
EECS2030 (Sec. E & F) Fall 2024
Advanced Object Oriented Programming
Example Exam Questions

Caveat: These questions are just examples and not meant to be complete.
You should prioritize your time in studying all the covered materials.

1. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 System.out.println(p1 != p2);

What happens when executing the above Java code?

2. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length()] != null);

What happens when executing the above Java code?

3. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length] != null);

What happens when executing the above Java code?

1



4. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length - 1] != null);

What happens when executing the above Java code?

5. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length - 1].name.equals("Jiyoon"));

What happens when executing the above Java code?

6. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = {p1, p2};

4 p1 = p2;

5 System.out.println(persons[0] == p1);

What happens when executing the above Java code?

2



7. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = {p1, p2};

4 p1 = p2;

5 persons[0] = p2;

6 System.out.println(persons[0] == p1);

What happens when executing the above Java code?

8. Assume that a Person class is already defined, and it has an attribute name, a constructor that
initializes the person’s name from the input string, and a mutator method setName that changes
the person’s name from the input string. Consider the following fragment of Java code (inside
some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = {p1, p2};

4 p1 = persons[1];

5 persons[0] = p2;

6 p2.setName("Jihye");

7 System.out.println(p1.name);

What happens when executing the above Java code?

3



9. Consider the following classes, where we use print to abbreviate System.out.println:

class A extends B {
A() { }

}

class B extends C {
B() { }

}

class C {
C() { }

void bm(){print("C.bm");}
}

class D extends C {
D() { }

void cm(){print("D.cm");}
}

class F extends D {
F() { }

void bm(){print("F.bm");}
void em(){print("F.em");}
}

class E extends F {
E() { }

void dm(){print("E.dm");}
}

Now consider the following code in the main method of a tester class for the above classes:

1 D d1 = new C();
2 C d2 = new D();
3 d2.bm();

4 D e1 = new E();
5 d2 = e1;

6 d2.bm();

7 F f = e1;

8 e1.em();

9 B b1 = (A) d2;

(a) Explain if Line 1 compiles.

(b) Explain if Line 2 compiles.

(c) Explain if Line 3 compiles. If yes, write down and explain how the output is printed. When
tracing, consider only the earlier lines that compile.

(d) Explain if Line 5 compiles. If yes, what are the static type and dynamic type of d2 after
Line 5 is executed? When tracing, consider only the earlier lines that compile.

4



(e) Explain if Line 6 compiles. If yes, write down and explain the output. When tracing,
consider only the earlier lines that compile.

(f) Explain if Line 7 compiles.

(g) Explain if Line 8 compiles. If yes, write down and explain the output. If no, suggest a fix
using type casting, then write down and explain how the output is printed. When tracing,
consider only the earlier lines that compile.

(h) Explain why Line 9 compiles.

But Line 9 is problematic at runtime. Explain why and how we can extend the code to avoid
it. When tracing, consider only the earlier lines that compile.

5



10. Consider the following classes, where we use print to abbreviate System.out.println:

interface I {
void mi();
}

class A implements I {
void mi() {
println("A.mi"); }

}

class B implements I {
void mi() {
println("B.mi"); }

}

1 class Collector {
2 A[] as; int numberOfAs;
3 B[] bs; int numberOfBs;
4 Collector() {

5 as = new A[10]; bs = new B[10]; }
6 void addA(A a) {
7 as[numberOfAs] = a; numberOfAs++; }

8 void addB(B b) {
9 bs[numberOfBs] = b; numberOfBs++; }

10 void callAll() {
11 for(int i = 0; i < numberOfAs; i ++)
12 { as[i].mi(); }

13 for(int i = 0; i < numberOfBs; i ++)
14 { bs[i].mi(); }

15 }

16 }

1 class Tester {
2 static void main(String[] args) {
3 I i = new I();
4 B b = new B(); A a = new A();
5 Collector c = new Collector();
6 c.addB(b); c.addA(a);

7 c.callAll();

8 }

9 }

(a) Explain if the assignment as[numberOfAs] = a in Line 7 of the above Collector class
compiles.

(b) Explain if the method call as[i].mi() in Line 12 of the above Collector class compiles.

(c) Explain if Line 3 of the above Tester class compiles.

(d) Write and Explain the console output from Line 7 of the above Tester class.

6



(e) The above Collector class does not make use of polymorphism, which results from the fact
that classes A and B implement a common interface I. Rewrite the above Collector class,
such that there is only one array attribute and one addmethod, and that the callAllmethod
contains just a single loop.

7


