
Recursion (Part 1)

EECS2011 X:
Fundamentals of Data Structures

Winter 2023

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Background Study: Basic Recursion
● It is assumed that, in EECS2030, you learned about the basics of

recursion in Java:
○ What makes a method recursive?
○ How to trace recursion using a call stack?
○ How to define and use recursive helper methods on arrays?

● If needed, review the above assumed basics from the relevant parts
of EECS2030 (https://www.eecs.yorku.ca/˜jackie/
teaching/lectures/index.html#EECS2030_F21):
○ Parts A – C, Lecture 8, Week 12

Tips.
○ Skim the slides: watch lecture videos if needing explanations.
○ Recursion lab from EECS2030-F22: here [Solution: here]
○ Ask questions related to the assumed basics of recursion!

● Assuming that you know the basics of recursion, we will:
○ Look at a basic example of recursion on arrays together.
○ Have you complete an assignment on the more advanced

recursion problems.
2 of 11

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/slides/08-Recursion.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/codes/EECS2030_F22_Lab5.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/codes/EECS2030_F22_Lab5_solution.zip

Learning Outcomes of this Lecture

This module is designed to help you:
● Quickly review the recursion basics.
● Know about the resources on recursion basics.

3 of 11

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:
○ Base Cases: Small problem instances immediately solvable.
○ Recursive Cases:
● Large problem instances not immediately solvable.
● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]
● Recursion can be easily expressed programmatically in Java:

m (i) {
if(i == . . .) { /* base case: do something directly */ }
else {

m (j);/* recursive call with strictly smaller value */
}

}

○ In the body of a method m, there might be a call or calls to m itself .
○ Each such self-call is said to be a recursive call .
○ Inside the execution of m(i), a recursive call m(j) must be that j < i.

4 of 11

Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.

⇒ The stack contains activation records of all active methods.
○ Top of stack denotes the current point of execution .
○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

5 of 11

Tracing Method Calls via a Stack

● Can you identify the pattern of a Fibonacci sequence?

F = 1,1,2,3,5,8,13,21,34,55,89, . . .

● Here is the formal, recursive definition of calculating the nth
number in a Fibonacci sequence (denoted as Fn):

Fn =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

● Your tasks are then to review how to
○ implement the above mathematical, recursive function in Java
○ trace, via a stack, the recursive execution at runtime

by studying this video (≈ 20 minutes):
6 of 11

https://www.youtube.com/watch?v=YPWryhqMcxk&list=PL5dxAmCmjv_7yZlpvPm5n5lHYnyFeSFdK&index=4

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.
● Naively , explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /* base case */ }
else if(a.length == 1) { /* base case */ }
else {
int[] sub = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { sub[i - 1] = a[i]; }
m(sub) } }

● For efficiency , we pass the reference of the same array and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {
if(from > to) { /* base case */ }
else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]
● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]
● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]7 of 11

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st element positive, and
○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
∵ No witness (i.e., a positive number) from an empty array

8 of 11

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);

}
}

9 of 11

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st and 2nd elements are sorted in a non-descending order, and
○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending order .
10 of 11

Index (1)
Background Study: Basic Recursion

Learning Outcomes of this Lecture

Recursion: Principle

Tracing Method Calls via a Stack

Tracing Method Calls via a Stack

Making Recursive Calls on an Array

Recursion: All Positive (1)

Recursion: All Positive (2)

Recursion: Is an Array Sorted? (1)

11 of 11

	Background Study: Basic Recursion
	Learning Outcomes of this Lecture
	Recursion: Principle
	Tracing Method Calls via a Stack
	Tracing Method Calls via a Stack
	Making Recursive Calls on an Array
	Recursion: All Positive (1)
	Recursion: All Positive (2)
	Recursion: Is an Array Sorted? (1)

