fails if expected outcome does not occur.
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Why JUnit?

● Automate the testing of correctness of your Java classes.
● Derive the list of tests. Transform it into a JUnit Test Class.
● JUnit tests are callers/clients of your classes. Each test may:

○ Either attempt to use a method in a legal way (i.e., satisfying its
precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected

○ Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
● Success if the expected exception

(e.g., ValueTooSmallException) occurs.
● Failure if the expected exception does not occur.

● Regression Testing : Any change introduced to your
software must not compromise its established correctness.
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Test-Driven Development (TDD)

JUnit 
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as 
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

extend, maintain

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
● Red bar reported: Fix the class under test (CUT) until green bar.
● Green bar reported: Add more tests and Fix CUT when necessary.
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How to Use JUnit: Packages

Step 1:
○ In Eclipse, create a Java project ExampleTestingCounter
○ Separation of concerns :

● Group classes for implementation (i.e., Counter)
into package implementation.

● Group classes classes for testing (to be created)
into package tests.
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How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.
⇒ If you have n Java classes to test , create n JUnit test cases.
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How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.
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How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.
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How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.

○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .
⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.

○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.
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How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.
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How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○
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How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.
● The result of running a test is considered:

○ Failure if either
● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs

● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) thrown

○ Success if neither assertion failures nor (unexpected)
exceptions occur.

● After running all tests:
○ A green bar means that all tests succeed.
⇒ Keep challenging yourself if more tests may be added.

○ A red bar means that at least one test fails.
⇒ Keep fixing the class under test and re-running all tests, until
you receive a green bar.

● Question: What is the easiest way to making test a success?
Answer: Delete the call fail("Not yet implemented").
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How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.
⇒ Neither assertion failures nor exceptions will occur.
⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.
∴ We will receive a green bar!
Caution: test which passes at the moment is not useful at all!
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How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○
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How to Use JUnit: Commons Assertions

● void assertNull(Object o)

● void assertEquals(int expected, int actual)

● void assertEquals(double exp, double act, double epsilon)

● void assertArrayEquals(expected, actuals)

● void assertTrue(boolean condition)

● void fail(String message)
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JUnit Assertions: Examples (1)
Consider the following class:
public class Point {
private int x; private int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return this.x; }
public int getY() { return this.y; }

}

Then consider these assertions. Do they pass or fail?
Point p;
assertNull(p); ✓

assertTrue(p == null); ✓

assertFalse(p != null); ✓

assertEquals(3, p.getX()); × /* NullPointerException */
p = new Point(3, 4);
assertNull(p); ×

assertTrue(p == null); ×

assertFalse(p != null); ×

assertEquals(3, p.getX()); ✓

assertTrue(p.getX() == 3 && p.getY() == 4); ✓
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JUnit Assertions: Examples (2)
● Consider the following class:

public class Circle {
private double radius;
public Circle(double radius) { this.radius = radius; }
public int getArea() { return 3.14 * radius * radius; }

}

● How do we test c.getArea()?
○ Mathematically: 3.4 × 3.4 × 3.14 = 36.2984
○ However, base-10 numbers cannot be represented perfectly in

the binary format.
○ When comparing fractional numbers, allow some tolerance :

36.2984 − 0.01 ≤ c.getArea() ≤ 36.2984 + 0.01

● Then consider these assertions. Do they pass or fail?
Circle c = new Circle(3.4);
assertEquals(36.2984, c.getArea(), 0.01); ✓
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More JUnit Assertion Methods
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Testing Strategy

● What is the complete list of cases for testing Counter?
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

● Let’s turn the two cases in the 1st row into two JUnit tests:
○ Test for the green cell succeeds if:

● No failures and exceptions occur; and
● The new counter value is 1.

○ Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).
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Testing: Correct vs. Incorrect Imp.

● The real value of a test is:
○ Not only to reaffirm when your implementation is correct ,
○ But also to reject when your implementation is incorrect .

● What if the method decrement was implemented incorrectly?

class Counter {
. . .
public void decrement() throws ValueTooSmallException {
if(value < Counter.MIN_VALUE) {
throw new ValueTooSmallException("value is " + value);

}
else { value --; }

}
}

● A “good” test should reject such an incorrect implementation.

27 of 42



Test Case 1: Increment from Min (1)
1 @Test
2 public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment();
7 assertEquals(1, c.getValue());
8 }
9 catch(ValueTooLargeException e) {

10 /* Exception is not expected to be thrown. */

11 fail ("ValueTooLargeException is not expected.");
12 }
13 }

● L3 sets c.value to 0.● Line 6 requires a try-catch block ∵ potential ValueTooLargeException
● Lines 4, 7 11 are all assertions:

○ Lines 4 & 7 assert that c.getValue() returns the expected values.
○ Line 11: an assertion failure ∵ unexpected ValueTooLargeException

● Line 7 can be rewritten as assertTrue(1 == c.getValue()).
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Test Case 1: Increment from Min (2)
1 @Test
2 public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment();
7 assertEquals(1, c.getValue());
8 }
9 catch(ValueTooLargeException e) {

10 /* Exception is not expected to be thrown. */

11 fail ("ValueTooLargeException is not expected.");
12 }
13 }

At L6, if method decrement is implemented:
○ Correctly ⇒ a ValueTooLargeException does not occur.
⇒ Execution continues to L7, L8, L13, then the program terminates.

○ Incorrectly ⇒ an unexpected ValueTooLargeException occurs.
⇒ Execution jumps to L9, L10 – L11, then the test program terminates.
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Test Case 2: Decrement from Min (1)

1 @Test
2 public void testDecFromMinValue() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.decrement();

7 fail ("ValueTooSmallException is expected.");
8 }
9 catch(ValueTooSmallException e) {

10 /* Exception is expected to be thrown. */
11 }
12 }

● L3 sets c.value to 0.
● Line 6 requires a try-catch block ∵ potential ValueTooSmallException

● Lines 4 & 7 are both assertions:

○ Lines 4 asserts that c.getValue() returns the expected value (i.e.,
Counter.MIN_VALUE).

○ Line 7: an assertion failure ∵ expected ValueTooSmallException not thrown
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Test Case 2: Decrement from Min (2)

1 @Test
2 public void testDecFromMinValue() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.decrement();

7 fail ("ValueTooSmallException is expected.");
8 }
9 catch(ValueTooSmallException e) {

10 /* Exception is expected to be thrown. */
11 }
12 }

At L6, if method decrement is implemented:
○ Correctly ⇒ a ValueTooLargeException occurs.
⇒ Execution jumps to L9, L10 – L12, then the program terminates.

○ Incorrectly ⇒ expected ValueTooLargeException does not occur.
⇒ Execution continues to L7, then the test program terminates.
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Test Case 3: Increment from Max

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment(); c.increment(); c.increment();
6 }
7 catch (ValueTooLargeException e) {
8 fail("ValueTooLargeException was thrown unexpectedly.");
9 }

10 assertEquals(Counter.MAX_VALUE, c.getValue());
11 try {
12 c.increment();
13 fail("ValueTooLargeException was NOT thrown as expected.");
14 }
15 catch (ValueTooLargeException e) {
16 /* Do nothing: ValueTooLargeException thrown as expected. */
17 }
18 }

○ L4 – L9: a VTLE is not expected; L11 – 17: a VTLE is expected.
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Exercise: Console Tester vs. JUnit Test
Q. Can this console tester work like the JUnit test testIncFromMaxValue does?

1 public class CounterTester {
2 public static void main(String[] args) {
3 Counter c = new Counter();
4 println("Current val: " + c.getValue());
5 try {
6 c.increment(); c.increment(); c.increment();
7 println("Current val: " + c.getValue());
8 }
9 catch (ValueTooLargeException e) {

10 println("Error: ValueTooLargeException thrown unexpectedly.");
11 }
12 try {
13 c.increment();
14 println("Error: ValueTooLargeException NOT thrown.");
15 } /* end of inner try */
16 catch (ValueTooLargeException e) {
17 println("Success: ValueTooLargeException thrown.");
18 }
19 } /* end of main method */
20 } /* end of CounterTester class */

A. Say one of the first 3 c.increment() mistakenly throws VTLE.
● After L10 is executed, flow of execution still continues to L12.

● This allows the 4th c.increment to be executed!
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Exercise: Combining catch Blocks?
Q: Can we rewrite testIncFromMaxValue to:

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment();
6 c.increment();
7 c.increment();
8 assertEquals(Counter.MAX_VALUE, c.getValue());
9 c.increment();

10 fail("ValueTooLargeException was NOT thrown as expected.");
11 }
12 catch (ValueTooLargeException e) { }
13 }

No!
At Line 12, we would not know which line throws the VTLE:
○ If it was any of the calls in L5 – L7, then it’s not right .
○ If it was L9, then it’s right .
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Using Loops in JUnit Test Cases

Loops can make it effective on generating test cases:
1 @Test
2 public void testIncDecFromMiddleValues() {
3 Counter c = new Counter();
4 try {
5 for(int i = Counter.MIN_VALUE; i < Counter.MAX_VALUE; i ++) {
6 int currentValue = c.getValue();
7 c.increment();
8 assertEquals(currentValue + 1, c.getValue());
9 }

10 for(int i = Counter.MAX_VALUE; i > Counter.MIN_VALUE; i --) {
11 int currentValue = c.getValue();
12 c.decrement();
13 assertEquals(currentValue - 1, c.getValue());
14 }
15 }
16 catch(ValueTooLargeException e) {
17 fail("ValueTooLargeException is thrown unexpectedly");
18 }
19 catch(ValueTooSmallException e) {
20 fail("ValueTooSmallException is thrown unexpectedly");
21 }
22 }
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Exercises

1. Run all 8 tests and make sure you receive a green bar.
2. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.
○ Re-run all 8 tests and you should receive a red bar. [ Why? ]
○ Undo error injections & Re-Run all 8 tests. [ What happens? ]
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Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml
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Beyond this lecture. . .

Play with the source code ExampleTestingCounter.zip

Tip. Change input values so as to explore, in Eclipse debugger ,

possible (normal vs. abnormal) execution paths .
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