Test-Driven Development (TDD) with JUnit

EECS2030 E&F: Advanced
Object Oriented Programming

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Learning Outcomes LASSONDE

This module is designed to help you learn about:

e Testing the Solution to a Bounded Counter Problem

Deriving Test Cases for a Bounded Variable

Application of Normal vs. Disrupted Execution Flows
Intention of a Test: Exceptions Expected vs. Not Expected

Test Driven Development (TDD) via Regression Testing

I

Motivating Example: Two Types of Errors (1).assonoe

Consider two kinds of exceptions for a counter:

public class ValueTooLargeException extends Exception {
ValueTooLargeException(String s) { super(s); }

}

public class ValueTooSmallException extends Exception {
ValueTooSmallException(String s) { super(s); }

}

Any thrown object instantiated from these two exception
classes must be handled (catch-or-specify requirement):

o Either specify in the method header/API

(i.e., propagate it to the immediate caller in the call stack)
o Or handle itin a[t ry-catch | block

Motivating Example: Two Types of Errors (2).assonoe

Approach 1 — Specify: Indicate in the method header/API that

a specific exception might be thrown.
Example 1: Method that throws the exception

-
—

class CI1I {
void ml (int x) throws ValueTooSmallException {

if(x < 0) |
throw new ValueTooSmallException("val " + x);
}
}
}

Example 2: Method that calls another which throws the exception

class C2 {

Cl cl;
void m2(int x) throws ValueTooSmallException {

cl.ml(x);
}
}

_

I

Motivating Example: Two Types of Errors (3).assonoe

Approach 2 — Catch: Handle the thrown exception(s) in a
try-catch block.

class C3 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

int x = input.nextInt();
C2 c2 = new c2();
try {

c2.m2(x);

}
catch (ValueTooSmallException e) { ... }

A Simple Counter (1)

I

Consider a class for keeping track of an integer counter value:

public class Counter {
public final static int MAX VALUE
public final static int MIN_VALUE
private int value;
public Counter() {
this.value = Counter.MIN_VALUE;
}
public int getValue() {
return value;
}

/% more later! =%/

Il
o

I
w

_

o Access private attribute value using public accessor getValue.
o Two class-wide (i.e., static) constants (i.e., £inal) for lower and

upper bounds of the counter value.

o Initialize the counter value to its lower bound.

o | Requirement|:

The counter value must be within its lower and upper bounds.

I

Exceptional Scenarios

e Sound Software Engineering Practice:
Design a test strategy even before code is completed.
¢ Q: Possible exceptional scenarios for such a counter?

o An attempt to increment above the counter’s upper bound.
o An attempt to decrement below the counter’s lower bound.

A Simple Counter (2)

I

/* class Counter #*/
public void increment () throws ValueTooLargeException {
if (value == Counter.MAX VALUE) {
throw new ValueTooLargeException("value is " + value);
}
else { value ++; }

}

public void decrement () throws ValueTooSmallException {

if (value == Counter.MIN VALUE) {

throw new ValueTooSmallException("value is " + value);
}
else { value ——; }

}
}

o Change the counter value via two mutator methods.
o Changes on the counter value may frigger an exception:

o Attempt to increment when counter already reaches its maximum.
« Attempt to decrement when counter already reaches its minimum.

Components of a Test

e Manipulate the relevant object(s).
e.g., Initialize a counter object c, then call c. increment ().
e.g., Initialize a counter object c, then call c. decrement ().
e What do you expect to happen ?
e.g., value of counter is such that Counter. MIN.VALUE + 1
e.g., ValueTooSmallException is thrown
e What does your program actually produce ?

e.g., call c.getvalue () to find out.
e.g., Use a try—catch block to find out (to be discussed!).

e Atest:
o Passes if expected outcome occurs.
o Fails if expected outcome does not occur.

I

Why JUnit? :A%SONDE

e Automate the testing of correctness of your Java classes.

¢ Derive the list of tests. Transform it into a JUnit Test Class.

» JUnit tests are callers/clients of your classes. Each test may:

o Either attempt to use a method in a legal way (i.e., satisfying its
precondition), and report:

o Success if the result is as expected
e Failure if the result is not as expected
o Or attempt to use a method in an illegal way (i.e., not satisfying
its precondition), and report:
e Success if the expected exception
(e.g., ValueTooSmallException) OCCUrS.
e Failure if the expected exception does not occur.
* Regression Testing : Any change introduced to your
software must not compromise its established correctness.

i or a2

Test-Driven Development (TDD) LASSONDE
fix the Java class under test
‘ when some test fails
extend, maintaij

Java Classes
(e.g., Counter)

derive

(re-)run as JUnit
Junit test case Framework

y

JUnit Test Case
(e.g., TestCounter)

1 when all tests pass

add more tests

Maintain a collection of tests which define the correctness of your
Java class under development (CUD):

¢ Derive and run tests as soon as your CUD is testable .

i.e., A Java class is testable when defined with method signatures.
o Red bar reported: Fix the class under test (CUT) until green bar.
o Green bar reported: Add more tests and Fix CUT when necessary.

I

How to Use JUnit: Packages

Step 1:
o In Eclipse, create a Java project ExampleTestingCounter
o Separation of concerns :
o Group classes for implementation (i.e., Counter)
into package implementation.

e Group classes classes for testing (to be created)
into package tests.

v '_.'7‘J ExampleTestingCounter
> B\ JRE System Library [JavaSE-1.8]
¥ B src
¥ i implementation
F |J| Counter.java
b—_m ValueToolargeException.java
b_m ValueTooSmallException.java

fH tests

2 ora2

How to Use JUnit: New JUnit Test Case (1) |cassonoe

Step 2: Create a new JUnit Test Case in tests package.

¥ (2 ExampleTestingUtilityClasses
» =\ JRE System Library [JavaSE-1.8]
v (B src
v £ implementation
» [J] Counter.java
= tests

New » 2% Java Project
o i
Open in New Window [Project...
Open Type Hierarchy : F4 # Package
Show In NBW > @ Class
[Copy 8C @ Interface
E5 Copy Qualified Name @ Enum
(& Paste %v | @ Annotation
% Delete ®| 9 Source Folder
18 Java Working Set
ARemcve from Context % Folder
Build Path : » :; File
Source A= [£ Untitled Text File
Refactor 8T > p
[Task
2 Import... JUnit Test Case

Create one JUnit Test Case to test one Java class only.

= If you have n Java classes to test, create n JUnit test cases.

How to Use JUnit: New JUnit Test Case (2) |.assonoe

Step 3: Select the version of JUnit (JUnit 4); Enter the name of
test case (TestCounter); Finish creating the new test case.

[] o New JUnit Test Case
JUnit Test Case
Select the name of the new JUnit test case. You have the options to specify E:
the class under test and on the next page, to select methods to be tested. L=l
New Junit 3 test| © New Junit 4 test
Source folder: | ExampleTestingUtilityClasses/src Browse...
Package: tests Browse...
Narme:
Superclass: f Object Browse.
Which method stubs would you like to create?
setUpBeforeClass() tearDownAfterClass()
setUp() tearDown()
Do you want to add comments? (Configure templates and default value here)
‘ Generate comments |

‘ Class under test: Browse...

® Cancel @ [

S
How to Use JUnit: Adding JUnit Library [sono:

Upon creating the very first test case, you will be prompted to
add the JUnit library to your project’s build path.

[] [] New JUnit Test Case

1 JUnit 4 is not on the build path. Do you want to add it?

Not now
Open the build path property page

° Perform the following action:

=\ Add JUnit 4 library to the build path

Cancel @

I

How to Use JUnit: Generated Test Case LASSONDE

[J] TestCounter.java 82
1 package tests;
2=import static org.junit.Assert.*;
3 import org.junit.Test;
4 public class TestCounter {
5 @Test
6| public void test() {
7 fail("Not yet implemented™);
8 3
91
o Lines 6 — 8: test is just an ordinary mutator method that has a
one-line implementation body.
o Line 5 is critical: Prepend the tag @Test verbatim, requiring that
the method is to be treated as a JUnit test.
= When TestCounter is run as a JUnit Test Case, only those
methods prepended by the @Test tags will be run and reported.
o Line 7: By default, we deliberately fail the test with a message

“Not yet implemented”.

How to Use JUnit: Running Test Case LASSONDE

Step 4: Run the TestCounter class as a JUnit Test.

¥ (=2 ExampleTestingUtilityClasses New >
» mi\ JRE System Library [JavaSE-1.8]
v (P src Open F3
> £ implementation Open With »
v ffi tests Open Type Hierarchy Fa
S I o
»> &\ JUnit 4
[Copy %C
E5 Copy Qualified Name
[Paste 8V
& Delete ®
Remove from Context
Build Path >
Source X3S >
Refactor X®8T »
g Import...
£ Export...
References >
Declarations » 1 [console 52

Ition] /Library/Java/JavaVirtualMachines/jdk 1.
«" Refresh F5

Assign Working Sets...

Coverage As >

Run As » 1 JUnit Te XBXT

I

How to Use JUnit: Generating Test Report |.ssonoe

A report is generated after running all tests (i.e., methods
prepended with @Test) in TestCounter.

[# Package Explor | gu Junit 3¢ 5= outine = B

¢ oabEE QR EH T
Finished after 0.032 seconds

Runs: 1/1 B Errors: O B Failures: 1

"V fiitests TestCounter [Runner: JUnit 4] (0.003 s)

3 test (0.003 s)
= Failure Trace 3F

J; java.lang.AssertionError: Not yet implemented
= at tests.TestCounter.test(TestCounter.java:11)

I

How to Use JUnit: Interpreting Test Report | assonoe

» A test is a method prepended with the @Test tag.
e The result of running a test is considered:
o Failure if either
e an assertion failure (e.g., caused by fail, assertTrue,
assertEquals) OCCUIS
e an unexpected exception (e.g., NullPointerException,
ArrayIndexOutOfBoundException) thrown
o Success if neither assertion failures nor (unexpected)
exceptions occur.
e After running all tests:
o A green bar means that all tests succeed.
= Keep challenging yourself if more tests may be added.
o A red bar means that at least one test fails.
= Keep fixing the class under test and re-running all tests, until
you receive a green bar.

¢ Question: What is the easiest way to making test a success?

Answer: Delete the call fail ("Not yet implemented").

I

How to Use JUnit: Revising Test Case

1J] TestCounter.java 3%
package tests;
import static org.junit.Assert.*;
import org.junit.Test;
public class TestCounter {
@Test
public void test() {
// fail("Not yet implemented");
1

=

N oA W

0 oo

}

Now, the body of test simply does nothing.
= Neither assertion failures nor exceptions will occur.
= The execution of test will be considered as a success.

-+ There is currently only one test in TestCounter.
.. We will receive a green bar!
Caution: test which passes at the moment is not useful at all!

HOW tO Use JUnIt: Re'Runnlng TeSt Case :Agsgrigg

A new report is generated after re-running all tests (i.e.,
methods prepended with @Test) in TestCounter.

[£ Package Explor gfu JUnit 82 |G= Outlne = O

e L1EE @ EHy ¥
Finished after 0.017 seconds

Runs: 1/1 B Errors: O B Failures: 0

¥ Fj-]tests.TestCounter [Runner: JUnit 4] (0.000 s)
el test (0.000)

= S
= Failure Trace o4

ol orad

How to Use JUnit: Commons Assertions |iassonce

I

® void
® void
® void
® void
® void

® void

v orad

assertNull (Object o)

assertEquals (int expected, int actual)

assertEquals (double exp, double act, double epsilon)
assertArrayEquals (expected, actuals)

assertTrue (boolean condition)

fail (String message)

I

JUnit Assertions: Examples (1)
Consider the following class:

public class Point {
private int x; private int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return this.x; }
public int getY() { return this.y; }
}

Then consider these assertions. Do they pass or fail?

Point p;

assertNull (p); V

assertTrue (p == null);

assertFalse(p != null);

assertEquals (3, p.getX()); x /* Nul */
p = new Point (3, 4);

assertNull (p) ; X

assertTrue (p == null); X

assertFalse(p != null); x

assertEquals (3, p.getX()); V

assertTrue (p.getX() == 3 && p.getY() == 4); Vv

I

JUnit Assertions: Examples (2)

» Consider the following class:

public class Circle {
private double radius;
public Circle(double radius) { this.radius = radius; }
public int getArea() { return 3.14 * radius * radius; }

}

e How do we test c.getArea () ?
o Mathematically: 3.4 x 3.4 x 3.14 = 36.2984
o However, base-10 numbers cannot be represented perfectly in
the binary format.
o When comparing fractional numbers, allow some folerance :

36.2984 - 0.01 < c.getArea() < 36.2984 + 0.01
e Then consider these assertions. Do they pass or fail?

Circle ¢ = new Circle(3.4);
assertEquals (36.2984, c.getArea(), 0.01);

oA ot a2

More JUnit Assertion Methods

LASS

ONDE

method name / parameters

description

assertTrue (test)
assertTrue("message", test)

Causes this test method to fail if the given boolean
test is not true.

assertFalse (fest)
assertFalse("message", test)

Causes this test method to fail if the given boolean
test is not faise.

assertEquals (expectedValue, value)
assertEquals ("message", expectedValue, value)

Causes this test method to fail if the given two values
are not equal to each other. (For objects, it uses the
equals method to compare them.) The first of the two
values is considered to be the result that you expect;
the second is the actual result produced by the class
under test.

assertNotEquals (valuel, value2)
assertNotEquals("message", valuel, value2)

Causes this test method to fail if the given two values
are equal to each other. (For objects, it uses the
equals method to compare them.)

assertNull (value)
assertNull("message", value)

Causes this test method to fail if the given value is
not nuii.

assertNotNull (value)
assertNotNull("message", value)

Causes this test method to fail if the given value is
null.

assertSame (expectedValue, value)
assertSame("message", expectedValue, value)
assertNotSame (valuel, value2)
assertNotSame("message", valuel, value2)

Identical to assertEquals and assertNotEquals respectively,
except that for objects, it uses the operator rather
than the equais method to compare them. (The difference
is that two objects that have the same state might be
equals to each other, but not == to each other. An
object is only == to itself.)

fail()
fail("message")

Causes this test method to fail.

I

Testing Strategy LASSONDE

e What is the complete list of cases for testing Counter?

c.getValue () H c.increment () [c.decrement ()

ValueTooSmall

ValueToolLarge
e Let’s turn the two cases in the 1st row into two JUnit tests:
o Test for the green cell succeeds if:

o No failures and exceptions occur; and
e The new counter value is 1.

o Tests for red cells succeed if the expected exceptions occur
(ValueTooSmallException & ValueTooLargeException).

b or a2

Testing: Correct vs. Incorrect Imp.

I

e The real value of a test is:

o Not only to reaffirm when your implementation is correct,
o But also to reject when your implementation is incorrect.

e What if the method decrement was implemented incorrectly?

class Counter {

public void decrement () throws ValueTooSmallException {
if (value < Counter.MIN_VALUE) {
throw new ValueTooSmallException ("value is " + value);
}
else { value ——; }
}
}

* A “good” test should reject such an incorrect implementation.

vl orad

I

Test Case 1: Increment from Min (1)

@Test
public void testIncAfterCreation() {
Counter ¢ = new Counter();
assertEquals (Counter.MIN_VALUE, c.getValue());
try {
c.lncrement () ;
assertEquals (1, c.getValue());
}

catch(ValueTooLargeException e) {

©Co~NoOOhr~WN =

/* Exception is not expected to be thrown. */

—_
)

fail ("ValueTooLargeExceptlon is not expected.");

—_
w N

}

® | 3setsc.valueto 0.
® Line 6 requires a try-catch block - potential valueTooLargeException

® Lines 4,7 11 are all assertions:
o Lines 4 & 7 assert that c. get Value () returns the expected values.
o Line 11: an assertion failure -. unexpected ValueTooLargeException

® Line 7 can be rewritten as assertTrue (1 == c.getValue()).

Test Case 1: Increment from Min (2)

I

LASSONDE

@Test
public void testIncAfterCreation() {
Counter ¢ = new Counter();
assertEquals (Counter.MIN_VALUE, c.getValue());
try {
c.lncrement () ;
assertEquals (1, c.getValue());
}
catch(ValueTooLargeException e) {

/* Exc ceptiol is not expect ed to be thrown. %/

©Co~NoOOh~rWN =

—_
wnh = O

fail ("ValueTooLargeExceptlon is not expected.");

At L6, if method decrement is implemented:

o Correctly = avalueTooLargeException does not occur.
= Execution continues to L7, L8, L13, then the program terminates.
o Incorrectly = an unexpected ValueTooLargeException OCCUrS.

= Execution jumps to L9, L10 — L11, then the test program terminates.

9 or a9

Test Case 2: Decrement from Min (1)

I

©oONOOORAWN—=

—_
N = o

@Test
public void testDecFromMinValue() {
Counter ¢ = new Counter();
assertEquals (Counter.MIN_VALUE, c.getValue());
try {
c.decrement () ;
fail ("ValueTooSmallException is expected.");

}

catch (ValueTooSmallException e) |
/* Exception is expected to be thrown. =/
}

}

® | 3setsc.valueto 0.

® Line 6 requires a try-catch block -.- potential ValueTooSmallException

® Lines 4 & 7 are both assertions:

o Lines 4 asserts that c. getValue () returns the expected value (i.e.,

Counter.MIN_VALUE).

o Line 7: an assertion failure - expected ValueTooSmallException notthrown

30 or a9

Test Case 2: Decrement from Min (2)

I

©ooNOOUAWN =

—_
N = o

@Test
public void testDecFromMinValue () {
Counter ¢ = new Counter();
assertEquals (Counter.MIN_VALUE, c.getValue());
try {
c.decrement () ;
fail ("ValueTooSmallException is expected.");
}
catch (ValueTooSmallException e) |
/+ Exception 1is expected to be thrown. */
}
}

At L6, if method decrement is implemented:

o Correctly = avalueTooLargeException OCCUrS.
= Execution jumps to L9, L10 — L12, then the program terminates.

o Incorrectly = expected ValueTooLargeException does not occur.

= Execution continues to L7, then the test program terminates.

31 orad

I

Test Case 3: Increment from Max

1 | @Test

2 |public void testIncFromMaxValue() {

3 Counter ¢ = new Counter();

4 try {

5 c.increment (); c.increment(); c.increment();

6 }

7 catch (ValueTooLargeException e) {

8 fail ("ValueToolargeException was thrown unexpectedly.");

9 }

10 assertEquals (Counter.MAX_VALUE, c.getValue());

11 try {

12 c.increment () ;

13 fail ("ValueTooLargeException was NOT thrown as expected.");
14 }

15 catch (ValueTooLargeException e) {

16 /* Do nothing: ValueTooLargeException thrown as expected. x/
17 }

18 |}

o L4 —-L9: a VTLE is not expected; L11 —17: a VTLE is expected.

Exercise: Console Tester vs. JUnit Test

I

LASSONDE

Q. Can this console tester work like the JUnit test test IncFromMaxValue does?

OONOO A~ WN =

c.increment () ;

println("Error: ValueToolLargeException NOT thrown.");
} /+ end of inner try =/
catch (ValueToolLargeException e) {

println("Success: ValueToolLargeException thrown.");

public class CounterTester {
public static void main(String[] args) {

Counter ¢ = new Counter();

println("Current val: " + c.getValue());

try
c.increment (); c.increment(); c.increment();
println("Current val: " + c.getValue());

}

catch (ValueTooLargeException e) {
println("Error: ValueToolargeException thrown unexpectedly.");
}

try {

A. Say one of the first 3 c. increment () mistakenly throws VTLE.

® After L10 is executed, flow of execution still continues to L12.

® This allows the 4th c. increment to be executed!

330147

Exercise: Combining catch Blocks?

I

O©CoOo~NOOAWN =

—_
W = O

Q: Can we rewrite test IncFromMaxValue to:

@Test

public void testIncFromMaxValue() {
Counter c¢c = new Counter();
try {

c.increment () ;
c.increment () ;
c.increment () ;
assertEquals (Counter.MAX VALUE, c.getValue());
c.increment () ;

fail ("ValueToolargeException was NOT thrown as expected.");

}

catch (ValueTooLargeException e) { }

}

No!

At Line 12, we would not know which line throws the VTLE:
o If it was any of the calls in L5 — L7, then it's not right.

o If it was L9, then it’s right.

I

Using Loops in JUnit Test Cases

\n,

Loops can make it effective on generating test cases:

1 QTest

2 public void testIncDecFromMiddleValues() {

3 Counter ¢ = new Counter();

4 try {

5 for (int i = Counter.MIN_VALUE; i < Counter.MAX _VALUE; i ++) {
6 int currentValue = c.getValue();

7 c.increment () ;

8 assertEquals (currentValue + 1, c.getValue());

9 }

10 for (int i = Counter.MAX VALUE; i > Counter.MIN_VALUE; i --) {
11 int currentValue = c.getValue();

12 c.decrement () ;

13 assertEquals (currentValue - 1, c.getValue());

14 }

15 }

16 catch (ValueTooLargeException e) {

17 fail ("ValueTooLargeException is thrown unexpectedly");
18 }

19 catch (ValueTooSmallException e) {

20 fail ("ValueTooSmallException is thrown unexpectedly");
21 }

22 }

I

ExerCises LASSONDE

1. Run all 8 tests and make sure you receive a green bar.
2. Now, introduction an error to the implementation: Change the
line value ++in Counter.increment to —-.

o Re-run all 8 tests and you should receive a red bar. [Why?]
o Undo error injections & Re-Run all 8 tests. [What happens?]

36 or a2

Resources ITA§SCE2[\££BNE

o Official Site of JUnit 4:
nttp://Jjunit.org/junitd/
¢ API of JUnit assertions:
nttp://Junit.sourcetrorge.net/javadoc/org/junit/Assert.html
e Another JUnit Tutorial example:

https://courses.cs.washington.edu/courses/cseld43/11wi/

eclipse—tutorial/Junit.shtml

30149

http://junit.org/junit4/
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml
https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml

I

Beyond this lecture. ..

Play with the source code ExampleTestingCounter.zip
Tip. Change input values so as to explore, in Eclipse debugger,

possible (normal vs. abnormal) execution paths .

35 or a9

Index (1)

Learning Outcomes

Wotivating Example: Two Types of Errors (1)
Wotivating Example: Two Types of Errors (2]
Wotivating Example: Two Types of Errors (3)
[Simple Counter (1]

[Exceptional Scenarios|

[Simple Counter (2]
[Components of a Test

Why JUnit?

[Test-Driven Development (TDD)
Fiow o Use JUnit: Packages

39 ot 47

Index (2)

Ow 10 Use nit: New nit itest LCase

Oow 10 Use nit: New nit fest Case

Ow 10 Use nit: ing nit Liprar

How 1o Use JUnit: Generated lest Case

How to Use JUnit: Runnlng Test Cas¢gl

[How To Use JUnit: Generating Test Repori
[How to Use JUnit: Tnferprefing Test Repori
How To Use JUnit: Revising Test Cas¢|
[How to Use JUnit: Re-Running Test Cas¢|
How fo Use .JUnif: Common Asserfions
PUnit Assertions: Examples (1)

afl ot 47

Index (3)

PUnit Assertions: Examples (2}

Viore JUnit Assertion Methods

IIesEmg Slraleﬁﬂ

|lesting: Correct vs. Incorrect ImpJ

est Lase 1. Increment irom mMin

est Lase 1: Increment irom min

est Lase <. becrement from Min

est Lase 2: becrement irom Min
fest Case 3: Increment from Max

Exercise: Console Tesfer vs.JUnif Tesfl
EXEI‘CISG: Com5|n|ng catch BlOCRS 1

dl ot a2

—
Index (4) :A§SCERI&BNE
Sing LOOPS In nit Iest Lase

Beyond this Tecture.]

do ordd

	Learning Outcomes
	Motivating Example: Two Types of Errors (1)
	Motivating Example: Two Types of Errors (2)
	Motivating Example: Two Types of Errors (3)
	A Simple Counter (1)
	Exceptional Scenarios
	A Simple Counter (2)
	Components of a Test
	Why JUnit?
	Test-Driven Development (TDD)
	How to Use JUnit: Packages
	How to Use JUnit: New JUnit Test Case (1)
	How to Use JUnit: New JUnit Test Case (2)
	How to Use JUnit: Adding JUnit Library
	How to Use JUnit: Generated Test Case
	How to Use JUnit: Running Test Case
	How to Use JUnit: Generating Test Report
	How to Use JUnit: Interpreting Test Report
	How to Use JUnit: Revising Test Case
	How to Use JUnit: Re-Running Test Case
	How to Use JUnit: Common Assertions
	JUnit Assertions: Examples (1)
	JUnit Assertions: Examples (2)
	More JUnit Assertion Methods
	Testing Strategy
	Testing: Correct vs. Incorrect Imp.
	Test Case 1: Increment from Min (1)
	Test Case 1: Increment from Min (2)
	Test Case 2: Decrement from Min (1)
	Test Case 2: Decrement from Min (2)
	Test Case 3: Increment from Max
	Exercise: Console Tester vs. JUnit Test
	Exercise: Combining catch Blocks?
	Using Loops in JUnit Test Cases
	Exercises
	Resources
	Beyond this lecture…

