EECS2030 (Sec. E & F) Fall 2024
Advanced Object Oriented Programming
Example Exam Questions

N

= N

=W N

Caveat: These questions are just examples and not meant to be complete.
You should prioritize your time in studying all the covered materials.

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
System.out.println(pl '= p2);

What happens when executing the above Java code?

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = new Person[2];
System.out.println(persons[persons.length()] '= null);

What happens when executing the above Java code?

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = new Person[2];
System.out.println(persons[persons.length] != null);

What happens when executing the above Java code?




[IENEGCR NG

IENEGCRE NI

T W N =

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = new Person[2];
System.out.println(persons[persons.length - 1] != null);

What happens when executing the above Java code?

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = new Person[2];
System.out.println(persons[persons.length - 1].name.equals("Jiyoon"));

What happens when executing the above Java code?

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = {pl, p2};

pl = p2Z;
System.out.printin(persons[0] == pl);

What happens when executing the above Java code?




S U W N

N O O W N~

Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

Person pl = new Person("Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = {pl, p2};

pl = p2;

persons[0] = p2;
System.out.println(persons[0] == pl);

What happens when executing the above Java code?

Assume that a Person class is already defined, and it has an attribute name, a constructor that
initializes the person’s name from the input string, and a mutator method setName that changes
the person’s name from the input string. Consider the following fragment of Java code (inside
some main method):

Person Ll: new Person('"Heeyeon");
Person p2 = new Person("Jiyoon");
Person[] persons = {El.z Eﬂ;

pl = persons[1];

persons[0] = p2;
p2.setName("Jihye");
System.out.printin(pl.name);

What happens|when executing the above Java code?

\
wIC.
ol

[}




9. Consider the following classes, where we use print to abbreviate System.out.println:

* |class A extends B { class B extends C { class C {
AOQ {1 BO {} cO {1}
void bm

} 1 )

O{print("C.bm");}

class D extends C {

DO {1}
void cm(Q) {print("D.cm");}

class F extends D {

FO {1}
void bm(Q) {print("F.bm");}
void em(Q) {print("F.em");}

}

}

class E extends F {

EOQ {1}
void dm(Q{print("E.dm");}

}

Now consider the following code in the main method of/{ testel\ E; s for the above clagse _6
IT@ML‘&E

2 tm()

D_d1 — ELY-1 %) f'f\;

C d2 = new DO);
d2 bm(Q) ;

new EQ;
d2 "_/;1

d2.bm(Q) ,I

= >

el.em();
B bl = (A) d2;

WW&H

S

i

Vs 5
(2 L) 5
o C[ies WO 8

5
X

—
— |

VC

l

{(U:M),
“'l

m() V. 5"""
(LE

r/P
*L&r] QCI M ”

,.\
&3/
R

(a) Explain if Linﬁ

1 compiles. E.

S_V 75 ;o’f [En

v

e ———)

N
==
T

cd

KM‘tMtP' I@_L)M( )

(b) Explain if Line

2 compiles.

[
L

DIPPIM d 7

el &T |or
s AM‘PSﬁw;

LT o el

'fhe Ol/B/v( OIJ'BA J&.

o) ~STE
=

WS

rl

LIOSDEE M (LS
(E 5 TFdm.

(c) Explain if Line 3 compiles. If yes, write down and explain how the output is printed. When
tracing, consider only the earlier lines that compile.

(d) Explain if Line 5 compiles. If yes, what are the static type and dynamic type of d2 after
Line 5 is executed? When tracing, consider only the earlier lines that compile.




(e) Explain if Line 6 compiles. If yes, write down and explain the output. When tracing,
consider only the earlier lines that compile.

(f) Explain if Line 7 compiles.

(g) Explain if Line 8 compiles. If yes, write down and explain the output. If no, suggest a fix
using type casting, then write down and explain how the output is printed. When tracing,
consider only the earlier lines that compile.

(h) Explain why Line 9 compiles.
But Line 9 is problematic at runtime. Explain why and how we can extend the code to avoid
it. When tracing, consider only the earlier lines that compile.




T me*
A.mt me Zﬂg WL %.v"’(,

10. Consider the following classes, where we use print to abbreviate System.out.println:

interfaceL{J{
void mi(JT

clas@implements I{
void mi() {
printIn("A.mi"); }

clasgl_a)mplements I{
void mi() {

println("B.mi"); }

ollector() {

class Collector { ,
;| int numberOfAs;

/

class Tester {

«Nfd 2

T aHedate z wet

2

[

gl

j— % - —_— b - 1 /
5 as = new [101; bs = nehB[m], ¥ 2 static void frain(String[] args) { -
6 void addA(A)a) { < .
— 3 Ii=new[IQk E A
7 as[numberOfAs] =® numberOfAs++; } 4 ~ —ay _
B b = new(BQ|; Aa_newlA()' —
8 vold addB(B b) i
. . 5 Collector(c)= new Collector(); P(,

9 bs[numberOfBs] & b; pumberOfBs++; }
. . 6 |c.addB(b)]; |c. addA(a);
0 void callAll() { S(: 7 . callAllQ): -
11 | () for(int i = 0; I < numberOfAs; i ++) 8 } : ! @ 6"‘“‘
12 {[asli].miO; } AL
13 | @)foFCint i = 0; i < numberofBs; i ++) | ° |0 F g
14 { ps[il.mi(Q; } - -
RN I%=@Ac>a
16 |} s A - -

( ﬂ . T )5

(a) Explain if the assignment as[numberOfAs] = a in Lin of the above Collector class
compiles.
¥ X 4 X 1ot AbmF:le
Al \

o

i

(

L

~7

ve Collector class compiles.

L~y

(E/E@in k m;efhod call as[i].mi () in Line 12 of the abo
{

B

d

Pl 4 58

4

Explain if Line 3 of the above Tester class compiles.

Ae.

(d) Write and Explain the console output from Line 7 of the above Tester class.




E”A) Sﬂﬁ"?F {?r(’
lX d qt z/
Dls em “?/
(e) The above Collector class does not make use of polymorphzsm which results from the fact
that classes A and B implement a common interface I. Rewrite the above Collector class,
such that there is only one array attribute and one add method, and that the callAll method
contains just a single loop.

I T
O |

(;/’;E—/(}\\
r
-

ed.



