
EECS2030 (Sections E & F) Fall 2024

Guide to Programming Test 3
When: Wednesday, November 20 (during your enrolled lab session)

Where: WSC 105/106/108

Duration: 80 minutes

Section E Section F

8:35 AM to 9:55 AM 4:05 PM to 5:25 PM

Chen-Wei Wang

1 Policies

– There will be two test sessions running on the same day. Before both sessions end, it is considered a
breach of academic integrity if you communicate about the content of your test with others attending
a different test session.

– This programming test is in-person and strictly individual: plagiarism check may be performed and
suspicious submissions will be reported to Lassonde for a breach of academic integrity.

– This programming test will account for 14% of your course grade.

– This test is purely a programming test, assessing if you can write valid Java programs free of syntax,
type, and logical errors.

– Structure of the Test:

• You must attend the test in the room assigned to your enrolled session (LAB 01, LAB 02, or LAB
03).

• At the start time, all WSC machines will be rebooted to the “lab-test mode” (where there is no
network connection and you are expected to use the Eclipse tool only).

• During the test, you will be expected to:

∗ Launch Eclipse on a designated workspace.

∗ Download and import a starter project archive file (.zip file).

∗ Develop Java classes in the model package, based on the given starter JUnit tests.

∗ Penalty will be applied if the Java classes you develop in the model package do
not compile with the original, given starter tests. To avoid such penalty related to
compilation errors, your model classes should at least properly declare all classes and
methods (and supply some default implementation such as return null; whenever
necessary) as required by the given starter JUnit tests.

∗ When your developed code compiles but contains logical errors, you are expected
to find them, using breakpoints and the debugger, and fix them on your own.

∗ You are solely responsible for:

· leaving enough time (≈ 3 minutes) to export the completed Java project and
upload/submit the archive (.zip) file to WebSubmit; and

· submitting the right project archive file for grading.

A common mistake is that one just uploads the initial starter project for grading, in which
case the TAs cannot do anything about it.

1



– Submission for Grading:

• Like your labs, submission (of an Eclipse Java archive .zip file) for this programming test must be
through the WebSubmit link (which will be provided during the test).

• It is your sole responsibility for making sure that the correct version of project archive file is submitted.
After clicking on the submit button on WebSubmit, you should re-download the archive file and
make sure it is the right version to be graded. No excuses or submissions will be accepted after your
test session ends.

– Programming Requirements

1. You are only allowed to use primitive arrays (e.g., int[], String[], Facility[]) for implementing
classes and methods to solve problems related lists/collections.

Any use of a Java library class or method is forbidden (that is, use selections and loops to build your
solution from scratch instead):

• Some examples of forbidden classes/methods: Arrays class (e.g., Arrays.copyOf), System class
(e.g., System.arrayCopy), ArrayList class, String class (e.g., substring), Math class.

• The use of some library classes does not require an import statement, but these classes are also
forbidden to be used.

• Here are the exceptions (library methods which you are allowed to use if needed):

∗ String class (equals, format)

You will receive a 30% penalty if this requirement is violated.

2. If your submitted project (including the initial starter test file) contains any compilation errors (i.e.,
syntax errors or type errors), TAs will attempt to fix them (if they are quick to fix); once the revised
submission is graded, your submission will receive a 30% penalty on the resulting marks (e.g., if the
revised submission received 50 marks, then the final marks would be 30 marks).

A common compilation error is that some of the given starter tests do not compile because the
expected classes and/or methods are not added/implemented. To avoid this error, for those class-
es/methods which you cannot manage to implement, at least provide the proper method headers
(with empty body of implementation) to make the starter tests compile. For example, say part of
the starter test reads:

1 ...

2 A oa = new A();
3 String s = oa.m(23);
4 ...

Line 3 suggests that a method m should be implemented in class A. To make Line 3 compile, you
should at least declare the method in class A:

public String m(int i) {
return null;
}

2 Format

The format of this programming test will be identical to that of your Lab1: given a JUnit test class containing
compilation errors begin with, derive, declare, and implement classes and methods in the model package. You
will not be asked to build console applications for grading.

– The model package is empty (to be added classes derived from the given JUnit tests).

– The junit tests package contains a collection of JUnit tests suggesting the required classes and methods.

2



3 Grading

For this programming test, you will also be graded by an additional list of Junit tests (e.g., you are given
5 tests, and there are another additional five tests not given, and your submission will be graded by all 10
tests).

4 How the Test Should be Tackled

– Your expected workflow should be:

1. Step 1: Eliminate compilation errors. Declare all the required classes and methods (returning
default values if necessary), so that the project contains no compilation errors (i.e., no red crosses
shown on the Eclipse editor). See Steps 1.1 to 1.3 of Section 2.2 in the written notes Inferring
Classes from JUnit Tests.

2. Step 2: Pass all unit tests. Add private attributes and complete the method implementations
accordingly, so that executing all tests result in a green bar.

If necessary, you are free to declare (private or public) helper methods.

– It is critical that you complete Step 1 first, so that you will not receive a penalty for sub-
mitting a project containing compilation errors.

5 Rationales: Grading Standard & Time Constraint

The two primary learning outcome of this course are:

1. Computational thinking (for which you build through labs and assessed by written tests and the exam)

2. Being able to construct working software (for which you are assessed through programming tests)

Why is the compilation penalty? When you write an essay, if there are grammatical mistakes, it can still
be interpreted by a human. Computer programs are unlike essays: when your program contains compile-time
syntax or type errors, it just cannot be run, end of story. When a computer program cannot be run, its runtime
behaviour is simply unknown; and this is particularly the case when your program contains if-statements and
loops. Furthermore, when you land a job upon graduation, you would not expect your supervisor or colleagues
to read your code that does not run, because it does not even compile, would you? True, you’re still learning.
But it is exactly this mind set that restricts your potential of becoming a competent programmer. This is
already your third programming course. If we want to train you to be a competent programmer, NOW is the
time to enforce the strict (but justifiable) standard.

Why is the time constraint? Working under stress is unavoidable. Your future programming interviews
for jobs will expect you to do the same: given problems, program your solutions in front of a work station or a
whiteboard within some (short) set time limit. More critically, after landing a job, whenever being called upon
by your perspective workplace supervisor for some customer-reported bugs, most likely they need to be fixed
within a short time interval. Arguably, not being able to perform well under stress can be a indication of a
lack of enough practice, which is surely unpleasant at first but also suggests how you can improve your skills
fundamentally.

Why are the additional grading test cases? All such additional tests are derived from the same problem
descriptions that are given to you during the test, and they are meant to assess if your method implementations
are able to handle all implied input scenarios (rather than just those specific to the starter tests given to
you). As a competent engineer, it is your sole responsibility for ensuring that the built product
stamped with your name—in this case, your submitted Java classes—is correct and fit for use.
Therefore, you are advised to test your program with extra inputs by writing more JUnit tests. You can always
add a new test by copying, pasting, and modifying a test give to you.

3

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2024/F/EECS2030/notes/EECS2030_F24_Inferring_Classes_from_JUnit.pdf


6 Coverage for the Test

– Lab4

– Inheritance

– TDD via JUnit

Note. There will not be any written questions, but you may review your instructor’s lecture materials
to clarify the concepts.

7 Study Tips for the Test

– The actual test will be a similar to your Lab4, shortened and modified to suit for the given time limit.

– The best preparation you can do is to make sure that you understand how to solve Lab4:

• Run the grading tests of Lab4 (see eClass) to see what mistakes you made in your submission.

• Make use of the solution walkthrough video.

– If time permits, re-doing Lab1 and/or Lab2 can also help.

– Discuss your ProgTest1 and/or ProgTest2 with Jackie if you find the need.

4



8 Simulating the Lab Test

It is highly recommended that you simulate taking the programming test by following these steps:

Preparation

– Login into a machine under remotelabs (using your EECS account): https://remotelab.eecs.
yorku.ca/. Choose a machine under the ea category.

– Launch the Firefox web browser (under Activities) and login into the Section eClass site.

– Open a copy of this test guide (so that you can click on the WebSubmit link at the end).

Start the Test

– Start a timer (for up to 2.5 hours).

– Download the (EECS2030 F24 Lab4.zip) starter project from eClass onto the Desktop.

– Launch Eclipse (under Activities) and choose the default workspace:

/eecs/home/??/eclipse-workspace

where ?? denotes your EECS account name. It is ok to select a different directory as the workspace,
as long as you know how to locate it.

– Import the starter project to Eclipse.

– Tackle the test by implementing classes/methods into the model package, based on the starter tests
given. You are only expected to read the starter tests, as well as comments in the same Java file.

– Before you submit, you should make sure that there is no compilation error in any of
the files (including the original starter JUnit test file given to you) in the project.

Submission

– By the end of the time limit, export your developed project (entirely) as an archive file (with the
designated name different from the starter project): EECS2030 ProgTest3 Practice.zip. Save the
archive file to the Desktop. Only properly exported .zip archive file will be graded. It is assumed
that you already gained familiarity with importing and exporting projects in Eclipse.

– It is a recommended practice that you export, upload, and submit intermediate versions
of your developed project (e.g., every 15 to 20 minutes).

– Upload the EECS2030 ProgTest3 Practice.zip file to the WebSubmit link for grading:

https:

//webapp.eecs.yorku.ca/submit/?acadyear=2024-25&term=F&course=2030EF&assignment=PT3

Be careful about not uploading the initial downloaded starter project file EECS2030 F24 Lab4.zip
for grading.

5

https://remotelab.eecs.yorku.ca/
https://remotelab.eecs.yorku.ca/
https://webapp.eecs.yorku.ca/submit/?acadyear=2024-25&term=F&course=2030EF&assignment=PT3
https://webapp.eecs.yorku.ca/submit/?acadyear=2024-25&term=F&course=2030EF&assignment=PT3

	Policies
	Format
	Grading
	How the Test Should be Tackled
	Rationales: Grading Standard & Time Constraint
	Coverage for the Test
	Study Tips for the Test
	Simulating the Lab Test

