
Test-Driven Development (TDD) with JUnit

EECS2030 E&F: Advanced
Object Oriented Programming

Fall 2024

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

This module is designed to help you learn about:
● Testing the Solution to a Bounded Counter Problem
● Deriving Test Cases for a Bounded Variable
● Application of Normal vs. Disrupted Execution Flows
● Intention of a Test: Exceptions Expected vs. Not Expected

● Test Driven Development (TDD) via Regression Testing

2 of 42

Motivating Example: Two Types of Errors (1)

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}
public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two exception
classes must be handled (catch-or-specify requirement):

○ Either specify throws . . . in the method header/API
(i.e., propagate it to the immediate caller in the call stack)

○ Or handle it in a try-catch block

3 of 42

Motivating Example: Two Types of Errors (2)
Approach 1 – Specify : Indicate in the method header/API that
a specific exception might be thrown.

Example 1: Method that throws the exception
class C1 {
void m1(int x) throws ValueTooSmallException {
if(x < 0) {
throw new ValueTooSmallException("val " + x);

}
}

}

Example 2: Method that calls another which throws the exception
class C2 {
C1 c1;
void m2(int x) throws ValueTooSmallException {
c1.m1(x);

}
}

4 of 42

Motivating Example: Two Types of Errors (3)

Approach 2 – Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int x = input.nextInt();
C2 c2 = new c2();
try {
c2.m2(x);

}
catch(ValueTooSmallException e) { . . . }

}
}

5 of 42

A Simple Counter (1)
Consider a class for keeping track of an integer counter value:
public class Counter {
public final static int MAX_VALUE = 3;
public final static int MIN_VALUE = 0;
private int value;
public Counter() {
this.value = Counter.MIN_VALUE;

}
public int getValue() {
return value;

}
. . . /* more later! */

○ Access private attribute value using public accessor getValue.
○ Two class-wide (i.e., static) constants (i.e., final) for lower and

upper bounds of the counter value.
○ Initialize the counter value to its lower bound.
○ Requirement :

The counter value must be within its lower and upper bounds.
6 of 42

Exceptional Scenarios

● Sound Software Engineering Practice:
Design a test strategy even before code is completed.

● Q: Possible exceptional scenarios for such a counter?
○ An attempt to increment above the counter’s upper bound.
○ An attempt to decrement below the counter’s lower bound.

7 of 42

A Simple Counter (2)
/* class Counter */
public void increment() throws ValueTooLargeException {
if(value == Counter.MAX_VALUE) {
throw new ValueTooLargeException("value is " + value);

}
else { value ++; }

}

public void decrement() throws ValueTooSmallException {
if(value == Counter.MIN_VALUE) {
throw new ValueTooSmallException("value is " + value);

}
else { value --; }

}
}

○ Change the counter value via two mutator methods.
○ Changes on the counter value may trigger an exception:

● Attempt to increment when counter already reaches its maximum.
● Attempt to decrement when counter already reaches its minimum.

8 of 42

Components of a Test

● Manipulate the relevant object(s).
e.g., Initialize a counter object c, then call c.increment().
e.g., Initialize a counter object c, then call c.decrement().

● What do you expect to happen ?
e.g., value of counter is such that Counter.MIN VALUE + 1
e.g., ValueTooSmallException is thrown

● What does your program actually produce ?
e.g., call c.getValue() to find out.
e.g., Use a try-catch block to find out (to be discussed!).

● A test:
○ Passes if expected outcome occurs.
○ Fails if expected outcome does not occur.

9 of 42

Why JUnit?

● Automate the testing of correctness of your Java classes.
● Derive the list of tests. Transform it into a JUnit Test Class.
● JUnit tests are callers/clients of your classes. Each test may:

○ Either attempt to use a method in a legal way (i.e., satisfying its
precondition), and report:
● Success if the result is as expected
● Failure if the result is not as expected

○ Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
● Success if the expected exception

(e.g., ValueTooSmallException) occurs.
● Failure if the expected exception does not occur.

● Regression Testing : Any change introduced to your
software must not compromise its established correctness.

10 of 42

Test-Driven Development (TDD)

JUnit
Framework

Java Classes
(e.g., Counter)

JUnit Test Case
(e.g., TestCounter)

derive (re-)run as
junit test case

add more tests

fix the Java class under test

when all tests pass

when some test fails

extend, maintain

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):
● Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
● Red bar reported: Fix the class under test (CUT) until green bar.
● Green bar reported: Add more tests and Fix CUT when necessary.

11 of 42

How to Use JUnit: Packages

Step 1:
○ In Eclipse, create a Java project ExampleTestingCounter
○ Separation of concerns :

● Group classes for implementation (i.e., Counter)
into package implementation.

● Group classes classes for testing (to be created)
into package tests.

12 of 42

How to Use JUnit: New JUnit Test Case (1)
Step 2: Create a new JUnit Test Case in tests package.

Create one JUnit Test Case to test one Java class only.
⇒ If you have n Java classes to test , create n JUnit test cases.

13 of 42

How to Use JUnit: New JUnit Test Case (2)
Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

14 of 42

How to Use JUnit: Adding JUnit Library

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

15 of 42

How to Use JUnit: Generated Test Case

○ Lines 6 – 8: test is just an ordinary mutator method that has a
one-line implementation body.

○ Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test .
⇒When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.

○ Line 7: By default, we deliberately fail the test with a message
“Not yet implemented”.

16 of 42

How to Use JUnit: Running Test Case
Step 4: Run the TestCounter class as a JUnit Test.

○17 of 42

How to Use JUnit: Generating Test Report
A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

○
18 of 42

How to Use JUnit: Interpreting Test Report
● A test is a method prepended with the @Test tag.
● The result of running a test is considered:

○ Failure if either
● an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) occurs

● an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) thrown

○ Success if neither assertion failures nor (unexpected)
exceptions occur.

● After running all tests:
○ A green bar means that all tests succeed.
⇒ Keep challenging yourself if more tests may be added.

○ A red bar means that at least one test fails.
⇒ Keep fixing the class under test and re-running all tests, until
you receive a green bar.

● Question: What is the easiest way to making test a success?
Answer: Delete the call fail("Not yet implemented").

19 of 42

How to Use JUnit: Revising Test Case

Now, the body of test simply does nothing.
⇒ Neither assertion failures nor exceptions will occur.
⇒ The execution of test will be considered as a success.

∵ There is currently only one test in TestCounter.
∴ We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

20 of 42

How to Use JUnit: Re-Running Test Case
A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

○
21 of 42

How to Use JUnit: Commons Assertions

● void assertNull(Object o)

● void assertEquals(int expected, int actual)

● void assertEquals(double exp, double act, double epsilon)

● void assertArrayEquals(expected, actuals)

● void assertTrue(boolean condition)

● void fail(String message)

22 of 42

JUnit Assertions: Examples (1)
Consider the following class:
public class Point {
private int x; private int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return this.x; }
public int getY() { return this.y; }

}

Then consider these assertions. Do they pass or fail?
Point p;
assertNull(p); ✓

assertTrue(p == null); ✓

assertFalse(p != null); ✓

assertEquals(3, p.getX()); × /* NullPointerException */
p = new Point(3, 4);
assertNull(p); ×

assertTrue(p == null); ×

assertFalse(p != null); ×

assertEquals(3, p.getX()); ✓

assertTrue(p.getX() == 3 && p.getY() == 4); ✓

23 of 42

JUnit Assertions: Examples (2)
● Consider the following class:

public class Circle {
private double radius;
public Circle(double radius) { this.radius = radius; }
public int getArea() { return 3.14 * radius * radius; }

}

● How do we test c.getArea()?
○ Mathematically: 3.4 × 3.4 × 3.14 = 36.2984
○ However, base-10 numbers cannot be represented perfectly in

the binary format.
○ When comparing fractional numbers, allow some tolerance :

36.2984 − 0.01 ≤ c.getArea() ≤ 36.2984 + 0.01

● Then consider these assertions. Do they pass or fail?
Circle c = new Circle(3.4);
assertEquals(36.2984, c.getArea(), 0.01); ✓

24 of 42

More JUnit Assertion Methods

25 of 42

Testing Strategy

● What is the complete list of cases for testing Counter?
c.getValue() c.increment() c.decrement()

0 1 ValueTooSmall
1 2 0
2 3 1
3 ValueTooLarge 2

● Let’s turn the two cases in the 1st row into two JUnit tests:
○ Test for the green cell succeeds if:

● No failures and exceptions occur; and
● The new counter value is 1.

○ Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).

26 of 42

Testing: Correct vs. Incorrect Imp.

● The real value of a test is:
○ Not only to reaffirm when your implementation is correct ,
○ But also to reject when your implementation is incorrect .

● What if the method decrement was implemented incorrectly?

class Counter {
. . .
public void decrement() throws ValueTooSmallException {
if(value < Counter.MIN_VALUE) {
throw new ValueTooSmallException("value is " + value);

}
else { value --; }

}
}

● A “good” test should reject such an incorrect implementation.

27 of 42

Test Case 1: Increment from Min (1)
1 @Test
2 public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment();
7 assertEquals(1, c.getValue());
8 }
9 catch(ValueTooLargeException e) {

10 /* Exception is not expected to be thrown. */

11 fail ("ValueTooLargeException is not expected.");
12 }
13 }

● L3 sets c.value to 0.● Line 6 requires a try-catch block ∵ potential ValueTooLargeException
● Lines 4, 7 11 are all assertions:

○ Lines 4 & 7 assert that c.getValue() returns the expected values.
○ Line 11: an assertion failure ∵ unexpected ValueTooLargeException

● Line 7 can be rewritten as assertTrue(1 == c.getValue()).
28 of 42

Test Case 1: Increment from Min (2)
1 @Test
2 public void testIncAfterCreation() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.increment();
7 assertEquals(1, c.getValue());
8 }
9 catch(ValueTooLargeException e) {

10 /* Exception is not expected to be thrown. */

11 fail ("ValueTooLargeException is not expected.");
12 }
13 }

At L6, if method decrement is implemented:
○ Correctly ⇒ a ValueTooLargeException does not occur.
⇒ Execution continues to L7, L8, L13, then the program terminates.

○ Incorrectly ⇒ an unexpected ValueTooLargeException occurs.
⇒ Execution jumps to L9, L10 – L11, then the test program terminates.

29 of 42

Test Case 2: Decrement from Min (1)

1 @Test
2 public void testDecFromMinValue() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.decrement();

7 fail ("ValueTooSmallException is expected.");
8 }
9 catch(ValueTooSmallException e) {

10 /* Exception is expected to be thrown. */
11 }
12 }

● L3 sets c.value to 0.
● Line 6 requires a try-catch block ∵ potential ValueTooSmallException

● Lines 4 & 7 are both assertions:

○ Lines 4 asserts that c.getValue() returns the expected value (i.e.,
Counter.MIN_VALUE).

○ Line 7: an assertion failure ∵ expected ValueTooSmallException not thrown
30 of 42

Test Case 2: Decrement from Min (2)

1 @Test
2 public void testDecFromMinValue() {
3 Counter c = new Counter();
4 assertEquals(Counter.MIN_VALUE, c.getValue());
5 try {
6 c.decrement();

7 fail ("ValueTooSmallException is expected.");
8 }
9 catch(ValueTooSmallException e) {

10 /* Exception is expected to be thrown. */
11 }
12 }

At L6, if method decrement is implemented:
○ Correctly ⇒ a ValueTooLargeException occurs.
⇒ Execution jumps to L9, L10 – L12, then the program terminates.

○ Incorrectly ⇒ expected ValueTooLargeException does not occur.
⇒ Execution continues to L7, then the test program terminates.

31 of 42

Test Case 3: Increment from Max

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment(); c.increment(); c.increment();
6 }
7 catch (ValueTooLargeException e) {
8 fail("ValueTooLargeException was thrown unexpectedly.");
9 }

10 assertEquals(Counter.MAX_VALUE, c.getValue());
11 try {
12 c.increment();
13 fail("ValueTooLargeException was NOT thrown as expected.");
14 }
15 catch (ValueTooLargeException e) {
16 /* Do nothing: ValueTooLargeException thrown as expected. */
17 }
18 }

○ L4 – L9: a VTLE is not expected; L11 – 17: a VTLE is expected.
32 of 42

Exercise: Console Tester vs. JUnit Test
Q. Can this console tester work like the JUnit test testIncFromMaxValue does?

1 public class CounterTester {
2 public static void main(String[] args) {
3 Counter c = new Counter();
4 println("Current val: " + c.getValue());
5 try {
6 c.increment(); c.increment(); c.increment();
7 println("Current val: " + c.getValue());
8 }
9 catch (ValueTooLargeException e) {

10 println("Error: ValueTooLargeException thrown unexpectedly.");
11 }
12 try {
13 c.increment();
14 println("Error: ValueTooLargeException NOT thrown.");
15 } /* end of inner try */
16 catch (ValueTooLargeException e) {
17 println("Success: ValueTooLargeException thrown.");
18 }
19 } /* end of main method */
20 } /* end of CounterTester class */

A. Say one of the first 3 c.increment() mistakenly throws VTLE.
● After L10 is executed, flow of execution still continues to L12.

● This allows the 4th c.increment to be executed!
33 of 42

Exercise: Combining catch Blocks?
Q: Can we rewrite testIncFromMaxValue to:

1 @Test
2 public void testIncFromMaxValue() {
3 Counter c = new Counter();
4 try {
5 c.increment();
6 c.increment();
7 c.increment();
8 assertEquals(Counter.MAX_VALUE, c.getValue());
9 c.increment();

10 fail("ValueTooLargeException was NOT thrown as expected.");
11 }
12 catch (ValueTooLargeException e) { }
13 }

No!
At Line 12, we would not know which line throws the VTLE:
○ If it was any of the calls in L5 – L7, then it’s not right .
○ If it was L9, then it’s right .

34 of 42

Using Loops in JUnit Test Cases

Loops can make it effective on generating test cases:
1 @Test
2 public void testIncDecFromMiddleValues() {
3 Counter c = new Counter();
4 try {
5 for(int i = Counter.MIN_VALUE; i < Counter.MAX_VALUE; i ++) {
6 int currentValue = c.getValue();
7 c.increment();
8 assertEquals(currentValue + 1, c.getValue());
9 }

10 for(int i = Counter.MAX_VALUE; i > Counter.MIN_VALUE; i --) {
11 int currentValue = c.getValue();
12 c.decrement();
13 assertEquals(currentValue - 1, c.getValue());
14 }
15 }
16 catch(ValueTooLargeException e) {
17 fail("ValueTooLargeException is thrown unexpectedly");
18 }
19 catch(ValueTooSmallException e) {
20 fail("ValueTooSmallException is thrown unexpectedly");
21 }
22 }

35 of 42

Exercises

1. Run all 8 tests and make sure you receive a green bar.
2. Now, introduction an error to the implementation: Change the

line value ++ in Counter.increment to --.
○ Re-run all 8 tests and you should receive a red bar. [Why?]
○ Undo error injections & Re-Run all 8 tests. [What happens?]

36 of 42

Resources

● Official Site of JUnit 4:
http://junit.org/junit4/

● API of JUnit assertions:
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

● Another JUnit Tutorial example:
https://courses.cs.washington.edu/courses/cse143/11wi/

eclipse-tutorial/junit.shtml

37 of 42

http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml

Beyond this lecture. . .

Play with the source code ExampleTestingCounter.zip

Tip. Change input values so as to explore, in Eclipse debugger ,

possible (normal vs. abnormal) execution paths .

38 of 42

Index (1)

Learning Outcomes

Motivating Example: Two Types of Errors (1)

Motivating Example: Two Types of Errors (2)

Motivating Example: Two Types of Errors (3)

A Simple Counter (1)

Exceptional Scenarios

A Simple Counter (2)

Components of a Test

Why JUnit?

Test-Driven Development (TDD)

How to Use JUnit: Packages
39 of 42

Index (2)
How to Use JUnit: New JUnit Test Case (1)

How to Use JUnit: New JUnit Test Case (2)

How to Use JUnit: Adding JUnit Library

How to Use JUnit: Generated Test Case

How to Use JUnit: Running Test Case

How to Use JUnit: Generating Test Report

How to Use JUnit: Interpreting Test Report

How to Use JUnit: Revising Test Case

How to Use JUnit: Re-Running Test Case

How to Use JUnit: Common Assertions

JUnit Assertions: Examples (1)
40 of 42

Index (3)
JUnit Assertions: Examples (2)

More JUnit Assertion Methods

Testing Strategy

Testing: Correct vs. Incorrect Imp.

Test Case 1: Increment from Min (1)

Test Case 1: Increment from Min (2)

Test Case 2: Decrement from Min (1)

Test Case 2: Decrement from Min (2)

Test Case 3: Increment from Max

Exercise: Console Tester vs. JUnit Test

Exercise: Combining catch Blocks?
41 of 42

Index (4)
Using Loops in JUnit Test Cases

Exercises

Resources

Beyond this lecture. . .

42 of 42

	Learning Outcomes
	Motivating Example: Two Types of Errors (1)
	Motivating Example: Two Types of Errors (2)
	Motivating Example: Two Types of Errors (3)
	A Simple Counter (1)
	Exceptional Scenarios
	A Simple Counter (2)
	Components of a Test
	Why JUnit?
	Test-Driven Development (TDD)
	How to Use JUnit: Packages
	How to Use JUnit: New JUnit Test Case (1)
	How to Use JUnit: New JUnit Test Case (2)
	How to Use JUnit: Adding JUnit Library
	How to Use JUnit: Generated Test Case
	How to Use JUnit: Running Test Case
	How to Use JUnit: Generating Test Report
	How to Use JUnit: Interpreting Test Report
	How to Use JUnit: Revising Test Case
	How to Use JUnit: Re-Running Test Case
	How to Use JUnit: Common Assertions
	JUnit Assertions: Examples (1)
	JUnit Assertions: Examples (2)
	More JUnit Assertion Methods
	Testing Strategy
	Testing: Correct vs. Incorrect Imp.
	Test Case 1: Increment from Min (1)
	Test Case 1: Increment from Min (2)
	Test Case 2: Decrement from Min (1)
	Test Case 2: Decrement from Min (2)
	Test Case 3: Increment from Max
	Exercise: Console Tester vs. JUnit Test
	Exercise: Combining catch Blocks?
	Using Loops in JUnit Test Cases
	Exercises
	Resources
	Beyond this lecture…

