
EECS2011 (Section Z) Winter 2023

Guide to Programming Test 2

When: 10:05 to 11:05, Monday, April 3

Where: William Small Centre (WSC) 106/108

Chen-Wei Wang

Last Updated: March 26, 2023

1 Policies

– This programming test is in-person and strictly individual: plagiarism check may be performed and
suspicious submissions will be reported to Lassonde for a breach of academic honesty.

– This programming test will account for 10% of your course grade.

– This test is purely a programming test, assessing if you can write valid Java programs free of syntax,
type, and logical errors.

– Structure of the Test:

• At 10:05, all WSC machines will be rebooted to the “lab-test mode” (where there is no network
connection and you are expected to use the Eclipse tool only).

• During the test, you will be expected to:

∗ Launch Eclipse on a designated workspace.

∗ Download and import a starter project archive file (.zip file).

∗ Develop Java classes in the model package, based on the given starter JUnit tests.

When errors exist in your developed code, you are expected to find them, using
breakpoints and the debugger, and fix them on your own.

∗ You are solely responsible for:

· leaving enough time (≈ 3 minutes) to export the completed Java project and
upload/submit the archive (.zip) file to WebSubmit; and

· submitting the right project archive file for grading.

A common mistake is that one just uploads the initial starter project for grading, in which
case the TAs cannot do anything about it.

– Submission for Grading:

• Like your assignments, submission (of an Eclipse Java archive .zip file) for this programming
test must be through the WebSubmit link (which will be provided during the test).

• It is your sole responsibility for making sure that the correct version of project archive file is
submitted. After clicking on the submit button on WebSubmit, you should re-download the
archive file and make sure it is the right version to be graded. No excuses or submissions will be
accepted after your attempt times out.

1



– Programming Requirements

• You will be given a single JUnit test class: StarterTestsTree.

• Class(es) and method(s) that you develop for StarterTestsTree are subject to the same re-
quirements.

• Requirements on Class(es) and Method(s) Developed for StarterTestsTree :

∗ This test class focuses on the manipulation of generic linked tree nodes and singly-linked
nodes. Therefore, use of primitive arrays (e.g., Integer[], String[]) for declaring at-
tributes/variables is forbidden .

∗ Also, any use of a Java library class or method is forbidden (that is, use selections and loops
to build your solution from scratch instead):

· Here are some examples of forbidden classes/methods: Arrays (e.g., Arrays.copyOf),
System (e.g., System.arrayCopy), ArrayList, substring method in String, Math.

· The use of some library classes does not require an import statement, but these classes
are also forbidden to be used.

· Here are the exceptions (library methods which you are allowed to use if needed):

equals, format, and length in String

∗ Like in Programming Test 1, you will receive a 30% penalty if this requirement is violated.

• Requirements on the Submitted Project :

If your submitted project (including the initial starter test files) contains any compilation errors
(i.e., syntax errors or type errors), TAs will attempt to fix them (if they are quick to fix); once the
revised submission is graded, your submission will receive a 30% penalty on the resulting marks
(e.g., if the revised submission received 50 marks, then the final marks would be 30 marks).

A common compilation error is that some of the given starter tests do not compile because
the expected classes and/or methods are not added/implemented. To avoid this error, for those
classes/methods which you cannot manage to implement, at least provide the proper method
headers (with empty body of implementation) to make the starter tests compile.

2 Format

The format of this programming test will be identical to that of your Assignment 3: given a JUnit test
class containing compilation errors begin with, derive, declare, and implement classes and methods in the
model package. You will not be asked to build console applications for grading.

– The model package is empty (to be added classes derived from the given JUnit tests).

– The tests package contains a collection of JUnit tests suggesting the required classes and methods.

3 Grading

For this programming test, you will also be graded by an additional list of Junit tests (e.g., you are
given 5 tests, and there are another additional five tests not given, and your submission will be graded
by all 10 tests).

Therefore, it is up to you to test your program with extra inputs by writing more JUnit tests. You
can always add a new test by copying, pasting, and modifying a test give to you.

2



4 How the Test Should be Tackled

– Your expected workflow should be:

1. Step 1: Eliminate compilation errors. Declare all the required classes and methods (returning
default values if necessary), so that the project contains no compilation errors (i.e., no red crosses
shown on the Eclipse editor). See Steps 1.1 to 1.3 of Section 2.2 in the written notes Inferring
Classes from JUnit Tests.

2. Step 2: Pass all unit tests. Add private attributes and complete the method implementations
accordingly, so that executing all tests result in a green bar.

If necessary, you are free to declare (private or public) helper methods.

– It is critical that you complete Step 1 first, so that you will not receive a penalty for
submitting a project containing compilation errors.

5 Rationales: Grading Standard & Time Constraint

The two most important learning outcome of this course are:

1. Computational thinking (for which you build through labs and assessed by written tests and the exam)

2. Being able to write runnable programs (for which you are assessed through computer tests)

When you write an essay, if there are grammatical mistakes, it can still be interpreted by a human.
Computer programs are unlike essays: when your program contains compile-time syntax or type errors, it
just cannot be run, end of story. When a computer program cannot be run, its runtime behaviour is simply
unknown; and this is particularly the case when your program contains if-statements and loops.

When you land a job upon graduation, you would not expect your supervisor or colleagues to read your
code that does not run, because it does not even compile, would you? True, you’re still learning. But it is
exactly this mind set that restricts your potential of becoming a competent programmer. This is already
your third programming course. If we want to train you to be a competent programmer, NOW is the time
to enforce the strict (but justifiable) standard.

Why is the time constraint? Working under stress is unavoidable. Your future programming interviews
for jobs will expect you to do the same: given problems, program your solutions in front of a work station or
a whiteboard within some (short) set time limit. More critically, after landing a job, whenever being called
upon by your perspective workplace supervisor for some customer-reported bugs, most likely they need to be
fixed within a short time interval. Arguably, not being able to perform well under stress can be a indication
of a lack of enough practice, which is surely unpleasant at first but also suggests how you can improve your
skills fundamentally.

6 Coverage for the Test

– Assignment 3 (on programming with TreeNode and SLLNode)

• It is expected that you completed the required studies (on generic lists/trees and nodes) listed in
the instructions PDF of your Assignment 3.

– Though not required, you may find it useful to review concepts and source code covered in the relevant
parts of lectures (on both general trees and binary trees).

3

https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/notes/EECS2030_F22_Inferring_Classes_from_JUnit.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/notes/EECS2030_F22_Inferring_Classes_from_JUnit.pdf


7 Practice Test

– The starter project (.zip file) of a practice test is made available under the Programming Tests
section on the Section X eClass site . You can attempt this test for as many times as you wish.

– This practice test will not be graded, but you may practice submitting it.

– It is important to note that these questions are meant for familiarizing yourself with the format and
workflow of the test, and they represent only as an example: you are expected to study all materials
as listed in Section 6.

8 Simulating the Programming Test

It is highly recommended that you simulate taking the programming test by following these steps:

Preparation

– Login into a machine under remotelabs (using your EECS account): https://remotelab.eecs.
yorku.ca/. Choose a machine under the ea category.

– Launch the Firefox web browser (under Activities) and login into the Section X eClass site.

– Open a copy of this test guide (so that you can click on the WebSubmit link at the end).

Start the Test

– Start a timer (say for 90 minutes).

– Download the (PracticeTest2 Starter.zip) file from eClass onto the Desktop.

– Launch Eclipse (under Activities) and choose the default workspace:

/eecs/home/??/eclipse-workspace

where ?? denotes your EECS account name. It is ok to select a different directory as the
workspace, as long as you know how to locate it.

– Import the starter project to Eclipse.

– Tackle the test by implementing classes/methods into the model package, based on the starter
tests given. You are only expected to read the starter tests and comments in the same Java files.

– Before you submit, you should make sure that there is no compilation error in any
of the files (including the original starter JUnit test file given to you) in the project.

Submission

– Steps of importing, exporting, and submitting your Java project are demonstrated here:

https://youtu.be/d7WWtGRMA9w

– By the end of the time limit, export your developed project (entirely) as an archive file (with
the designated name different from the starter project): PracticeTest2.zip. Save the archive
file to the Desktop. Only properly exported .zip archive file will be graded. It is assumed that
you already gained familiarity with importing and exporting projects in Eclipse.

– It is a recommended practice that you export, upload, and submit intermediate
versions of your developed project (e.g., every 15 to 20 minutes).

– Upload the PracticeTest2.zip file to the WebSubmit link for grading:

https://webapp.eecs.yorku.ca/submit/?acadyear=2022-23&term=W&course=2011X&

assignment=PT2

Be careful about not uploading the initial downloaded starter project file PracticeTest2 Starter.zip
for grading.

4

https://remotelab.eecs.yorku.ca/
https://remotelab.eecs.yorku.ca/
https://youtu.be/d7WWtGRMA9w
https://webapp.eecs.yorku.ca/submit/?acadyear=2022-23&term=W&course=2011X&assignment=PT2
https://webapp.eecs.yorku.ca/submit/?acadyear=2022-23&term=W&course=2011X&assignment=PT2

	Policies
	Format
	Grading
	How the Test Should be Tackled
	Rationales: Grading Standard & Time Constraint
	Coverage for the Test
	Practice Test
	Simulating the Programming Test

