Introduction

EECS4315 Z:
Mission-Critical Systems

YORK ' Winter 2023
UNIVERSITE
UNIVERSITY

CHEN-WFEI WANG

Learning Outcomes ‘jégsésoms

This module is designed to help you understand:

e Mission-Critical Systems vs. Safety-Critical Systems
¢ Code of Ethics for Professional Engineers

e What a Formal Method |s

o Verification vs. Validation

Catching Defects: When?

e Model-Based Development: EECS3342 vs. EECS4315

What is a Safety-Critical System (SCS)? L,{;%E

e A safety-critical system (SCS) is a system whose failure or
malfunction has one (or more) of the following consequences:
o death or serious injury to people
o loss or severe damage to equipment/property
o harm to the environment

¢ Based on the above definition, do you know of any systems that
are safety-critical?

Professional Engineers: Code of Ethics ‘jégsésoms

o Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.

o ltis the duty of a practitioner to act at all times with,

1. fairness and loyalty to the practitioner’'s associates, employers,
clients, subordinates and employees;

2. fidelity (i.e., dedication, faithfulness) to public needs;

3. devotion to high ideals of personal honour and professional integrity;

4. knowledge of developments in the area of professional engineering
relevant to any services that are undertaken; and

5. competence in the performance of any professional engineering
services that are undertaken.

o Consequence of misconduct?

e suspension or termination of professional licenses
e civil law suits

rce: PEQO’s Code of Fthics
= Source

\wy

=

ASSONDE

Developing Safety-Critical Systems

Industrial standards in various domains list acceptance criteria
for mission- or safety-critical systems that practitioners need to
comply with: e.g.,
Aviation Domain: RTCA DO-178C “Software Considerations in
Airborne Systems and Equipment Certification”

Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers
in Safety Systems of Nuclear Power Generating Stations”

Two important criteria are:

1. System requirements are precise and complete

2. System implementation conforms to the requirements
But how do we accomplish these criteria?

Safety-Critical vs. Mission-Critical? ‘jéésésoms

e Critical:
A task whose successful completion ensures the success of a
larger, more complex operation.
e.g., Success of a pacemaker = Regulated heartbeats of a patient
o Safety:
Being free from danger/injury to or loss of human lives.
e Mission:
An operation or task assigned by a higher authority.
Q. Formally relate being safety-critical and mission-critical.
A.
o safety-critical = mission-critical
o mission-critical s> safety-critical
¢ Relevant industrial standard: RTCA DO-178C (replacing
RTCA DO-178B in 2012) “Software Considerations in Airborne
Systems and Equipment Certification”

Source: Article from OpenSystems
] Renoy

Using Formal Methods for Certification LASSONDE

» A formal method (FM) is a mathematically rigorous
technique for the specification, development, and verification of
software and hardware systems.

e DO-333 “Formal methods supplement to DO-178C and
DO-278A” advocates the use of formal methods:

The use of formal methods is motivated by the expectation
that, as in other engineering disciplines, performing appropriate
mathematical analyses can contribute to establishing the
correctness and robustness of a design.

¢ FMs, because of their mathematical basis, are capable of:

o Unambiguously describing software system requirements.

o Enabling precise communication between engineers.
o Providing verification (towards certification) evidence of:
o A formal representation of the system being healthy.

o A formal representation of the system satisfying safety properties .
s

Verification: Building the Product Right? ML

Informal translated)
System Propertes

7y A

satisfies? checked/proved?

Library of X
Programming Implementation P System Model
Components uses translated

L

o Implementation built via reusable programming components.
Goal : Implementation Satisfies Intended Requirements

To verify this, we formalize them as a system model and a set of
(e.g., safety) properties, using the specification language of a

theorem prover (EECS3342) or a model checker (EECS4315).

Two Verification Issues:

1. Library components may not behave as intended.

2. Successful checks/proofs ensure that we built the product right , with

respect to the informal requirements. But...

o

o

o

Validation: Building the Right Product? ‘issom

Informal translated
Requirements
A

'
satisfies? i
'

System Properties

A
checked/proved?

Library of
Programming
Components uses

Implementation

/—

System Model
translated

o Successful checks/proofs - We built the right product.
o The target of our checks/proofs may not be valid:

The requirements may be ambiguous, incomplete, or contradictory.
o Solution: Precise Documentation [EECS4312]

Catching Defects — When? LASSONDE

¢ To minimize development costs , minimize software defects.
e Software Development Cycle:

Requirements — Design — Implementation — Release

Q. Design or Implementation Phase?

Catch defects as early as possible .

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* 5X 10X 15X 30X

- The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.

¢ Discovering defects after release costs up to 30 times more
than catching them in the design phase.

e Choice of a design language , amendable to formal

verification, is therefore critical for your project.
Source: IBM Report
)

Model-Based Development in EECS3342 ‘%

e Modelling and formal reasoning should be performed before
implementing/coding a system.
o A system’s model is its abstraction , filtering irrelevant details.
A system model means as much to a software engineer as a
blueprint means to an architect.
o A system may have a list of models, “sorted” by accuracy:

(mo,m1,...,7,...,m,,)

o The list starts by the most abstract model with least details.
e A more abstract model is said to be refined by its subsequent,

more concrefe model | my; |.
e The list ends with the most concrete/refined model with most details.

o It is far easier to reason about:
e asystem’s abstract models (rather than its full implementation)
o refinement steps between subsequent models

e The final product is correct by construction .
[Emoaic]

Model-Based Development in EECS4315 [A’égsésom

e Modelling and formal reasoning should be performed before
implementing/coding a system.
o A system’s model is its abstraction , filtering irrelevant details.
A system model means as much to a software engineer as a
blueprint means to an architect.
* A design model m specified at the “right” level of abstraction:
State space not causing a state explosion.
o mis checked against invariant and temporal properties.
o m may be added with more details (e.g., variables) to result in a

more “refined” model m'.
o m’ is consistent with (or “refines”) m as long as:

e No combinatorial explosion from variable ranges
o All properties that m passes also pass in m'.

TLA+: An Industrial Strength Toolbox ‘i\SSONDE Index (1) :::ASSONDE

From https://lamport.azurewebsites.net/tla/tla.htmll: l.earnlng Outcomesl

|Wl|at IS a Salety-CrltlcaI System (SCS; .’]

TLA + (Temporal Logic of Actions) is a high-level language for modeling

programs and systems—especially concurrent and distributed ones. [Professional Engineers: Code of Ethics|
It’s based on the idea that the best way to describe things precisely is with Developlng Safety-Critical Systems)
simple mathematics.
TLA+ and its tools are useful for eliminating fundamental design errors, [Safety-Critical vs. Mission-Critical?|

which are hard to find and expensive to correct in code.

lUsing Formal Methods to for Certification|

TLA+ is a language for modeling software above the code level and

hardware above the circuit level. [Veritication: Building the Product Right?
It has an IDE (Integrated Development Environment) for writing models aqd Validation: Bqulng the nght Product?
running tools to check them. The tool most commonly used by engineers is
the TLC model checker, but there is also a proof checker. [Catching Defects — When?|

TLA+ is based on mathematics and does not resemble any programming

odel-base evelopment in
language. Most engineers will find PlusCal , described below, to be the R

easiest way to start using TLA+. odel-Based Development In
[ikrnar] [ixasr]
Beyond this lecture . .. VT Index (2) e
[TLA+: An Industrial Strength Toolbox|
e The TLA+ toolbox has been report about its use in industry: Beyond this Tecture .. .|

https://lamport.azurewebsites.net/tla/
industrial-use.html

» Two papers have been made available on eClass:
o Newcombe, C. Why Amazon Chose TLA+. In Abstract State
Machines, Alloy, B, TLA, VDM, and Z, pp 25 — 39. Springer (2014).
o Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M.,
Deardeuff, M. How Amazon Web Services Uses Formal
Methods. In Communications of the ACM, 58(4), pp 66 — 73. ACM
(2015).
¢ You're encouraged to read them first: we will guide you through
some highlights later in the course (after you’ve gained
experience on the TLA+ toolbox).

Review of Math

EECS4315 Z:
Mission-Critical Systems
Winter 2023

CHEN-WFEI WANG

UNIVERSITE '
UNIVERSITY

Learning Outcomes of this Lecture LASSONDE

This module is designed to help you review:
¢ Propositional Logic
e Predicate Logic

Propositional Logic (1) LASSONDE

e A proposition is a statement of claim that must be of either
frue or false, but not both.

¢ Basic logical operands are of type Boolean: true and false.

¢ We use logical operators to construct compound statements.
o Unary logical operator: negation (-)

P I -, |
true false
false || true

o Binary logical operators: conjunction (), disjunction (v),
implication (=), equivalence (=), and if-and-only-if (<).

. p | g [[prg]pvglp=qg|p<=q|[p=q]
true | true true true true true true
true | false || false | true false false false
false | true || false | true true false false
false | false || false | false true true true

‘LASSONDE

e Writtenas p=q [pronounced as “p implies q”]
o We call p the antecedent, assumption, or premise.
o We call g the consequence or conclusion.
e Compare the truth of p = q to whether a contract is honoured:
o antecedent/assumption/premise p ~ promised terms [e.g., salary]
o consequence/conclusion g ~ obligations [e.g., duties]
¢ When the promised terms are met, then the contract is:
o honoured if the obligations fulfilled. [(true = true) — true]
o breached if the obligations violated. [(true = false) < false]
e When the promised terms are not met, then:

o Fulfilling the obligation (q) or not (-~q) does not breach the
contract.

Propositional Logic: Implication (1)

| p | g [[p=4q]
false | true true
false | false true

‘LASSONDE

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing p = q:

° qifp
qis trueif pis true

ponly if g
If pis true, then for p = q to be frue, it can only be that g is also frue.
Otherwise, if p is true but q is false, then (true = false) = false.

Note. To prove p = g, prove p < q (pronounced: “p if and only if q”):

e pitg [g=p]
e ponlyifqg [p=q]
p is sufficient for g
For g to be true, it is sufficient to have p being frue.

o @ is necessary for p [similar to p only if g]
If pis true, then it is necessarily the case that q is also frue.
Otherwise, if p is true but q is false, then (true = false) = false.

o gunless -p [Whenis p = q true?]
If g is true, then p = q true regardless of p.

If g is false, then p = q cannot be frue unless p is false.

o

o

‘LASSONDE

Propositional Logic: Implication (3)

Given an implication p = g, we may construct its:
e Inverse: -p = -q
e Converse: g=p

[negate antecedent and consequence]
[swap antecedent and consequence]
e Contrapositive: -qg = -p [inverse of converse]

‘LASSONDE

Propositional Logic (2)
e Axiom: Definition of =

p=q=-pvq

Theorem: Identity of =

frue=p=p

Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(brq) = -pPv-q
-(pvq) = -pr-q
¢ Axiom: Double Negation
p=-(=p)

Theorem: Contrapositive

p=q=-q=-p
[asEk |

Predicate Logic (1)

‘LASSONDE

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

¢ Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
¢ We use the following symbols for common numerical ranges:
o Z: the set of integers
o N: the set of natural numbers
¢ Variable(s) in a predicate may be quantified:
o Universal quantification :
All values that a variable may take satisfy certain property.
e.g., Given that / is a natural number, i is always non-negative.
o Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that i is an integer, i can be negative.

[-o0,...,—-1,0,1,... +00]
[0,1,...,+0]

Predicate Logic (2.1): Universal Q. (V)

* A universal quantification has the form (VX ¢ R= P)
o X is a comma-separated list of variable names
o Ris a constraint on types/ranges of the listed variables
o Pis a property to be satisfied
e For all (combinations of) values of variables listed in X that
satisfies R, it is the case that P is satisfied.

oViejeN=i>0 [true]
oViejeZ=1i>0 [false]
[false]

o VijelieZnjel=i<jvi>j
e Proof Strategies
1. How to prove (VX o R= P) frue?
e Hint. When is R = P true? [true = true, false = _]
e Show that for all instances of x € X s.t. R(x), P(x) holds.
o Show that for all instances of x € X it is the case -R(x).
2. How to prove (VX e R = P) false?

e Hint. When is R = P false? [true = false]

Predicate Logic (2.2): Existential Q. (3)

o Give a witness/counterexample of x ¢ X s.t. R(x), -P(x) holds.
‘fASSONDE
e An existential quantification has the form (3X ¢ RA P)

o X is a comma-separated list of variable names

o Ris a constraint on types/ranges of the listed variables

o Pis a property to be satisfied
e There exist (a combination of) values of variables listed in X

that satisfy both R and P.

o JdiejeNAi>0 [true]
o JiejeZni>0 [true]
o Ji,jeieZAnjeZn(i<jvi>])) [true]

e Proof Strategies
1. How to prove (3X e R A P) true?
e Hint. When is R A P true?
e Give a witness of x € X s.t. R(x), P(x) holds.
2. How to prove (3X e R A P) false?
o Hint. When is R A P false? [true A false, false n _]
o Show that for all instances of x € X s.t. R(x), -P(x) holds.
¢ Show that for all instances of x € X it is the case -R(x).

[true A true]

LASSONDE

Predicate Logic (3): Exercises

e Prove or disprove: Vx e (xeZA1<x<10)= x>0.
All 10 integers between 1 and 10 are greater than 0.

e Prove or disprove: Vx e (xeZA1<x<10)=x>1.
Integer 1 (a witness/counterexample) in the range between 1 and
10 is not greater than 1.

e Prove or disprove: 3x e (xeZA1<x<10)Ax>1.
Integer 2 (a witness) in the range between 1 and 10 is greater than
1.

e Prove or disprove that 3x e (xeZA1<x<10)Ax>107?
All integers in the range between 1 and 10 are not greater than 10.

Predicate Logic (4): Switching Quantificatio%" onDE

Conversions between vV and 3:

(VX e« R=P) < =(3IX ¢ RA-P)
(3X e« RAP) < ~(VX ¢« R=-P)

LASSONDE

Index (1)

[Learning Outcomes of this Lecture|

[Propositional Logic (1)
[Propositional Logic: Implication (1)

[Propositional Logic: Implication (2)|

[Propositional Logic: Implication (3)
Propositional Logic (2)

Predicate Logic (1)

Predicate Logic (2.1): Universal Q. (V)|
[Predicate Logic (2.2): Existential Q. (J)
[Predicate Logic (3): Exercises|

Predicate Logic (4): Switching Quantifications|

Motivation for Formal Verification

Safety-Critical Systems

e.g., shutdown system of a nuclear power plant

Mission-Critical Systems

e.g., mass-produced computer chips

Formal verification of the correctness of critical systems can

prevent loss of fortune or even lives.

Formal verification consists of:

1. Systems: Need a specification language for modelling
abstractions.

2. Properties: Need a specification language for expressing (e.g.,
safety, temporal) concerns.

3. Verification: Need a systematic method for establishing that a
system satisfies the desired properties.

The earlier errors are caught in the course of system development,

the cheaper it is to rectify.

o e.g., Much cheaper to catch an error in the design phase than
recalling defected products after release.

LASSONDE

LASSONDE

Verification by Model Checking
Readings: Chapter 3 of LICS2

Example of Formal Verification

Pentium FDIV bug https://en.wikipedia.org/wiki/Pentium_FDIV_bug

The Pentium FDIV bug is a hardware bug affecting the floating-point unit (FPU) of
the early Intel Pentium processors. Because of the bug, the processor would return
incorrect binary floating point results when dividing certain pairs of high-precision
numbers.

In December 1994, Intel recalled the defective processors ... In its 1994 annual
report, Intel said it incurred “a $475 million pre-tax charge ... to recover replacement

EECS4315 Z: and write-off of these microprocessors.”
Mission-Critical Systems
Winter 2023 In the aftermath of the bug and subsequent recall, there was a marked
increase in the use of formal verification of hardware floating point operations across
UNIVERSITE the semiconductor industry. Prompted by the discovery of the bug, a technique ...
UNIVERSITY CHFEN-WFI WANG called “word-level model checking” was developed in 1996. Intel went on to use

formal verification extensively in the development of later CPU architectures. In the
development of the Pentium 4, symbolic trajectory evaluation and theorem proving
were used to find a number of bugs that could have led to a similar recall
incident had they gone undetected.

Classification of Verification Methods

¢ Degree of Automation: Automatic, Interactive, or Manual
¢ ModelCheck-based vs. Proof-based
o Proof-based:
e The system (abstractly) described as a set of formulas I
e Properties specified as a set of formulas ¢
e Prove (automatically or interactively) that T + ¢
i.e., I can be derived to ¢ (via inference rules).
o Check-based:
e The system (abstractly) described as a finite model M
e Properties specified as a set of formulas ¢
e Decide (automatically) that M ¢ [decidable, algorithmic]
i.e., Traversal of M’s state graph shows that ¢ is satisfied.
¢ Domain of Application
o Hardware vs. Software
o Sequential vs. Concurrent
o Reactive vs. Terminating

¢ Pre-development vs. Post-development
L]

‘LASSONDE

[undecidable

LASSONDE

Verification via Model Checking

Automatic, Check-based

Intended for reactive, concurrent systems

o Reactivity:
Continuous reaction to stimuli from the environment
e.g., communication protocols, operating systems, embedded
systems, etc.

o Concurrency.
Simultaneous execution of (independent or inter-dependent)
system units, each of which evolving its own states

Testing of concurrent, reactive systems is hard:

o Many scenarios are non-reproducible.

o Hard to systematically cover all important interactions

o E. W. Dijkstra: Program testing can be used to show the
presence of bugs, but never to show their absence!

¢ Originated as a post-development method
¢ But should be used as pre-development method to save cost

LASSONDE

Model Checking: Temporal Logic

e System
o A system model M is a labeled transition system (LTS) with a
(large) number of states and transitions between states.
o A model of an actual physical system abstracts away details that
are irrelevant to the properties to be checked.
e Properties
o Temporal logic (TL) incorporates the notion of timing.
o A TL formula ¢ is not statically true or false.
o Instead, the truth of a TL formula ¢ depends on where the SUV
dynamically evolves into (by following transitions).
* Verification
o A computer program, called a model checker , takes as inputs M
and ¢, and decides if Mk ¢
o Yes = All reachable states of M satisfy ¢.
e No = An error trace, leading to a state satisfying —¢, is generated.
This facilitates debugging through reproducing a problematic scenario.
e Unknown = The checker runs out of memory due to state explosion.

LASSONDE

Linear-Time Temporal Logic (LTL)

e LTL (Linear-time Temoral Logic) has connectives/operators
which allow us to refer to the future.

e Two features of LTL :
o (Computation) Path:
Time is modelled as an infinite sequence of states.
o Undetermined Future:
Alternative paths exist, one of which being the “actual” path.

LTL: Syntax in CFG (1) fASSONDE

¢ u= T [true |
| 1 [false |
| p [propositional atom]
| (=9¢) [logical negation]
| (¢pno) [logical conjunction]
| (ovo) [logical disjunction]
| (¢=9) [logical implication |
| (X¢) [next state]
| (F9) [some Future state |
| (Go¢) [all future states (Globally) |
| (6U9) [Ontil]
| (6Wo) [Weak-until]
| (¢R9) [Release |

p denotes atomic, propositional statements
e.g., Printer 1tr2 is available.
e.g., Reading of sensor s3 exceeds some threshold.
e.g., The sudoku board is filled out with a correct solution.

LTL: Syntax in CFG (2) LASSONDE
¢ u= T [true]
| L [false]
| p [propositional atom]
| (=9) [logical negation]
| (6n0) [logical conjunction |
| (pvo) [logical disjunction]
| (6= 9) [logical implication]
| (X¢) [neXt state]
| (Fo¢) [some Future state]
| (Go) [all future states (Globally)]
| (6U0) [Oncil]
| (¢Wo) [Weak—-until]
| (¢Ro) [Release |

v and 3 are embedded in defining the temporal connectives.
Universe of disclosure: Set of alternative (computation) paths
Eorz

LTL: Syntax in CFG (3) fASSONDE

¢ u= T]
| 1 [false |
| p [propositional atom]
| (=9¢) [logical negation]
| (¢pno) [logical conjunction]
| (ovo) [logical disjunction]
| (¢=9) [logical implication |
| (X¢) [next state]
| (Fo) [some Future state |
| (Go¢) [all future states (Globally) |
| (6U9) [Ontil]
| (6Wo) [Weak-until]
| (¢R9) [Release |

e Temporal connectives bind tighter than logical ones.

e Unary temporal connectives bind tighter than binary ones.
o Use parentheses to force the intended order of evaluation.
o Use a parse tree, a LMD, or a RMD to verify the order of evaluation.

LTL: Symbols of Unary Temporal Operators ‘LQS%E

Temporal Connective Letter Symbol

Next X O
Future/Eventually F O
Global/Henceforth G O

Practical Knowledge about Parsing

‘fASSONDE
¢ A context-free grammar (CFG) g

o defines, recursively, all (typically an infinite number of) possible strings
that can be derived from it.

o contains both terminals/tokens (base cases) and

non-terminals/variables (recursive cases)
e Given an input string s, to show that s € L(g), we can either:

o Draw a parse tree (PT) of s, based on g, where:

e All internal nodes (i.e., roots of subtrees) are ¢ (non-terminals).
o All external nodes (a.k.a. leaves) are characters of s.

o Perform a left-most derivation (LMD), by starting with ¢ (the start
variable) and continuing to substitute the leftmost non-terminal, until no
non-terminals remain.

o Perform a right-most derivation (RMD), by starting with ¢ (the start
variable) and continuing to substitute the rightmost non-terminal, until no
non-terminals remain.

e PTs, LMDs, and RMDs are legitimate, and equivalent, ways for

showing interpretations of a valid LTL formula string.
| pasx]

‘LASSONDE

LTL: Exercises on Parsing Formulas

e Draw and compare the parse trees of:
FprGqg=pUr
vs. F(pAG g=pUr)
vs. F pAr(G g=pUr)
vs. F pAa((G g=p)Ur)
e The above formulas are all derivable from the grammar of LTL.
o Show using the LMD (Left-Most Derivations)
o Show using the RMD (Right-Most Derivations)

LTL Formulas: More Exercises e

Draw the parser trees for:

(F(p=Gr)v((-q)Up))
vs. Fp=Grv-qUp

vs. F((p=Gr)v(-qUp))

LTL Formulas: Subformulas e

e Given an LTL formula ¢, its subformulas are all those whose
parse trees (rooted at ¢) are subtrees of ¢’s parse tree.
e.g., Enumerate all subformula of (F(p=Gr) v ((-q)Up)).
p! q! r!
Gr,p=(Gr),F(p=(Gr)),
-q, (-q)Up, F(p=(Gr)) v (-q)Up
(Flp=Gr)v((-q)Up))

O O O O

LASSONDE

LTL Semantics:
Labelled Transition Systems (LTS)

¢ Definition. Given that P is a set of atoms/propositions of

concern, a transition system M is a formal model
represented as a triple M = (S, —, L):
o S

A finite set of states
o —»: S S

A transition relation on S
o L:S—P(P)

A labelling function mapping each state to its satisfying atoms
Assumption. No state of the system can deadlock:

From any state, it's always possible to make progress
(by taking a transition).

VseseS=(3ses cSA(s,8)e—)

LASSONDE

LTL Semantics: Example of LTS

e We may visual a transition system M using a directed graph:
o Nodes/Vertices denote states.
o Edges/Arcs denote transitions.
¢ Exercises Consider the system with a counter ¢ with the
following assumption:
0<c<3

Say c is initialized 0 and may be incremented (via a transition

inc, enabled when ¢ < 3) or decremented (via a transition dec,

enabled when ¢ > 0).

o Draw a state graph of this system.

o Formulate the state graph as an LTS (via a triple (S,—, L)).
Assume: Set P of atomsis: { c>1,c<1}

‘LASSONDE

LTL Semantics: More Example of LTS

M= (S,—,L):
o S§={so,51,5}
o — = {(80,51),(S0,52),(51,50), (51,82), (82, 52) }

o L= {(307 {p7 q})v (31) {q7 I’}), (327 {f})}
[EEoras

LTL Semantics: Paths LASSONDE

Definition. A path in a model M = (S, —, L) is an infinite
sequence of states s; € S, where i > 1, such that s; — s;,1.
o We write the path, starting at the initial state sy, as

S —>8 — ...

o Note. s; in the above path pattern denotes the first, initial state of
the path, but in general, the actual name of the initial state may
cause confusion, e.g., Sp.

o A path =5 — s, — ... represents a possible future of M.

o We write 7' for the suffix of path =: a path starting from state s;.
e.g., =8 —> S —> ...
eg., =7

LTL Semantics: All Possible Paths fASSONDE

Given a state s, we represent all possible (computation)
paths as a computation tree by unwinding the transitions.

e.g.

LTL Semantics: Path Satisfaction (1)

Definition. Given a model M = (S,—, L) and a path

‘fASSONDE
in M, whether or not path = satisfies an LTL

formula is defined by the satisfaction relation & as follows:

mT=8 — ...

p > pel(sy)

T

1

- — =(mE9Q)
P1AQ2 = TEQATEQ
P11V = TEQVTEQ
P1=>¢2 = TEP =>TEQQ

N3 03 3 3 3 3
™ T T mTF=T T

Tips. To evaluate w = ¢1 A ¢o (and similarly for -, v, =):
o If ¢4 and ¢, are sophisticated, decompose it to 7 = ¢1 and 7 E ¢o.
o Otherwise, directly evaluate ¢4 A ¢2 0N sq.

‘LASSONDE

LTL Semantics: Path Satisfaction (2.1)

Definition. Given a model M = (S,—, L) and a path
in M, whether or not path = satisfies an LTL
formula is defined by the satisfaction relation & as follows:

T=8 — ...

T £ X¢ — nlEe¢ '
7 £ G — (vioi21j7'r/t:¢)
7™ B F¢p < (FJieix1irnE¢)

‘LASSONDE

LTL Semantics: Model Satisfaction (1)

¢ Definition. Given:
o amodel M = (S,—,L)
o astatese S
o an LTL formula ¢

if and only if for every path = of M starting at s, 7 & ¢.

M,sE¢p < (Vr e (m=8S—...)=>TEQ)

¢ \When the model M is clear from the context, we write: .

LTL Semantics: Model Satisfaction (2.1) ‘AL

Consider the following system model:

q, r r
o SET [true]
o SpH L [true]
o S9gEPAQ [true]
o S ETr [false]

LTL Semantics: Model Satisfaction (2.2) LASSONDE

Consider the following system model:

/
P, q
q, r r

° So=Xq [false]
Witness Path: so —[s2|— s2---# Xq

o 5k Xr [true]

o soEX(gnar) [false]
Witness Path: sp —[s2|— s2---# X(qAT)

° SQIZX(q:>I’) [true]

LTL Semantics: Model Satisfaction (2.3) ‘AL

Consider the following system model:

/
P, q
q, r r

o So=G-(pAr) [true]
sE=G¢ < ¢ holds on all reachable states from s.

o 59Gr [false]
Witness Path: — S — S #Gr

o S5 EGr [true]

LTL Semantics: Model Satisfaction (2.4) ‘AL

Consider the following system model:

o so=F=(pAar) [frue]
o soeFr [true]
o so=F(gnar) [false]
e Isis the case that g A r is eventually satisfied on every path?
e No. Witness Path: sy — 5o —> o — ...
o s=Fr [frue]
| ras]

\y,

‘LASSONDE

LTL Semantics: Nested G and F (1)

Given a model M = (S,—, L) and a state se S:
s FG¢ means that:
o Each path starting with s is such that eventually,

¢ holds continuously.
e For all paths 7 starting with s (i.e., t=s—[...):

Jieiz 1A (Vjej2i=nrg)
e Q. How to prove and disprove the above formula pattern?
o Hint. Structure of pattern: Vrre... = (Jie--- A (Vje...= ¢))

LASSONDE

LTL Semantics: Model Satisfaction (2.5.1)

Consider the following system model:
e

p, q
q, r r

o s5oFGr [false]
Witness: sp — 81 — Sp — S1 — ...

o sp=FG(pvQ) [false]
Witness: s — S1 — Sp —> Sp — ...

o s5g=FG(pvr) [true]

Justification: All possible paths from sy involve sg, s1, and sp,
all of which satisfying p v r.

‘LASSONDE

LTL Semantics: Nested G and F (2)

Given a model M = (S,—, L) and a state se S:
sk Fo¢y = FG ¢, means that:
o Each path = starting with s is such that

if »1 eventually holds on =, then ¢, eventually holds continuously
on the same .

Vier=8— ...
(3ioi21/\7r’l:¢1)
=

(Fieiz1n (Vjej2i=n¢2))
¢ Q. How to disprove the above formula pattern?
¢ A. Find a witness path = which makes the “inner” implication false.

LASSONDE

LTL Semantics: Model Satisfaction (2.5.2)
Consider the following system model:
e

p’ q
q, r r

o soF(-gnar)=FGr
Justification:

e S§p—>8 —> S — ...

[true]

never satisfies ~g A r.
e Sp—> St —> S, — S, —> ... eventually satisfies —q A r continuously.
e Sp — Sp —> Sp —> ... eventually satisfies —q A r continuously.
o s5g=F(-qvr)=FGr [false]
Witness: s — s1 — Ssop — ... eventually satisfies -qg v r, but

there is no point in this path where r holds continuously.
Eiofzsl

‘LASSONDE

LTL Semantics: Nested G and F (3)

Given a model M = (S,—, L) and a state s¢ S:
o st GF¢ means that:
o Each path starting with s is such that continuously,

¢ holds eventually.
= ¢ holds infinitely often!

o For all paths 7 starting with s (i.e., r=s—1[...):
Viei>1= (HjoniAwilzqﬁ)

e Q. How to prove and disprove the above formula pattern?

o Hint. Structure of pattern: Vre... = (Vie...= (Jjeo---An9))

LTL Semantics: Model Satisfaction (2.6) Mé

Consider the following system model:

o 5o=GFp [false]
Witness: In sp — so — ..., pis not satisfied infinitely often.

o sg=GF(pvr) [true]

o s GFp=GFr [true]
Hint: Consider paths making the antecedent GF p true.

o s5o=GFr=GFp [false]
Witness: sp — sp — ... [Why?]

LTL Semantics: Path Satisfaction (2.2)

Definition. Given a model M = (S,—, L) and a path

‘fASSONDE
m =8 — ... in M, whether or not path = satisfies an LTL

formula is defined by the satisfaction relation & as follows:

Tl'i|:<‘)2
™ = ¢1Ugo — Jiei>1A| A)
(Vjel1<j<i-1 = 7lEg¢q)

$1Ugo
(Vkok21ﬁ7rkr:o1)

& ¢
Jiei>1A|l A
(Vjel<j<i= nleg¢p)

v (Ykek>1=mfE¢p)

T E o1Wey — (v

T E ¢1R¢pp =

LTL Semantics: Recall Model Satisfaction ‘jégsésoms

¢ Definition. Given:
o amodel M = (S,—, L)
o astate se S
o an LTL formula ¢

‘M, s ¢ |if and only if for every path = of M starting at s, 7 & ¢.
M,sE¢p < (Vr e (m=S—...)=>TEQ)

» When the model M is clear from the context, we write: .

LTL Semantics: Model Satisfaction (3.1) Mé

Consider the following system model:
-

p’ q
q, r r

o soepUr [true]
So (satisfying p) branches out to s; or s, (both both satisfying r).

o SopWr [frue]
P1Ud2 = o1 Wop

o s5=rRp [false]
Witness: Say m =5y — S — Sp — S1.... i parand it Gp.

LTL Semantics: Model Satisfaction (3.2) ‘

Consider the following system model:

, I r
o S (pv r)U(p/\rSq [false]
Witness: In sp — sy — Sp — S1..., p A r never holds.
o sok(pvr)W(par) [frue]
It is the case that: so = G(p Vv r).
o so=(par)R(pvr) [true]

It is the case that: so = G(p v r).

‘LASSONDE

Clarification on the “Until” Connective

e ¢1 U o requires that:
o ¢o must eventually become frue.
o Before ¢» becomes true, ¢4 must hold.
o Exercise. Say:
o Atom t: | was 22.
o Atom s: | smoke.
Formulate “I had smoked until | was 22” using LTL.
o sUt [inaccurate]

o1 U ¢ does not insist after eventually becomes ftrue.

“I smoked both before and after | was 22” satisfies sU .
Solution? [sU(tA(G=S))]

e}

o

[e]

Formulating English as LTL Formulas (1) ‘jsgsoms

¢ Assume the following atomic propositions:
busy, requested, acknowledged, enabled, floor2, floor5,
directionUp, buttonPresssed5.

It is impossible to reach a state where the system is started but
not ready.

o G-(started A —ready) [-(F(started A —~ready))]
Whenever a request is made, it will be eventually be
acknowledged.

o G(requested = F acknowledged)
¢ A certain process will always be enabled.

o G enabled
¢ An upwards travelling lift at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor.

o

G floor2 A directionUp A buttonPresssed5
= (directionUp U floor5)

o Is it ok to change from U to W?

Formulating English as LTL Formulas (2) ‘isésoms

Assume the following atomic propositions:
requested, waiting, granted, noOnelnCS

Whenever a process makes a request, it starts waiting. As
soon as no other process is in the critical section, the process
is granted access to the critical section.

G (requested = (noOnelnCS R waiting))

Q. Does the above formulation guarantee no starvation?
Hint. Check the formal definition of R.

Formulating English as LTL Formulas (3) ‘isésoms

Assume the following atomic propositions:
degReqFullfilled, allowedForGraduation

Until a student fullfils all their degree requirements, their
academic staus remains “not allowed for graduation”. The
change of status, when qualified, may not be instantaneous to
account for human/manual processing.

-allowedForGraduation W
(degReqFulfilled A G allowedForGraduation)

Q. Does the above formulation account for situations where a
student never fulfills their degree requirements?

Hint. Check the formal definition of W.

Index (1) :ASSONDE

Wofivation for E [Verification
[Example of Formal Verification|

Classificani f Verification Methods
IVerification via Model Checking|

[Model Checking: Temporal Logic]
[Linear-Time Temporal Logic (LTL)l

LCTL: Syntax in CFG (1)

LCTL: Syntax in CFG (2)

LCTL: Syntax in CFG (3)

ILTL: Symbols of Unary Temporal Operators|

[Practical Knowledge about Parsing
Lomxs

Index (2) :ASSONDE

ILTL: Exercises on Parsing Formulas|

LTl Formulas: More Exercises|

LIL Formulas: Subformulas

ILTL Semantics:]
Cabelled Transition Systems (LTS)

ICTC Semantics: Example of LTS

[CTLC Semantics: More Example of LT
IS ics- All Possible Paihs
LTL Semantics: Path Satisfaction (1)
ILTL Semantics: Path Satisfaction (2.1)
Exaras

LASSONDE

Index (3)

CTC Semantics: Model Satisfaction (1)
ILTL Semantics: Model Satistaction (2.1)]
LTL Semantics: Model Satisfaction (2.2)

ICTC Semantics: Model Satisfaction (2.3)
ILTL Semantics: Model Satisfaction (2.4)

LTL Semantics: Nested G and F (1)
LIL Semantics: Model Satisfaction (2.5.1)

emantics: Neste an
ICTC Semantics: Model Satisfaction (2.5.2)
ILTL Semantics: Nested G and F (3)

emantics: Model Satistaction (2.6)
BZaizn

LASSONDE

Index (4)

emantics: Path Satistfaction (2.2)
LIL Semantics: Becall Model Satisfactionl
LTL Semantics: Model Satisfaction (3.1)
LTL Semantics: Model Satistaction (3.2)
(he “Until”_Connective
fFormulating English as LTL Formulas (1)
fFormulating English as LTL Formulas (2)|
fFormulating English as LTL Formulas (3)

Program Verification
Readings: Chapter 4 of LICS2

EECS4315 Z:
Mission-Critical Systems
Winter 2023

UNIVERSITE '
UNIVERSITY

Learning Objectives

CHEN-WFEI WANG

LASSONDE

o0 hoh=

Motivating Examples: Program Correctness
Hoare Triple

Weakest Precondition (wp)

Rules of wp Calculus

Contract of Loops (invariant vs. variant)

Correctness Proofs of Loops

2ot 35

LASSONDE

Assertions: Weak vs. Strong

¢ Describe each assertion as a set of satisfying value.
x > 3 has satisfying values { x | x>3}={4,5,6,7,... }
X >4 has satisfying values { x | x>4 }={5,6,7,... }

e An assertion p is stronger than an assertion q |if | p’s set of
satisfying values is a subset of g’s set of satisfying values.
o Logically speaking, p being stronger than q (or, g being weaker
than p) means p = q.
oeg,x>4=>x>3

What's the weakest assertion?

What's the strongest assertion?

In System Specification:

o A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

o A weaker precondition has more acceptable input values

o A weaker postcondition has more acceptable output values

[TRUE]
[FALSE]

LASSONDE

Assertions: Preconditions

Given preconditions P; and P», we say that

’ P> requires less than P; ‘if
P> is less strict on (thus allowing more) inputs than Py does.

{x[P10 }e{x|Pa(x) }

More concisely:
P1 = P2

e.g., Forcommand withdraw (amount: INTEGER),
| P> : amount > 0| requires less than | Py : amount > 0|

What is the precondition that requires the least?

[true]

LASSONDE

Assertions: Postconditions

Given postconditions or invariants Qq and Q», we say that

’ Q> ensures more than Qq ‘if
Q» is stricter on (thus allowing less) outputs than Q; does.

{x[Q(x) pe{x[Qi(x)}

More concisely:
Qo = Q

e.g., Forquery g (i: INTEGER): BOOLEAN,
’ Qo :Result = (i>0)A(imod2=0) ‘ ensures more than

|Qy:Result =(i>0)v(imod2=0)]

What is the postcondition that ensures the most? [false]
Motivating Examples (1) LASSONDE
Is this algorithm correct?

—-algorithm increment_by 9 {
variable i;
{
(* precondition x*)
assert
(* implementation %)
i =1+ 9;
(* po *)
assert
}
}
Q: Is i > 3 is too weak or too strong?
A: Too weak
- assertion / > 3 allows value 4 which would fail postcondition.

\wy

Motivating Examples (2)

Is this algorithm correct?

=

ASSONDE

——algorithm increment_by_9 {
variable i;
{
(* precondition =)
assert |i > 5

assert
}
}

Q: Is i > 5 too weak or too strong?

A: Maybe too strong

- assertion i > 5 disallows 5 which would not fail postcondition.
Whether 5 should be allowed depends on the requirements.

‘LASSONDE

consistency of implementation with respect to specification.
= This assumes there is a specification!

e We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s {R}

eg.,{i>3}1i :=1 + 9{i>13}
eg.,{i>5}1i := 1 + 9{i>13}
If| {@Q} s {R} | can be proved TRUE, then the S is correct.

e.g., {i>5}i := i + 9 {i>13} can be proved TRUE.

If| {@Q} s {R} | cannot be proved TRUE, then the S is incorrect.

eg., {i>3}1 := 1 + 9 {i>13} cannot be proved TRUE.

Software Correctness

e Correctness is a relative notion:

[e]

o
Il

[}

e}

B.of 35

Hoare Logic

e Consider a program S with precondition @ and postcondition R.

o {Q} s {R} is a correctness predicate for program S

o {Q} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

‘LASSONDE

Hoare Logic and Software Correctness

Consider the contract/specification view of an algorithm f

(whose body of implementation is S) as a | Hoare Triple |:

{Q} s {R}

Qis the precondition of f.
S is the implementation of f.
Ris the postcondition of f.
{true} s {R}

All input values are valid
{false} s {R}

All input values are invalid
{Q@} s {true}

All output values are valid [Most risky for clients; Easiest for suppliers]
{Q} s {false}

All output values are invalid
{true} s {true}
— All inputs/outputs are valid (No specification) [Least informative]

[e]

[Most-user friendly]

(¢

[Most useless for clients]

e}

(e

[Most challenging coding task]

¢

Proof of Hoare Triple using wp LASSONDE

{@} s{R} = Q= wp(S,R)

e wp(S, R) isthe weakest precondition for S to establish R .

o If @= wp(S, R), then any execution started in a state satisfying Q
will terminate in a state satisfying R.

o If Q= wp(S, R), then some execution started in a state satisfying
Q will terminate in a state violating R.

e Scan be:
o Assignments [x := v]
o Alternations [if ... then ... else ... end]
o Sequential compositions [S1; S
o Loops [while(...) { ... }]

¢ We will learn how to calculate the wp for the above
programming constructs.

Denoting Pre- and Post-State Values ‘issom

¢ In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.

o We write to denote its post-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.

eg.,{bb>atb :=b - a{b=by-a}
¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
-+ All variables are pre-state values in preconditions

o We don’t write “by” in program
-+ there might be multiple intermediate values of a variable due
to sequential composition

wp Rule: ASSignmentS (1) LASSONDE

wp(x := e, R)=R[x:=¢]

R[x := e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

wp Rule: ASSignmentS (2) LASSONDE

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} x := e {R}?

{Q} x := e{R} — Q= R[x:=¢€]
—_—
wp(x := e,R)

wp Rule: Assignments (3) Exercise LASSONDE

What is the weakest precondition for a program x := x + 110
establish the postcondition x > xo?
{7} x = x + 1{x>Xx0}

For the above Hoare triple to be TRUE, it must be that
M=>wp(x := x + 1,X>Xp)-

wp(x := x + 1,X>Xp)

= { Rule of Wp: Assignments }
X > Xo[X:=Xp+ 1]

= { Replacing X by Xp+1 }
X0+1 > X0

= { 1>0 always true }
True

Any precondition is OK. False is valid but not useful.

wp Rule: Assignments (4) Exercise o
What is the weakest precondition for a program x := x + 11to

establish the postcondition x = 237
{7} x := x + 1{x=23}

For the above Hoare triple to be TRUE, it must be that
?=>wp(x := x + 1,x=23).

wp(x := x + 1, x=23)

= { Rule of wp: Assignments }
Xx=23[x:=x9+1]

= { Replacing X by Xp+1 }
Xo+1=23

= { arithmetic }
X0=22

Any precondition weaker than x = 22 is not OK.

_

‘LASSONDE

wp Rule: Assignments (4) Revisit

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the

postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n>4) will result in a correct program.

e.g., {n>5}n:=n+9{n> 13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

wp Rule: Alternations (1) LASSONDE

B = wp(Si, R)
wp(if B then S; else S; end R)=| A
- B = wp(S,, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

wp Rule: Alternations (2)

Recall: {@} s {R} = Q= wp(S,R)

How do we prove that {Q} if B then S; else S; end {R}?
{0}

if B then
{on B} S (R}

else

{for-B} S {R}

end

{r}

{@} if B then S; else S, end {R}
{arnB }Si{R} (@ B) = wp(Sy, R)
| A | A

{Qr-B } S {R} (Qn-B) = wp(S:, R)

‘LASSONDE

wp Rule: Alternations (3) Exercise

Is this program correct?

{x>0ny>0}
if x > y then
bigger := x ; smaller :=y
else
bigger := y ; smaller := x
end
{bigger > smaller}
{(x>0Ay>0)A(x>Yy)}
bigger := x ; smaller :=y
{bigger > smaller}
AN
{(x>0Ay>0)A-(x>Yy)}
bigger := vy ; smaller := x
{bigger > smaller}

_

‘LASSONDE

wp Rule: Sequential Composition (1)

M“D(f;1 7 6;27 F?) = M49(£;17 M43(£;27 F?))

The wp of a sequential composition is such that the |first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

‘LASSONDE

wp Rule: Sequential Composition (2)

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} Sy ; S {R}?

{@Q}S1 i S2{R} < Q= wp(Ss, wp(Sz, R))

wp(Sy ; S, R)

_

wp Rule: Sequential Composition (3) Exerci Egsoms

Is{ True } tmp := x; x := vy; y := tmp{ x>y } correct?
If and only if True = wp(tmp := x ; x =y ; y := tmp, X> V)
wp(tmp := x ; ’x =y ; Yy = tmpl, X>Y)

= { wp rule for seqg. comp. }
wp(tmp := x, wp(x :=y ; [y := tmp| x>y))

= { wp rule for seg. comp. }
wp(tmp := x, wp(x := v, wp(y := tmp, x>[y])))
= { wp rule for assignment }

wp(tmp := x, wp(x := y,[x]>tmp))

= { wp rule for assignment

wp(tmp := x, y>)

= { wp rule for assignment }
y>x
-+ True = y > x does not hold in general.

.. The above program is not correct.

Loops LASSONDE

e Aloop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers
e Loops are needed and powerful
e But loops very hard to get right:
o “off-by-one” error
o Not establishing the desired condition

o Improper handling of borderline cases
o Infinite loops

[partial correctness]
[partial correctness |
[partial correctness]

[termination]

Correctness of Loops

LASSONDE

How do we prove that the following loop is correct?

{0}

Sinit

while (B) {
Shody

}

{R}

In case of C/Java/PlusCal, | B| denotes the stay condition.
o In TLA+ toolbox, there is not native, syntactic support for

model-checking the total correctness of loops.

o Instead, we have to manually add assertions to encode:
e LOOP INVARIANT [for establishing partial correctness |
e LOOP VARIANT [for ensuring termination |

LASSONDE

Specifying Loops

¢ Use of loop invariant (LI) and loop variant (LV).
o LI: Boolean expression for measuring/proving partial correctness
o Typically a special case of the postcondition.
e.g., Given postcondition “Result is maximum of the array”:
LI can be “Result is maximum of the part of array scanned so far’.
o Established before the very first iteration.
e Maintained TRUE after each iteration.
o LV: Integer expression for measuring/proving fermination
Denotes the “number of iterations remaining”
Decreased at the end of each subsequent iteration
Maintained non-negative at the end of each iteration.
As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

¢ Remember:

total correctness = partial correctness + termination

Specifying Loops: S X

LASSONDE

CONSTANT ...
I(var_1list)
V(var_1list)
-—algorithm

*)

MYALGORITHM {

Specifying Loops: Runtime Checks (2)

variables ..., variant_pre = 0, variant_post = 0;

{
assert QO; («

Sinit

assert I(...); *)
while(B) {

variant pre := V(...);

Sbody

variant_post := V(...);

assert variant_post >= 0;

assert variant_post < variant_pre;

assert I(...); (* Is LI preserved? x)

}

assert R; (#

*)

LASSONDE
1 |I(i) == (1 <= 1) /\ (i <= 6)
2 |V(i) == 6 - 1
3 | ——algorithm loop invariant_test
4 variables i = 1, variant_pre = 0, variant_post = 0;
5 {
6 assert I(i);
7 while (i <= 5) {
8 variant_pre := V(i);
9 i =1+ 1;
10 variant_post := V(1i);
11 assert variant_post >= 0;
12 assert variant_post < variant_pre;
13 assert I(i);
14 } o
15 }

L1: Changeto1 <= i /\ i <= 5fora Loop Invariant Violation.
L2: Changeto 5 - i fora Loop Variant Violation.

Specifying Loops: Runtime Checks (1)

LASSONDE

recondition
Violation

Loop
Invariant
Violation

Postcondition
K Violation
V20AV<V, .,
' Sbodyl)
.. Yov<ovvay, Loop
e R R L > Variant K

Violation .

LASSONDE

Specifying Loops: Visualization

Exit condition
Previous state

Initialization Invariant Postcondition

_~
7
Bod
Body y Bodly
;
U

\
\

S— Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

LASSONDE

Proving Correctness of Loops (1)

{0}

Sinit

assert I(...);

while(B) {
variant_pre := V(...);
Sbody
variant_post := V(...);
assert variant_post >= 0;
assert variant_post < variant_pre;
assert I(...);

}

{R}

o Aloop is partially correct if:
e Given precondition @, the initialization step Sj,;; establishes L/ /.
e Atthe end of Speqy, if not yet to exit, L/ [is maintained.
e If ready to exit and L/ | maintained, postcondition R is established.
o Aloop terminates if:
e Given LI I, and not yet to exit, Speq, maintains LV V as non-negative.
e Given L/ /, and not yet to exit, Sp,q, decrements LV V.

LASSONDE

Proving Correctness of Loops (2)

e Aloop is partially correct if:
o Given precondition Q, the initialization step Sj, establishes L/ .
o Atthe end of Spogy, if Not yet to exit, L/ /is maintained.
{I'n B} Spoay {1}
o |f ready to exit and L/ | maintained, postcondition R is established.

¢ Aloop terminates if:
o Given LI I, and not yet to exit, Spoq, Maintains LV V as non-negative.
’{//\B} Shoay {V >0} \
o Given LI I, and not yet to exit, Spoqy decrements LV V.
| {1A B} Soooy {V < Vo} |

Index (1) :ASSONDE

[Learning Objectives|

|Assertions: Weak vs. Strong
B fions— P lifions

B ions. P lifions]
Motivating Examples (1)

[Motivating Examples (2)

Boftware Correctnessi

Hoare Logic and Software Correctness|
[Proof of Hoare Iriple using wg

Denoting Pre- and Post-State Values|

Index (2) :ASSONDE

wp Rule: Assignments (1)

wp Rule: Assignments (2)|

wp Rule: Assignments (3) Exercise]

wp Rule: Assignments (4) Exercise|

wp Rule: Assignments (5) Revisit

iwp Rule: Alternations (1)

jwp Rule: Alternations (2)|

{wp Rule: Alternations (3) Exercisel

iwp Rule: Sequential Composition (1)

lwp Rule: Sequential Composition (2)|

wp Rule: Sequential Composition (3) Exercise

Index (3) LassonDE
Loops

[Correctness of Loops|

Ppecitying Loops|

pPpecitying Loops: Syntax
pPpecitying Loops: Runtime Checks (1)

ppecitying Loops: Runtime Checks (2)|

Ppecitying Loops: Visualization|
[Proving Correctness of Loops (1)

[Proving Correctness of Loops (2)|

_

