
EECS2030 (Sec. E & F) Fall 2024

Advanced Object Oriented Programming

Example Exam Questions

Caveat: These questions are just examples and not meant to be complete.
You should prioritize your time in studying all the covered materials.

1. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 System.out.println(p1 != p2);

What happens when executing the above Java code?

2. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length()] != null);

What happens when executing the above Java code?

3. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length] != null);

What happens when executing the above Java code?

1

4. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length - 1] != null);

What happens when executing the above Java code?

5. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = new Person[2];
4 System.out.println(persons[persons.length - 1].name.equals("Jiyoon"));

What happens when executing the above Java code?

6. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = {p1, p2};
4 p1 = p2;
5 System.out.println(persons[0] == p1);

What happens when executing the above Java code?

2

7. Assume that a Person class is already defined, and it has an attribute name and a constructor
that initializes the person’s name from the input string. Consider the following fragment of Java
code (inside some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = {p1, p2};
4 p1 = p2;
5 persons[0] = p2;
6 System.out.println(persons[0] == p1);

What happens when executing the above Java code?

8. Assume that a Person class is already defined, and it has an attribute name, a constructor that
initializes the person’s name from the input string, and a mutator method setName that changes
the person’s name from the input string. Consider the following fragment of Java code (inside
some main method):

1 Person p1 = new Person("Heeyeon");
2 Person p2 = new Person("Jiyoon");
3 Person[] persons = {p1, p2};
4 p1 = persons[1];
5 persons[0] = p2;
6 p2.setName("Jihye");
7 System.out.println(p1.name);

What happens when executing the above Java code?

3

=
-

finalcome.

9. Consider the following classes, where we use print to abbreviate System.out.println:

class A extends B {
A() { }
}

class B extends C {
B() { }
}

class C {
C() { }
void bm(){print("C.bm");}
}

class D extends C {
D() { }
void cm(){print("D.cm");}
}

class F extends D {
F() { }
void bm(){print("F.bm");}
void em(){print("F.em");}
}

class E extends F {
E() { }
void dm(){print("E.dm");}
}

Now consider the following code in the main method of a tester class for the above classes:

1 D d1 = new C();
2 C d2 = new D();
3 d2.bm();
4 D e1 = new E();
5 d2 = e1;
6 d2.bm();
7 F f = e1;
8 e1.em();
9 B b1 = (A) d2;

(a) Explain if Line 1 compiles.

(b) Explain if Line 2 compiles.

(c) Explain if Line 3 compiles. If yes, write down and explain how the output is printed. When
tracing, consider only the earlier lines that compile.

(d) Explain if Line 5 compiles. If yes, what are the static type and dynamic type of d2 after
Line 5 is executed? When tracing, consider only the earlier lines that compile.

4

-

comis C .bm (2) downcast :

E: **DML D.Cit-

-> simplesbmbm * 26.(g)
- X declares bmL)

-

#e↳ Femea STID is not Fer

declared in
Cdz Erdm el's ST or

Funtime : & . bms itscncestors
.

~
↳ DT: E -> call the overridden ver.

EE in the closest ancestor
(F -> F6m).

(e) Explain if Line 6 compiles. If yes, write down and explain the output. When tracing,
consider only the earlier lines that compile.

(f) Explain if Line 7 compiles.

(g) Explain if Line 8 compiles. If yes, write down and explain the output. If no, suggest a fix
using type casting, then write down and explain how the output is printed. When tracing,
consider only the earlier lines that compile.

(h) Explain why Line 9 compiles.

But Line 9 is problematic at runtime. Explain why and how we can extend the code to avoid
it. When tracing, consider only the earlier lines that compile.

5

10. Consider the following classes, where we use print to abbreviate System.out.println:

interface I {
void mi();
}

class A implements I {
void mi() {
println("A.mi"); }

}

class B implements I {
void mi() {
println("B.mi"); }

}

1 class Collector {
2 A[] as; int numberOfAs;
3 B[] bs; int numberOfBs;
4 Collector() {
5 as = new A[10]; bs = new B[10]; }
6 void addA(A a) {
7 as[numberOfAs] = a; numberOfAs++; }
8 void addB(B b) {
9 bs[numberOfBs] = b; numberOfBs++; }
10 void callAll() {
11 for(int i = 0; i < numberOfAs; i ++)
12 { as[i].mi(); }
13 for(int i = 0; i < numberOfBs; i ++)
14 { bs[i].mi(); }
15 }
16 }

1 class Tester {
2 static void main(String[] args) {
3 I i = new I();
4 B b = new B(); A a = new A();
5 Collector c = new Collector();
6 c.addB(b); c.addA(a);
7 c.callAll();
8 }
9 }

(a) Explain if the assignment as[numberOfAs] = a in Line 7 of the above Collector class
compiles.

(b) Explain if the method call as[i].mi() in Line 12 of the above Collector class compiles.

(c) Explain if Line 3 of the above Tester class compiles.

(d) Write and Explain the console output from Line 7 of the above Tester class.

6

A .mimiIm Bri
Ma

interface is not

8: ↑ fullig imp.
it can&

ST:A be aa ET: A
It It

DT
,

D
* -

&

Jsi : A I obj = newAl
obj . mic);Compilession in A

is called

2 Collector o 9 obj . mal) X not compile
- 11I

Fi I
9 ((A) obj) . mal).

/

a- A
6 B
I

partof expoSTofa
No

.

(e) The above Collector class does not make use of polymorphism, which results from the fact
that classes A and B implement a common interface I. Rewrite the above Collector class,
such that there is only one array attribute and one addmethod, and that the callAllmethod
contains just a single loop.

7

↑gi be anyofsand.

E F
is + y 'y...↳

At E
STof elementto

