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Learning Outcomes

et ae o

This module is designed to help you understand:
e What a Requirement Document (RD) is

What a refinement is

Writing formal specifications
o (Static) contexts: constants, axioms, theorems

o (Dynamic) machines: variables, invariants, events, guards, actions

o refinements
o system properties
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Proof Obligations (POs) associated with proving:

Applying inference rules of the sequent calculus



Recall: Correct by Construction LASSONDE

¢ Directly reasoning about source code (written in a programming
language) is too complicated to be feasible.

¢ Instead, given a requirements document, prior to implementation,
we develop models through a series of refinement steps:

e]
[e]

o

Each model formalizes an external observer’s perception of the system.

Models are “sorted” with increasing levels of accuracy w.r.t. the system.

The first model, though the most abstract, can already be proved

satisfying some requirements.

Starting from the second model, each model is analyzed and proved

correct relative to two criteria:

1. Some requirements (i.e., R-descriptions)

2. Proof Obligations (POs) related to the preceding model being
refined by the current model (via “extra” state variables and
events).

The last model (which is correct by construction ) should be
sufficiently close to be transformed into a working program (e.g., in C).
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State Space of a Model LASSONDE

* A model's state space is the set of all configurations:

o Each configuration assigns values to constants & variables, subject to:
e axiom (e.g., typing constraints, assumptions)
e invariant properties/theorems
o Say an initial model of a bank system with two constants and a variable:
c e N1 A LeN1aaccounts e String + 7 /* typing constraint */
Vid e id € dom(accounts) = —c < accounts(id) < L  /* desired property */
Q. What is the state space of this initial model?
A. All valid combinations of ¢, L, and accounts.
e Configuration 1: (¢ = 1,000, L = 500,000, b = @)
e Configuration 2: (¢ = 2,375, L = 700,000, b = {("id1",500), ("id2",1,250)})
[ Challenge: Combinatorial Explosion ]
o Model Concreteness t = (State Space 1 A Verification Difficulty 1)
* A model's complexity should be guided by those properties intended to be
verified against that model.

= Infeasible to prove all desired properties on a model.

= Feasible to distribute desired properties over a list of refinements.
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Roadmap of this Module e sous

¢ We will walk through the development process of constructing
models of a control system regulating cars on a bridge.
Such controllers exemplify a reactive system.
(with sensors and actuators)
¢ Always stay on top of the following roadmap:
A Requirements Document (RD) of the bridge controller
A brief overview of the refinement strategy
An initial, the most absitract model
A subsequent model representing the 1st refinement
A subsequent model representing the 2nd refinement
A subsequent model representing the 3rd refinement

SRR
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Requirements Document: Mainland, Island o

Imagine you are asked to build a bridge (as an alternative to ferry) connecting
the downtown and Toronto Island.

Page Source: https://soldbyshane.com/area/toronto—islands/


https://soldbyshane.com/area/toronto-islands/

I

Requirements Document: E-Descriptions |ussono:

Each E-Description is an atomic specification of a constraint or
an assumption of the system’s working environment.

ENV1 The system is equipped with two traffic lights with two colors: green and red.

ENV2 The traffic lights control the entrance to the bridge at both ends of it.

ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.

ENV4 The system is equipped with four sensors with two states: on or off.

ENV5 The sensors are used to dgt}act the presence qf a car entering or leaving the bridge:
“on” means that a car is willing to enter the bridge or to leave it.
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Requirements Document: R-Descriptions  |ussono:

Each R-Description is an atomic specification of an intended
functionality or a desired property of the working system.

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.
REQ2 The number of cars on bridge and island is limited.
REQ3 The bridge is one-way or the other, not both at the same time.
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Requirements Document:

Visual Summary of Equipment Pieces
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> Bridge (
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Island Mainland




Refinement Strategy LASSONDE

e Before diving into details of the models, we first clarify the adopted
design strategy of progressive refinements.
0. The initial model (mo) will address the intended functionality of
a limited number of cars on the island and bridge.

[REQ2]
1. A 1st refinement (my which refines my) will address
the intended functionality of the bridge being one-way.
[ REQ1, REQ3 ]
2. A 2nd refinement (m, which refines m;) will address
the environment constraints imposed by traffic lights.
[ ENV1, ENV2, ENV3 ]
3. A final, 3rd refinement (ms; which refines m.) will address
the environment constraints imposed by sensors and
the architecture: controller, environment, communication channels.
[ ENV4, ENV5 ]

e Recall Correct by Construction :

From each model to its refinement, only a manageable amount of details
are added, making it feasible to conduct analysis and proofs.
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Model my: Abstraction

¢ In this most abstract perception of the bridge controller, we do not
even consider the bridge, traffic lights, and sensors!
¢ Instead, we focus on this single requirement:

REQ2 The number of cars on bridge and island is limited.

e Analogies:
o Observe the system from the sky: island and bridge appear only as a
compound.

Island
and
bridge

o “Zoom in” on the system as refinements are introduced.
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Model m,: State Space LASSONDE

1. The static part is fixed and may be seen/imported.
A constant d denotes the maximum number of cars allowed to be on the
island-bridge compound at any time.
(whereas cars on the mainland is unbounded)

axioms:
constants: d axm0.1:deN

Remark. Axioms are assumed true and may be used to prove theorems.
2. The dynamic part changes as the system evolves.

A variable n denotes the actual number of cars, at a given moment, in the

island-bridge compound.

invariants:
variables: n inv01:neN
inv02:n<d

Remark. /nvariants should be (subject to proofs):
o Established when the system is first initialized

o Preserved/Maintained after any enabled event’s actions take effect
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Model my: State Transitions via Events LASSONDE

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.
® At any given state (a valid configuration of constants/variables):
o An event is said to be enabled if its guard evaluates to frue.
o An event is said to be disabled if its guard evaluates to false.
o An enabled event makes a state transition if it occurs and its

actions take effect.

® 71stevent: A car exits mainland (and enters the island-bridge compound).

ML _out
begin
n:=n+1
end

* 2nd

Correct Specification? Say d = 2.
Witness: Event Trace (init, ML_in)

event: A car enters mainland (and exits the island-bridge compound).
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ML_in
begin
n:=n-1
end

Correct Specification? Say d = 2.
Witness: Event Trace (init, ML_out, ML_out, ML_out)



Model my: Actions vs. Before-After Predicat

® When an enabled event e occurs there are two notions of state:
o Before-/Pre-State: Configuration just before e’s actions take effect
o After-/Post-State: Configuration just after e’s actions take effect
Remark. When an enabled event occurs, its action(s) cause a transition from the
pre-state to the post-state.
® As examples, consider actions of my’s two events:

Events ML _out ML_in
n:=n+1 n:=n-—1

before—after predicates n' =n+1 n=n-1

o An event action “n:= n+ 1” is not a variable assignment; instead, it is a
specification: “n becomes n + 1 (when the state transition completes)’.

o The before-after predicate (BAP) “n’= n+ 1" expresses that
n’ (the post-state value of n) is one more than n (the pre-state value of n).

® When we express proof obligations (POs) associated with events, we use BAP.
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Design of Events: Invariant Preservation  |iassonoe

e Our design of the two events

ML _out ML_in
begin begin
n:=n+1 n:=n-1
end end

only specifies how the variable n should be updated.
e Remember, invariants are conditions that should never be violated!

invariants:
inv0_1:neN
inv02:n<d

¢ By simulating the system as an ASM, we discover witnesses
(i.e., event traces) of the invariants not being preserved all the time.

Js e s e STATE SPACE = —invariants(s)
e We formulate such a commitment to preserving invariants as a proof

obligation (PO) rule (a.k.a. a verification condition (VC) rule).



Sequents: Syntax and Semantics

® We formulate each PO/VC rule as a (horizontal or vertical) sequent:

H
H+- G -
G

o The symbol + is called the turnstile.
o His a set of predicates forming the hypotheses/assumptions.

[ assumed as frue]
o @Gis a set of predicates forming the goal/conclusion.

[ claimed to be provable from H ]
e |nformally:
o H+ G istrueif G can be proved by assuming H.

[i.e., We say “H entails G” or “H yields G” ]
H + G s false if G cannot be proved by assuming H.

e Formally: H+ G «— (H=G)

o

Q. What does it mean when H is empty (i.e., no hypotheses)?

A.’ F G ‘z’ true - G ‘ [Whynot’ F G ‘z’ false - G ‘?]
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PO of Invariant Preservation: Sketch

* Here is a sketch of the PO/VC rule for invariant preservation :

Axioms

Invariants Satisfied at Pre-State
Guards of the Event INV
.

Invariants Satisfied at Post-State

¢ Informally, this is what the above PO/VC requires to prove :

Assuming all axioms, invariants, and the event’s guards hold at the pre-state,
after the state transition is made by the event,

all invariants hold at the post-state.
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PO of Invariant Preservation: Components | ssooe

ML _out

begin
end

axioms: invariants:
axm0.1:deN inv01:neN ML_in
inv02:n<d begin

n:=n-1
end
e c: list of constants (d)
® A(c): list of axioms (axm0_1)
® vand v’ list of variables in pre- and post-states v=(n), v = (n)
® J(c,v): list of invariants (inv0_1,inv0_2)
]

G(c, v): the event’s list of guards

G((d),(n)) of ML_out = (true), G({d),(n)) of ML.in = (true)
® FE(c,v): effect of the event’s actions i.t.o. what variable values become

E((d),{(n)) of ML_out = (n+1), E({d),(n)) of ML_out = (n—-1)
® v/ = E(c,v): before-after predicate formalizing E’s actions

BAP of ML_out: (n’y = (n+ 1), BAP of ML.in: (n’) = (n—1)
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Rule of Invariant Preservation: Sequents  |.assonoe

® Based on the components (c, A(c), v, I(c,Vv), E(c,Vv)), we are able to
formally state the PO/VC Rule of Invariant Preservation:

A(c)
I(c,v)
G(c,v)
.

li(c, E(c, v))

o Accordingly, how many sequents to be proved?

INV  where [; denotes a single invariant condition

[ # events x # invariants ]

o We have two sequents generated for event ML_out of model my:

deN
neN
n<d
—
n+1eN

ML _out/inv0_1/INV

deN
neN
n<d
=
n+1<d

ML _out/inv0_2/INV

Exercise. Write the POs of invariant preservation for event ML_in.

® Before claiming that a model is correct , outstanding sequents associated

with all POs must be proved/discharged.
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Inference Rules: Syntax and Semantics

e An inference rule (IR) has the following form:

A

C

Formally: A= C is an axiom.

L | Informally: To prove C, it is sufficient to prove A instead.

o L is a name label for referencing the inference rule in proofs.

Informally: C is the case, assuming that A is the case.

o Ais a set of sequents known as antecedents of rule L.
o Cis a single sequent known as consequent of rule L.

e |et’s consider inference rules (IRs) with two different flavours:

H1+~ G

H1.H2 - G

MON

neN+~ n+1eN

P2

o IR MON: To prove H1,H2 - G , it suffices to prove H1 +~ G instead.
o IRP2: neN + n+1eN isan axiom.
[ proved automatically without further justifications ]
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Proof of Sequent: Steps and Structure

® To prove the following sequent (related to invariant preservation):

deN
neN
n<d
—
n+1eN

ML _out/inv0_1/INV

1. Apply a inference rule, which transforms some “outstanding” sequent
to one or more other sequents to be proved instead.

2. Keep applying inference rules until all fransformed sequents are
axioms that do not require any further justifications.

® Hereis a formal proof of ML_out/inv0_1/INV, by applying IRs MON and P2:

deN
neN
n<d
.
n+1eN
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neN
MON - P2
n+1eN




Example Inference Rules (1) LASSONDE

I

P1
F 0eN

1st Peano axiom: 0 is a natural number.

neN+ 0<n

P2
neN+ n+1eN

P2’
O<n+n-1¢eN

P3

L2 ot 192

2nd Peano axiom: n+ 1 is a natural number,
assuming that n is a natural number.

n-1is a natural number,
assuming that n is positive.

3rd Peano axiom: nis non-negative,
assuming that n is a natural number.



Example Inference Rules (2)

I

n<mv+ n+1<m

INC

n<mvw+ n-1<m

DEC

V3ot 192

n+1is less than or equal to m,
assuming that n is strictly less than m.

n-1is strictly less than m,
assuming that n is less than or equal to m.



Example Inference Rules (3)

o ONDE
H1 - G To prove a goal under certain hypotheses,
———————— MON | jsuffices to prove it under less hypotheses.
H1 . H2 - G

Proof by Cases:
HP+ R HQ+R To prove a goal under a disjunctive assumption,

ORL_L | it suffices to prove independently
HPvQ+ R the same goal, twice, under each disjunct.

H+~ P To prove a disjunction,
————— ORR1 | jtsuffices to prove the left disjunct.
Hr PvQ
Hr Q To prove a disjunction,
————— ORR2 | jsuffices to prove the right disjunct.
H+-PvQ
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Revisiting Design of Events: ML _out
* Recall that we already proved PO[ ML out/inv0_1/INV \:

deN

neN neN

n<d MON |+ P2

- n+1eN

n+1eN

- ML _out/inv0_1/INV succeeds in being discharged.
e How about the other PO | ML_out/inv0_2/INV | for the same event?

deN
neN n<d
n<d MON |+~ ?
- n+1<d
n+1<d

- ML _out/inv0_2/INV fails to be discharged.
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Revisiting Design of Events: ML_in LASSONDE
* How about the PO | ML.in/inv0_1/INV | for ML _in:

deN

neN neN

n<d MON |+ ?

= n-1eN

n-1eN

. ML _in/invO_1/INV fails to be discharged.
e How about the other PO | ML_in/inv0_2/INV | for the same event?

deN

neN n<d n<d

n<d MON | ~ OR1 |+ DEC
[, n-1<dvn-1=d n-1<d
n-1<d

. ML _in/inv0_2/INV succeeds in being discharged.



I

Fixing the Design of Events

vl ot 192

ML _out
when
n<d
then
n:=n+1
end

ML_in
when
n>0
then
n:=n-1
end

Proofs of ML_out/inv0_2/INV and ML_in/inv0_1/INV fail due to the
two events being enabled when they should not .

Having this feedback, we add proper guards to ML_out and ML_in:

Having changed both events, updated sequents will be generated for
the PO/VC rule of invariant preservation.

All sequents ({ML_out, ML_in} x {inv0_1, inv0_2}) now provable?
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Revisiting Fixed Design of Events: ML _out |issonoe

* How about the PO | ML out/inv0_1/INV | for ML out:

deN
neN
n<d
n<d

-
n+1eN

MON

neN
'_
n+1eN

P2

- ML _out/inv0_1/INV still succeeds in being discharged!

e How about the other PO | ML_out/inv0_2/INV | for the same event?

deN
neN
n<d
n<d

)_
n+1<d

MON

n<d
'_
n+1<d

INC

. ML _out/inv0_2/INV now succeeds in being discharged!
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Revisiting Fixed Design of Events: ML in

* How about the PO | ML.in/inv0_1/INV | for ML _in:

deN
neN
n>0
n<d MON |-
n-1¢N
'_
n-1eN

P2’

- ML_in/inv0_1/INV now succeeds in being discharged!
e How about the other PO | ML_in/inv0_2/INV | for the same event?

deN
neN
n<d
n>0

'_
n-1<d

MON

n<d
'_
n-1<dvn-1=d

OR:1

n<d
-
n-1<d

- ML_in/inv0_2/INV still succeeds in being discharged!
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Initializing the Abstract System m LASSONDE

® Discharging the four sequents proved that both invariant conditions are
preserved between occurrences/interleavings of events ML_out and ML_in.
® But how are the invariants established in the first place?
Analogy. Proving P via mathematical induction, two cases to prove:

o P(1),P(2),...
o P(n)=P(n+1)

[ base cases ~ establishing inv. ]
[ inductive cases ~ preserving inv. |

® Therefore, we specify how the ASM ’s initial state looks like:

init
begin
n:==0
end

v~ The IB compound, once initialized, has no cars.
v Initialization always possible: guard is frue.
v~ There is no pre-siate for init.
.. The RHS of := must not involve variables.
.. The RHS of := may only involve constants.
V" There is only the post-state for init.

.. Before-After Predicate: n' = 0
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PO of Invariant Establishment

I

init
begin
n:=0
end

v~ An reactive system, once initialized, should never terminate.

v~ Event init cannot “preserve” the invariants.

-+ State before its occurrence (pre-state) does not exist.

v~ Event init only required to establish invariants for the first time

o A new formal component is needed:

e K(c): effect of init’s actions i.t.0. what variable values become

e.g., K({d)) of init = (0)
e V' = K(c): before-after predicate formalizing init's actions
e.g., BAP of init: (n’) = (0)
o Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms
'_

Invariants Satisfied at Post-State
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INV

A(c)

li(c,K(c))

INV
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Discharging PO of Invariant Establishment |.ssono:

* How many sequents to be proved? [ # invariants ]
* We have two sequents generated for event init of model my:

deN deN

'_

OeN 0<d

mnit/invQ_1/INV | ~ init/invQ_2/INV

e Can we discharge the PO | init/inv0_1/INV |?

'_

deN

OeN

- init/inv0_1/INV

MON | - succeeds in being discharged.

OeN

® Can we discharge the PO | init/inv0_2/INV [?

'_

deN

0<d
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.. init/inv0_2/INV
succeeds in being discharged.
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System Property: Deadlock Freedom

e So far we have proved that our initial model my is s.t. all invariant
conditions are:
o Established when system is first initialized via init
o Preserved whenevner there is a state transition
(via an enabled event: ML_out or ML_in)
e However, whenever event occurrences are conditional (i.e., guards
stronger than true), there is a possibility of deadlock :

o A state where guards of all events evaluate to false
o When a deadlock happens, none of the events is enabled.
= The system is blocked and not reactive anymore!

¢ We express this non-blocking property as a new requirement:

REQ4 Once started, the system should work for ever.
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PO of Deadlock Freedom (1)
¢ Recall some of the formal components we discussed:

o c: list of constants (d)

o A(c): list of axioms (ame 1)

o vand v list of variables in pre- and posi-states v=(n), v = (n)

o I(c,v): list of invariants (inv0_1, |nv0,2)

o G(c,v): the event’s list of guards

G((d),(n)) of ML_out = (n<d), G({d),(n)) of ML_in = (n>0)
e A system is deadlock-free if at least one of its events is enabled:

Axioms A(c)
fwartants Satisfied at Pre-State DLE L(C’ V) DLF
Disjunction of the guards satisfied at Pre-State Gi(c,v) v ---v Gp(c, V)

To prove about deadlock freedom
o An event’s effect of state transition is not relevant.
o Instead, the evaluation of all events’ guards at the pre-state is relevant.
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PO of Deadlock Freedom (2)

® Deadlock freedom is not necessarily a desired property.
= When it is (like mg), then the generated sequents must be discharged.
® Applying the PO of deadlock freedom to the initial model my:

A(c)
I(c,v)

Gi(c,v)v---v Gm(c, V)

DLF

deN
neN
n<d

—
n<dvn>0

DLF

Our bridge controller being deadlock-free means that cars can always
enter (via ML_out) or leave (via ML_in) the island-bridge compound.

® Can we formally discharge this PO for our initial model my?
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Example Inference Rules (4)

—— HYP
HP+P
FALSE_L
L~ P
TRUE_R
P+
— EQ
Pr E=E
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A goal is proved if it can be assumed.

Assuming false (1),
anything can be proved.

true (T) is proved,
regardless of the assumption.

An expression being equal to itself is proved,
regardless of the assumption.



Example Inference Rules (5)

I

H(F),E=F + P(F)

H(E),E=F + P(E)

EQ.LR

H(E),E=F ~ P(E)

H(F),E=F + P(F)

EQRL
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To prove a goal P(E) assuming H(E),

where both P and H depend on expression E,
it suffices to prove P(F) assuming H(F),

where both P and H depend on expresion F,
given that E is equal to F.

To prove a goal P(F) assuming H(F),

where both P and H depend on expression F,
it suffices to prove P(E) assuming H(E),

where both P and H depend on expresion E,
given that E'is equal to F.
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Discharging PO of DLF: Exercise
deN
A(c) neN
(e, v) DLF | n<d ??
. DLF
Gi(c, V) v---v Gm(c, V) =
n<dvn>0
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Discharging PO of DLF: First Attempt LASSONDE

deN

neN

n<d

.

n<dvn>0
n<d n<d

deN - ORR1| HYP

neN n<dvn=d n<dvn>0 n<d

n<dvn=d |MON| + ORL

- n<dvn>0 n=d

n<dvn>0 - EQ_LR,MON| OR.R2| + ?
n<dvn>0 d<dvd>0 d>0
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Why Did the DLF PO Fail to Discharge? LASSONDE

® In our first attempt, proof of the 2nd case failed: +~ d>0
® This unprovable sequent gave us a good hint:
o For the model under consideration (my) to be deadlock-free,
it is required that d > 0. [ > 1 car allowed in the IB compound ]
o But current specification of my not strong enough to entail this:
e —(d>0)=d<0is possible for the current model
e Givenaxm0.1:deN
= d =0 is allowed by my which causes a deadlock.
® Recall the init event and the two guarded events:

ML _out ML_in
init when when
begin n<d n>0
n:=0 then then
end n:=n+1 n:=n-1
end end

When d = 0, the disjunction of guards evaluates to false: 0 <0v 0 >0
= As soon as the system is initialized, it deadlocks immediately

as no car can either enter or leave the IR compound!!
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Fixing the Context of Initial Model

e Having understood the failed proof, we add a proper axiom to my:

axioms:
axm02:d>0

¢ We have effectively elaborated on REQ2:

The number of cars on bridge and island is limited

REQ2 but positive.

e Having changed the context, an updated sequent will be generated

for the PO/VC rule of deadlock freedom.
¢ |s this new sequent now provable?
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Discharging PO of DLF: Second Attempt  |.ssono:

deN

d>0

neN

n<d

.
n<dvn>0

d>0 da>0

deN n<d OR_R1 C<d HYP

da>0 d>0

neN MON n<dvn=d ORL
n<dvn=d [

= n<dvn>0
n<dvn>0

n<dvn>0 n<d

a>0 d>0
EQLR,MON| ~ ORR2| - HYP
d<dvd>0 d>0

Q o

v

3T 3 Q

<dvn>0
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Initial Model: Summary LASSONDE

® The final version of our initial model my is provably correct w.r.t.

o Establishment of Invariants
o Preservation of Invariants
o Deadlock Freedom

® Here is the final specification of my:

ML _out
when
n<d
then
constants: d ‘ ‘ variables: n n:i=n+1
init end

axioms: invariants: n:=0
axm0.1:deN inv01:neN end ML_in
axm02:d>0 inv02:n<d when
n>0
then
n:=n-1
end
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Model m;: “More Concrete” Abstraction

I

e First refinement has a more concrete perception of the bridge controller:

o We “zoom in” by observing the system from closer to the ground,
so that the island-bridge compound is split into:

e the island
o the (one-way) bridge

o Nonetheless, traffic lights and sensors remain abstracted away!
® That is, we focus on these two requirement:

REQ1 The system is controlling cars on a bridge connecting the mainland to an island.

REQ3 The bridge is one-way or the other, not both at the same time.

* We are obliged to prove this added concreteness is consistent with my.
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Model m;: Refined State Space
axioms:
1. The static part is the same as mp’s:| constants: o axm0_1:deN
axm02:d>0

2. The dynamic part of the concrete state consists of three variables:

e a: number of cars on the bridge,

heading to the island

e b: number of cars on the island
e c: number of cars on the bridge,

heading to the mainland

invariants:
invi1:a2¢N
invi2:beN
invi3:ceN
invi4: ??
invi5: ?2?

variables: a,b,c

v~ invi_1,inv1_2, inv1_3 are
typing constraints.

V' inv1.4 links/glues the
abstract and concrete states.

v~ inv1.5 specifies

that the bridge is one-way.
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Model m;: State Transitions via Events

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.
We first consider the “old” events already existing in my.

Concrete/Refined version of event ML_out:

ML _out © Meaning of ML_out is refined:
when a car exits mainland (getting on the bridge).
2?7 ]
then o ML _out enabled only when:
a:=a+1 o the bridge’s current traffic flows to the island
end

e number of cars on both the bridge and the island is limited
® Concrete/Refined version of event ML_in:

ML.in o Meaning of ML_in is refined:
Wh‘:: a car enters mainland (getting off the bridge).
the‘n‘ o ML_in enabled only when:
enfi:: ot there is some car on the bridge heading to the mainland.



Model m;: Actions vs. Before-After Predicat

® Consider the concrete/refined version of actions of my’s two events:

Events

Before-after
predicates

ML_in
when
0<c
then
c=c—1
end

ad=aANbt=bA
d=c—1

ad=a+1AV=bA
d=c

o An event’s actions are a specification: “c becomes c - 1 after the transition”.
o The before-after predicate (BAP) “c’= c
¢’ (the post-state value of ¢) is one less than ¢ (the pre-state value of c).
o Given that the concrete state consists of three variables:
e An event’s actions only specify those changing from pre-state to posi-state.

- 1” expresses that

[eg,c=c-1]

e Other unmentioned variables have their posi-state values remain unchanged.

[e.g.,a =anb =b]

® When we express proof obligations (POs) associated with events, we use BAP.
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States & Invariants: Abstract vs. Concrete

I

® mo refines my by introducing more variables:

o Abstract State —
(of my being refined): variables: n

Concrete State iables: & b
(of the refinement model my): variables: a,b,¢

® Accordingly, invariants may involve different sfates:

Abstract Invariants i"‘.’arioaq‘s: N
. . . inv0_1:ne
(involving the abstract state only): iv0.2:n<d

invariants:

. invil:aeN
Concrete Invariants invl2:heN

(involving at least the concrete state): invi 3:ceN

invid: a+b+c=n
invi5: a=0vc=0
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Events: Abstract vs. Concrete

I

® When an event exists in both models mg and my, there are two versions of it:
o The abstract version modifies the abstract state.

(abstract_)ML_out
when
n<d
then
a:=n:=n+1
end

(abstract_ )ML_in
when
n>0
then
n:=n-1
end

o The concrete versi

on modifies the concrete state.

(concrete_)ML_out
when
a+b<d
c=0
then
a==a+1
end

(concrete_)ML_in
when
c>0
then
ci=c-1
end

* A new event may only exist in my (the concrete model): we will deal with

this kind of events later, separately from “redefined/overridden” events.
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PO of Refinement: Components (1) LASSONDE
ML _out
when
a+b<d
variables: a,b,c c=0
then
invariants: end
axioms: invi1:aeN
axm01:deN invi2:peN ML
. invi3:ceN n
axm0.2:d>0 invid4: a+b+c=n when
invi5: a=0vc=0 c>0
then
ci=c-1
end
e c: list of constants (d)
® A(c): list of axioms (ame 1)
® vand v': abstract variables in pre- & post-states v =(n), v = (n)
® wand w’: concrete variables in pre- & post-states ~ w = (a,b,c), w' = (&, b’ c’)
® J(c,v): list of abstract invariants inv0_1,inv0_2)
® J(c, v, w): list of concrete invariants (inv11,inv1_2,inv1.3,inv1_4,inv1.5)



PO of Refinement: Components (2)

I

o ONDE
ML _out
when
a+b<d
variables: a,b,c c=0
then
invariants: end
axioms: invi1:3¢N
axm0.1:deN inv1.2:peN ML
. invi3:ceN -n
axmo.2:d >0 invi4: atb+c=n when
invi5: a=0vc=0 c>0
then
ci=c-1
end
® G(c,v): list of guards of the abstract event
G((d),{n)) of ML_out = (n<d), G(c,v) of ML.in = (n>0)
® H(c,w): list of guards of the concrete event
H((d),(a,b,c)) of ML_out = (a+ b<d,c=0), H(c,w) of ML_in = {c > 0)
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PO of Refinement: Components (3)

I

o ONDE
ML_out
when
a+b<d
variables: a.b,c c=0
then
a=a+1
invariants: end
axioms: invi1:a¢N
axm0.1:deN invi2:peN L
axm02:d>0 invi3:ceN -in
invid4: a+b+c=n when
invi5: a=0vc=0 c>0
then
ci=c-1
end

® FE(c,v): effect of the abstract event’s actions i.t.o. what variable values become
E((d),(n)) of ML_out = (n+1), E({d),(n)) of ML_.out = (n-1)
® F(c,w): effect of the concrete event’s actions i.t.o. what variable values become

F(c,v)of ML.out = (a+1,b,c), F(c,w) of ML_.out = (a,b,c—1)



Sketching PO of Refinement

et ae o

The PO/VC rule for a proper refinement consists of two parts:
1. Guard Strengthening

Axioms . i
A concr vent is enabled if i

Abstract Invariants Satisfied at Pre-State concrete event is w ts

. . o s abstract counterpart is enabled.

Concrete Invariants Satisfied at Pre-State GRD

Guards of the Concrete Event — .

" A concrete transition always has an

Guards of the Abstract Event abstract counterpart.

2. Invariant Preservation

A concrete event performs a

Axioms transition on concrete states.

Abstract Invariants Satisfied at Pre-State

Concrete Invariants Satisfied at Pre-State o This concrete state transition must

, . . INV

Guards of the Concrete Event . .

e be consistent with how

Concrete Invariants Satisfied at Post-State its abstract counterpart performs a

corresponding abstract transition.

Note. Guard strengthening and invariant preservation are only applicable
to events that might be enabled after the system is launched.

The special, non-guarded init event will be discussed separately later.



Refinement Rule: Guard Strengthening LASSONDE

® Based on the components, we are able to formally state the PO/VC Rule of
Guard Strengthening for Refinement:

A(c)
I(c, v)
J(c,v,w) Grp Where G; denotes a single guard condition
H(e, w) of the abstract event
.
G,‘(C, V)
o How many sequents to be proved? [ # abstract guards ]
o For ML_out, only one abstract guard, so one sequent is generated :
deN d>0
neN n<d
aeN beN ceN a+b+c=n a=0vc=0 ML_out/GRD
a+b<d c¢=0 —
)_
n<d

e Exercise. Write ML_in's PO of Guard Strengthening for Refinement.
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PO Rule: Guard Strengthening of ML_out  |assonoe

axm0.1 { deN
axm02 { d>0
inv0.1 { neN
inv02 { n<d
invii1 { aeN
invi2 { beN
invi3 { ceN ML _out/GRD
invid {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_out { arb<d
-
Abstract guards of ML_out { n<d
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PO Rule: Guard Strengthening of ML_in Retoue

axm0.1 { deN
axm02 { d>0
inv0.1 { neN
inv02 { n<d
invi1 { aeN
invl_2 beN .
invi 3 % ceN ML _in/GRD
invid {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_in { c>0
=
Abstract guards of ML_in { n>0
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Proving Refinement: ML out/GRD LASSONDE

deN
a>0
neN
n<d

aeN atb+c=n a+b+0=n a+b=n

beN a+b<d
CceN MON| c- 0 EQLRMON 272<9 |apy f*b“’

a+b+c=n -
a=0vec=0 n<d
a+b<d
c=0

n<d
EQ LR MON| - HYP
n<d

n<d n<d

n<d
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™

Proving Refinement: ML _in/GRD LASSONDE

deN Zjl:;IJrcfn beN beN
da>0 2.0 - O+b+c=n b+c=n
neN C;O EQ_LR,MON| c>0 ARI| c>0 ARI
n<d beN N - =
aeN a+b+c=n ns0 n>0 n>0
beN MON a=0vc=0 ORL
ceN c>0
a+b+c=n - bel ben
a-0ve=0 n>0 a+b+c=n a+b+0=n
N B c=0 c=0
f’o ¢>0 EQLR| 5.0

+ -
n>0 n>0 n>0




Refinement Rule: Invariant Preservation LASSONDE

I

® Based on the components, we are able to formally state the PO/VC Rule of
Invariant Preservation for Refinement:

A(c)

I(c,v)

J(e, v, w)

H(c, w)

-
Ji(c,E(c,v),F(c,w))

INV

where J; denotes a single concrete invariant

o How many sequents to be proved? [ # concrete evts x # concrete invariants ]
o Here are two (of the ten) sequents generated:

deN
d>0
neN
n<d

aeN
beN
ceN
a+b+c=n
a=0vc=0
a+b<d
c=0

.
(a+1)+b+c=(n+1)

ML _out/invl_4/INV

deN
d>0
neN
n<d
aeN
beN
ceN
a+b+c=n
a=0vc=0
c>0

-
a=0v(c-1)=0

ML _in/invl _5/INV

® Exercises. Specify and prove other eight POs of Invariant Preservation.
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Visualizing Inv. Preservation in Refinement |.ssono:

Each concrete event (w to w') is simulated by an abstract event (v to v'):
® abstract & concrete pre-states related by concrete invariants J(c, v, w)
® abstract & concrete post-states related by concrete invariants J(c, v', w")

I(v) Abstract event , 16y
Gc,y) v v'=E(c,v)
- J(e,v,w) Jey' w') l
A A
Concrete event
H(c,w) w - w'= F(c,w)



I

INV PO of my: ML out/inv1 _4/INV LassONDE

axm01 { deN
axm02 { d>0
invo1 { neN
invo2 { n<d
invi1 { aeN
invi2 { beN
ivi3 | o ML_out/inv1_4/INV
invi4 {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_out { if 8 <d
-
Concrete invariant invl_4
with ML_out’s effect in the post-state { (@) +brc=(n+1)
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INV PO of my: ML in/inv1l _5/INV LassONDE

axm0.1 { deN
axm02 { d>0
invo1 { neN
invo2 { n<d
invi1 { aeN
invi2 { beN
invi3 {ceN ML_in/inv1_5/INV
invid {a+b+c=n
invi5 { a=0vc=0
Concrete guards of ML_in { c>0
-

Concrete invariant invl_5

with ML_in’s effect in the post-state { a=0v(c-1)=0
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Proving Refinement: ML out/inv1 4/INV LASSONDE

deN
d>0
neN
n<d
aeN
beN a+b+c=n a+b+c=n
ceN MON| + ARI| EQ_LR,MON| + EQ
a+b+c=n (@a+1)+b+c=(n+1) a+b+c+1=n+1 n+1=n+1
a=0vc=0

a+b<d

c=0

.
(a+1)+b+c=(n+1)
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Proving Refinement: ML in/inv1 _5/INV

I

pd ot 177

Ea 0N
deN
a>0 a=0 a=0
nel c>0 c>0
n<d - OR_R1 - HYP
zig i;g”’o a-0v(c-1)=0 a-0
MON ORL
ceN = =5
a+b+c=n a=0v(c-1)=0 C;O 0>0 1
a=0vc=0 S EQ_LR,MON| - ARI| FALSE_L
S:»o a-0v(c-1)-0 a=0v(0-1)=0 a=0v-1=0
a=0v(c-1)=0



I

Initializing the Refined System m; LASSONDE

® Discharging the twelve sequents proved that:
o concrete invariants preserved by ML_out & ML_in
o concrete guards of ML_out & ML_in entail their abstract counterparts

* What's left is the specification of how the ASM ’s initial state looks like:

v~ No cars on bridge (heading either way) and island

init v Initialization always possible: guard is true.
begin v~ There is no pre-state for init.
2 z 8 .. The RHS of := must not involve variables.
c:=0 .. The RHS of := may only involve constants.
end v~ There is only the post-state for init.

.. Before-After Predicate: @ =0Ab' =0ac =0
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PO of my Concrete Invariant Establishment

o Some (new) formal components are needed:

o K(c): effect of abstract init’s actions:

e V' = K(c): before-after predicate formalizing abstract init's actions

o L[(c): effect of concrete init’s actions:

o w' = L(c): before-after predicate formalizing concrete init's actions

e.g., K({d)) of init = (0)

e.g., BAP of init: (n’) = (0)

e.g., K({(d)) of init = (0,0,0)

e.g., BAP of init: (a’,b’, ¢’} = (0,0, 0)

o Accordingly, PO of invariant establisment is formulated as a sequent:

Axioms
'_
Concrete Invariants Satisfied at Post-State
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INV

A(c)

Ji(c, K(c), L(c))

INV



Discharging PO of m; LASSONDE

Concrete Invariant Establishment

®* How many sequents to be proved? [ # concrete invariants ]
® Two (of the five) sequents generated for concrete init of my:
deN deN
g >0 init/inv1_4/INV g >0 init/inv1_5/INV
0+0+0=0 0=0v0=0
® Can we discharge the PO | init/inv1_4/INV |?
deN o
d>0 ARI, MON TRUER lnlt/an1.,4/INV ‘
- succeeds in being discharged.
0+0+0=0
® Can we discharge the PO | init/inv1_5/INV [?
deN o
d>0 ARI, MON TRUER < /mivinviSINV -
- succeeds in being discharged.
0=0v0=0



Model m;: New, Concrete Events

I

The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabl

ed events change values of variables, subject to invariants.

Considered concrete/refined events already existing in my: ML_out & ML_in

New event IL_in:

IL.in
when
??
then
?2?
end

IL_out
when
??
then
??
end

bR ot 177

o |L_in denotes a car entering the island (getting off the bridge).
o IL_in enabled only when:

e The bridge’s current traffic flows to the island.
Q. Limited number of cars on the bridge and the island?
A. Ensured when the earlier ML_out (of same car) occurred

New event IL_out:

o [L_out denotes a car exiting the island (getting on the bridge).

o [L_out enabled only when:

e There is some car on the island.
e The bridge’s current traffic flows to the mainland.




Model m,: BA Predicates of Multiple Action

Consider actions of my’s two new events:

. IL_out
IL.in
when
when
as0 b>0
then a=0
a=a-1 thi" b-1
enl;::b+1 c:=c+1
end

o What is the BAP of ML_in’s actions?
ad=a-1Ab=b+1rc'=c
o What is the BAP of ML_in's actions?

ad=anb =b-1aAc' =c+1
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Visualizing Inv. Preservation in Refinement |.ssono:

® Recall how a concrete event is simulated by its abstract counterpart:

1) Abstract event i 1)
G(e,w) v V= B(ew)
i J(cv,w) Tew' ') 3
! i
Concrete event
H(c,w) w W= Flew)

® For each new event:
o Strictly speaking, it does not have an abstract counterpart.
o Itis simulated by a special absiract event (transforming v to v’):

skip
begin

end
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e skip is a “dummy” event: non-guarded and does nothing
e Q. BAP of the skip event?
A.n=n



Refinement Rule: Invariant Preservation LASSONDE

® The new events /L_in and IL_out do not exist in mg, but:

o They exist in my and may impact upon the concrete state space.

o They preserve the concrete invariants, just as ML_out & ML_in do.
* Recall the PO/VC Rule of Invariant Preservation for Refinement:

o How many sequents to be proved?
o Here are two (of the ten) sequents generated:

deN
d>0
neN
n<d
aeN
beN
ceN
a+b+c=n
a=0vc=0
a>0

-
(a-1)+(b+1)+c=n

IL.in/invl 4/INV

A(c)

I(c,v)

ﬁfc‘ ‘;V;’” wv  where J; denotes a single concrete invariant
J

Ji(c,E(c,v),F(c,w))

[ # new evts x # concrete invariants ]

deN
d>0
neN
n<d
aeN
beN
ceN
a+b+c=n
a=0vc=0
a>0

.
(a-1)=0vc=0

IL.in/invI_5/INV

® Exercises. Specify and prove other eight POs of Invariant Preservation.
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INV PO of my: IL in/inv1 _4/INV LassONDE

axm0.1 { deN
axm02 { d>0
inv0.1 { neN
invo2 { n<d
invi1 { aeN
invi2 { beN
invi3 { ceN IL_in/inv1_4/INV
invid4 {a+b+c=n
invi5 { a=0vc=0
Guards of IL_in { a>0
-
Concrete invariant invl_4
with IL_in’s effect in the post-state { (@-1)+(b+1)+c=n
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invli 5 a=0vec=0

Guards of IL_in

INV PO of my: IL_in/inv1_5/INV LASSONDE
axm01 { deN
axm02 { d>0
invo1 { neN
invo2 { n<d
invii1 { aeN
invi2 { beN
invi3 {ceN IL_in/inv1_5/INV
invid {a+b+c=n
{

T —~—
W)
\Y
o

Concrete invariant invl 5

with IL_in’s effect in the post-state { (@a-1)=0vec=0
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Proving Refinement: IL in/inv1 _4/INV LASSONDE

deN
d>0
neN
n<d
aeN
beN
ceN
a+b+c=n
a=0vec=0
a>0

=
(a-1)+(b+1)+c=n

a+b+c=n a+b+c=n
MON | - ARI| HYP
(a-1)+(b+1)+c=n a+b+c=n
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Proving Refinement: IL_in/inv1_5/INV

I

5 o1t 192

o ONDE
deN
d>0
neN 2;8 0>0 1
n<d - EQ_LR,MON| - ARI| FALSE_L
aeN a=0vc=0 0-1)=0vc=0 -1=0vc=0
beN 20 (a-1)=0vc=0 ( )
MON OR_L
ceN - =5 =0
a+b+c=n (a-1)=0vc=0 2;0 e
a=0vc=0 - OR_R2 HYP
a0 (a-1)=0vc=0 c=0
(a-1)=0vc=0



Livelock Caused by New Events Diverging |.assonoe

I

® An alternative my (with inv1_4, inv1.5, and guards of new events removed):

ML _out
when
a+b<d
c=0
then
a=a+1
end

axioms:
axm0.1:deN
axm02:d>0

ML.in
when
c>0
then
ci=c-1
end

invariants:

invi2:beZ
invi3:ceZ

ILin IL_out

begin begin

a=a-1 bi=b-1
b:=b+1 ci=c+1

end end

® Say this alternative my is implemented as is:
IL_in and IL_out always enabled and may occur indefinitely, preventing other “old”
events (ML_out and ML_in) from ever happening:
(init, IL_in, IL_out, IL_in, IL_out, . . .))

Q: What are the corresponding abstract transitions?

A: (init, skip, skip, skip, skip, . ..)

Concrete invariants are
under-specified: only
typing constraints.
Exercises : Show that
Invariant Preservation is
provable, but Guard
Strengthening is not.

~ excung [ T (zveT7 )

® We say that these two new events diverge , creating a livelock :
o Different from a deadlock -.- always an event occurring (/L_in or IL_out).
o But their indefinite occurrences contribute nothing useful.
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PO of Convergence of New Events

I

The PO/VC rule for non-divergence/livelock freedom consists of two parts:
o Interleaving of new events charactered as an integer expression: variant.
o Avariant V(c, w) may refer to constants and/or concrete variables.

o Inthe original my, let’s try ’ variants:2-a+b
1. Variant Stays Non-Negative

A(c) °©
I(c,v)

J(c,v,w) °
Hiw) | NAL

= o
V(c,w)eN

Variant V(c, w) measures
how many more times the new events can occur.

If a new event is enabled, then V(c,w) > 0.

When V(c, w) reaches 0, some “old” events
must happen s.t. V(c, w) goes back above 0.

2. A New Event Occurrence Decreases Variant

A(c)

I(c,v)

J(e,v,w)

H(c,w)

—

V(c,F(c,w)) < V(c,w)

o |If a new event is enabled and
occurs, the value of V(c, w) |.

VAR
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PO of Convergence of New Events: NAT LASSONDE

e Recall: PO related to Variant Stays Non-Negative:

A(c)

I(c,v)
J(c,v,w)
H(c,w)
V(c,w)eN

How many sequents to be proved?

® For the new event IL_in:

NAT

deN d>0

neN n<d

aeN beN ceN

a+b+c=n a=0vc=0
a>0

[

2-a+beN

[ # new events ]

IL_in/NAT

Exercises: Prove IL_in/NAT and Formulate/Prove IL_out/NAT.
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PO of Convergence of New Events: VAR LASSONDE

e Recall: PO related to A New Event Occurrence Decreases Variant

A(c)
I(c,v)
J(c,v,w) How many sequents to be proved?
H(e,w) VAR
N [ # new events ]
V(c, F(c,w)) < V(c,w)
® For the new event IL_in:

deN a>0

neN n<d

aeN beN ceN

a+b+c=n a=0vc=0 IL_in/VAR

a>0

=

2-(a-1)+(b+1)<2-a+b

Exercises: Prove IL_in/VAR and Formulate/Prove IL_out/VAR.



I

Convergence of New Events: Exercise

Given the original m4, what if the following variant expression
is used:

|variants : a + b

Are the formulated sequents still provable?
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PO of Refinement: Deadlock Freedom LASSONDE

* Recall:

o We proved that the initial model mg is deadlock free (see DLF).
o We proved, according to guard strengthening, that if a concrete
event is enabled, then its abstract counterpart is enabled.

¢ PO of relative deadlock freedom for a refinement model:

A(c)

I(c,v)

J(c,v,w)
Gi(c,v)v---v Gp(c,v)
Hi(e,w) v ---v Hy(c,w)

DLF

If an abstract state does not deadlock
(i.e., Gi(c,v) v---v Gm(c,v)), then

its concrete counterpart does not deadlock
(i.e., Hi(c,w) v---v Hy(c, w)).

¢ Another way to think of the above PO:
The refinement does not introduce, in the concrete, any “new”
deadlock scenarios not existing in the abstract state.
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PO Rule: Relative Deadlock Freedom m;

axm0_1 deN
axm0_2 d>0
inv0_1 neN
inv0_2 n<d
inv1i_1 aeN
invl_2 beN
invl_3 ceN

invid {a+b+c=n
invi5 { a=0vc=0 DLF
L n<d } guards of ML outin my
Disjunction of abstract guards { v ns0 } guards of ML inin m,
-

a+b<dnac=0} guards of ML outin my
v c>0 } guards of ML.inin my
v a>0 } guards of IL_inin m
v b>0ra=0 } guards of IL_outin my

Disjunction of concrete guards
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Example Inference Rules (6)
To prove a disjunctive goal,
H,-P + Q it suffices to prove one of the disjuncts,
T Pva ORR with the the negation of the the other disjunct
-

H+ P H+ Q
AND R
H+-PrQ

serving as an additional hypothesis.

To prove a goal with a conjunctive hypothesis,

H,P.Q+ R it suffices to prove the same goal,
———————— ANDL with the the two conjuncts
HPAQ+ R

serving as two separate hypotheses.

To prove a goal with a conjunctive goal,
it suffices to prove each conjunct
as a separate goal.
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\n,

Proving Refinement: DLF of m;

et ae o

qeN
d>0
nelN
nsd
acl
beN
ce
asbic=n
a-=0vc=0
n<dvn>0
-

arb<drc=0
v c>0
v ax0

v b>0na=0
MON

a0

Z:Tg aeN‘ d>0
beN ben acil >0 a0 a0
ce e=0 ben a0 beN b=0vb>0
¢ ORR, EQLR, | ORR, |beN EQLR, |” aril e

aibednooo | ARL |- MON arb<dr0-=0 | AR |- MON 0 bedno-0 bedno
L e a+b<drc=0 v 050 a+b<dn0-0 L beoiens e
L v c>0 v ax0 v b>0na=0
s v ax0 v _b>0ra=0

v b>0ra-0




Proving Refinement: DLF of m (continued) |.assonoe

I
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d>0
b=0
-
b<dnr0=0
v b>0n0=0
d>0
b=0vb>0
- OR_L
b<da0=0
v b>0A0=0
d>0
b>0
-
b<dnr0=0
v b>0n0=0

OR_R1

OR_R2

d>0
b>0
.

b>0A0=0

ORR1,
MON

AND_R

d>0
AR,
- HYP
d>0 0<d
AND_R
" d>0
0<da0=0
EQ
.
0=0
d>0
b>01hvp
-
b>0
d>0
b>0 EQ
.
0=0
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First Refinement: Summary LASSONDE
® The final version of our first refinement my is provably correct w.r.t.:

o Establishment of Concrete Invariants [ init]

o Preservation of Concrete Invariants [ old & new events ]

o Strengthening of guards [ old events ]

o Convergence (a.k.a. livelock freedom, non-divergence) [ new events ]

o Relative Deadlock Freedom

® Here is the final specification of m;:

ILin
ML _out when
variables: a.b,c when a>0
at+b<d then
c=0 a=a-1
invariants: init then b:=b+1
invit:aeN begin a:=a+1 end
invi2:beN end
. a:=0
. invi3:ceN
axioms: invi4: atb+c=n big IL_out
axmoiae invi5: a=0vc=0 o ML.n when
axm0.2:d>0 en when b0
: c>0 a=0
variants: then then
2-axb ci=c-1 bi=b-1
end ci=c+1
end

B ot 177



Model m-: “More Concrete” Abstraction

et ae o

® 2nd refinement has even more concrete perception of the bridge controller:
o We “zoom in” by observing the system from even closer to the ground,

so that the one-way traffic of the bridge is controlled via:

ml_tl: a traffic light for exiting the ML

b

il_tI: a traffic light for exiting the IL ISLAND

abstract variables a, b, ¢ from m
still used (instead of being replaced)

MAINLAND

o Nonetheless, sensors remain absitracted away!
e That is, we focus on these three environment constraints:

ENV1 The system is equipped with two traffic lights with two colors: green and red.
ENV2 The traffic lights control the entrance to the bridge at both ends of it.
ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.

® \We are obliged to prove this added concreteness is consistent with m;.
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Model m.: Refined, Concrete State Space |.ssonoe

1. The static part introduces the notion of traffic light colours:

axioms:
sets: COLOR constants: red, green axm2_1: COLOR = {green, red}
axm2_2: green = red

2. The dynamic part shows the superposition refinement scheme:

e Abstract variables a, b, ¢ from my are
still in use in m_2.

b

e Two new, concrete variables are
ISLAND

MAINLAND introduced: ml_tl and il_tl

e Constrast: In my, abstract variable nis
replaced by concrete variables a, b, c.

o inv2_1 & inv2_2: typing constraints
variables: S e COLOUR o inv2.3: being allowed to exit ML means
a,b,c inv2.2: il_tl e COLOUR cars within limit and no opposite traffic
Tx]ﬂ ::xzi :: o inv2_4: being allowed to exit IL means

— some car in IL and no opposite traffic
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Model m.: Refining Old, Abstract Events  |.ssonoe

® The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.

® Concrete/Refined version of event ML _out:

ML out o Recall the abstract guard of ML_outin my: (c=0)A(a+b<d)
Wh‘:’; = Unrealistic as drivers should not know about a, b, ¢!
thzrj: a+1 o ML out is refined: a car exits the ML (to the bridge) only when:
end

o the traffic light m/_t/ allows
® Concrete/Refined version of event IL_out:

IL_out o Recall the abstract guard of IL_outin my: (a=0) A (b>0)
Wh?; = Unrealistic as drivers should not know about a, b, c!
thzrj: b-1 o [L_out is refined: a car exits the IL (to the bridge) only when:
end o the traffic light il_t! allows

Q1. How about the other two “old” events IL_in and ML_in?
A1. No need to refine as already guarded by ML_out and IL_out.
Q2. What if the driver disobeys mi_tl or il_t? [ A2. ENV3]



Model m.: New, Concrete Events

I

The system acts as an ABSTRACT STATE MACHINE (ASM) : it evolves as
actions of enabled events change values of variables, subject to invariants.
Considered events already existing in mj:

o ML_out & IL_out

o JL.in & ML_in

[ REFINED ]
[ UNCHANGED ]

New event ML_tl_green:

ML_tl_green
when
?2?
then
mi_tl := green
end

IL_tl_green
when
??
then
il_tl := green
end
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o ML_tl_green denotes the traffic light m/_t/ turning green.
o ML_tl_green enabled only when:
o the traffic light not already green
¢ limited number of cars on the bridge and the island
¢ No opposite traffic

[ = ML_out's abstract guard in my ]

New event IL_tl_green:

o [L_tl_green denotes the traffic light i/_t/ turning green.
o |L_tl_green enabled only when:

o the traffic light not already green

e some cars on the island (i.e., island not empty)

¢ No opposite traffic

[ = IL_out’s abstract guard in my ]



-
—

\n,

. . . .
Invariant Preservation in Refinement m,
ML_tl_green
when -
mitl = red ML _out ILin
atb<d when when
\ariables: e mi_tl - green a>0
bo then then ten
mitl mi_tl = green o
it end bi=b+1
end
axioms: invariants: ILout
axmo.A - d <N inv2.1: ml_tl e COLOUR green when MLin
axm02:d>0 inv2.2: il_tle COLOUR it - red il_tl = green when
axm2.1 : COLOR - {green, red) inv23: miti-green—a+b<dnc-0 fais then c>0
axm2.2: green + red inv2.4: iltl - green=b>0ra=0 o bi=b-1 then
ther; ci=c+1 ci=c-1
it1:= green end end
end

Recall the PO/VC Rule of Invariant Preservation for Refinement:

A(c)
I(c,v)
i/((% 'I’”;"’) INV. where J; denotes a single concrete invariant

z,(c,E(c, v),F(c,w))

© How many sequents to be proved?
o We discuss two sequents: ML_out/inv2_4/INV and /L_out/inv2_3/INV

[ # concrete evts x # concrete invariants = 6 x 4 ]

Exercises. Specify and prove (some of) other twenty-two POs of Invariant Preservation.
1 24
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INV PO of m,: ML out/inv2 4/INV LassONDE

axm0.1 { deN
axm02 { d>0
axm2.1 { COLOUR = {green, red}
axm22 { green = red
invo1 { neN
invo2 { n<d
invi1 { aeN
invi2 { beN
invi3 { ceN .
invi4 {a+bic=n ML out/inv2_4/INV
invi5 { a=0vc=0
inv2_1 { ml_tl e COLOUR
inv2.2 { il-tte COLOUR
inv2.3 { mitl=green=a+b<dnrc=0
inv24 { il_tl=green=b>0nra=0
Concrete guards of ML_out { mi_tl = green
-
Concrete invariant inv2_4 .
with ML_out’s effect in the post-state { il-tl=green=b>0n(a+1) =0
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INV PO of my: IL out/inv2 3/INV

I

LASSONDE

axm0_1
axm0_2
axm2_1
axm2.2
inv0_1
inv0_2
invi_1
invl_2
inv1_3
invi4
invl_5
inv2_1
inv2_2
inv2_3
inv2 4
Concrete guards of IL_out

Concrete invariant inv2_3
with ML_out’s effect in the post-state

deN

d>0

COLOUR = {green, red}
{ green = red

neN

n<d

aeN

o
Z

ceN
a+b+c=n

m/ te COLOUF?

il_te COLOUR
ml_tl=green=a+b<dnac=0
il_tl=green=b>0ra=0
iltl = green

B S
m
O
<
0
o

{ mi_ti=green=a+(b-1)<dnr(c+1)=0
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IL_out/inv2_3/INV




Example Inference Rules (7)

I

H,P,Q - R
HPP=Q+~ R

If a hypothesis P matches the assumption of
another implicative hypothesis P = Q,

IMP_L | then the conclusion @ of the implicative hypothesis

can be used as a new hypothesis for the sequent.

HP+ Q
H+ P=Q

IMP_R

H7—\Q - P
H,-P + Q

NOT._L
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To prove an implicative goal P = Q,
it suffices to prove its conclusion Q,
with its assumption P serving as a new hypotheses.

To prove a goal @ with a negative hypothesis - P,
it suffices to prove the negated hypothesis -(-P) = P
with the negated original goal - Q
serving as a new hypothesis.
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Proving ML out/inv2 4/INV: First Attempt  |.assonoe

deN

d>0
COLOUR - {green, red)

green + red

nelN

ne

ach
beN

ceN

a+b+c=n

a=0vc=0

mi_tl e COLOUR

il_tl e COLOUR

mi_ti = green=a+b<dnc=0

green=b>0ra=0
green

-
il_tl = green=b>0n(a+1)=0

MON
green = red
b>0
a=0
mi_tl = green | HYP
e ean e green= red i1l = green
green= red O e b 0ra 0 b>0 -
il_tl=green=b>0ra=0 m/.‘/—jreen a-0 b>0
mi_ti = green mpg| 70" g% mpL| ANDL|miti-green  |ANDR
- = 5 il_tl = green green = red
) = b> = > 7 ¥
iltl = green=b>0n(a+1)=0 b>0n(as1)=0 b>0n(ar1)=0 - b>0 green = red green - red
b>0n(a+1)-0 mi_tl = green
EQLR
mitl = green ARI 22
MON
it = green -
- 0+1)=0
(a+1)=0




Proving IL out/inv2 3/INV: First Attempt

I

LASSONDE

deN

d>0
COLOUR - {green, red),
green = red
nelN

ne<d

ac
beN

ceN

asbic=n

a=0vc=0

ml_tl  COLOUR

il-tl e COLOUR

mitl = green=a+b<dnc=0
iltl=green=b>0ra=0

il_tl = green

!
mitl = green=a+ (b-1) <da(c+1)=0

MON

green = red

mitl=green=a+b<dnc=0

il-tl = green

-

mitl=green=a+(b-1)<da(c+1)=0

IMP_R

green= red green = red
mitl=green=a+b<dnc=0 a+b<dac=0
il = green \wp.L | 1-t1 = areen
mi_tl = green mi_tl = green

‘ '
a+(b-1)<da(c+1)=0 a+(b-1)<dn(c+1)=0

AND_L

green=red
arb<d
c=0

iltl = green
mitl = green

(b-1)

Ac+1)=0

AND_R

green = red
a+b<d

mitl = green

a+(b-1)<d

green = red

a+b< green = red green - red

c=0 QLR | -t = green itl = green

il_tl - green " | ml_ti = green | ARI| ml_ti - green |22
MON

mi_tl = green - -

- ©+1)=0 1-0

(c+1)=0
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Failed: ML out/inv2 4/INV, IL out/inv2 3/INV |.ssonoe

® Quir first attempts of proving ML_out/inv2_4/INV and IL_out/inv2_3/INV both
failed the 2nd case (resulted from applying IR AND_R):

green = red nil_tl = greenA mi_tl=green - 1=0

® This unprovable sequent gave us a good hint:

o Goal| 1 =0 = false | suggests that the safety requirements
a=0 (forinv2_4) and c = 0 (for inv2_3) contradict with the current mo.

o Hyp. ’ il_tl = green = mi_tl ‘ suggests a possible, dangerous state of mo,
where two cars heading different directions are on the one-way bridge:

( init ,  ML.tl_green ML _out s IL_in , IL_tl_green IL_out s ML _out )
—— [— —— —— —_— —_ —_
d=2 d=2 d=2 d=2 d=2 d=2 d=2
a=0 a-=0 a=1 a=0 a-=0 a=0 a=1
b =0 p-0 b=0 b =1 -1 b'=0 b=0
c¢'=0 =0 ¢=0 ¢=0 =0 c=1 ¢ =1

mitl'=red  mit’=green mitI'=green mi_t=green mit = green It =green mit'=green
iltl = red it = red il-tl" = red iltl" = red iltI' = green il-tl" = green il-tl" = green
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Fixing m.>: Adding an Invariant LASSONDE

® Having understood the failed proofs, we add a proper invariant to m:

invariants:

inv2.5 : mi_tl = red v il_tl = red

* We have effectively resulted in an improved m, more faithful w.r.t. REQ3:

REQS3 The bridge is one-way or the other, not both at the same time.

® Having added this new invariant inv2_5:

o Original 6 x 4 generated sequents to be updated: inv2_5 a new hypothesis
e.g., Are ML_out/inv2_4/INV and IL_out/inv2_3/INV now provable?

o Additional 6 x 1 sequents to be generated due to this new invariant
e.g., Are ML_tl_green/inv2_5/INV and IL_tl_green/inv2_5/INV provable?
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INV PO of m,: ML out/inv2 4/INV — Updated |.assonoe

axm0_1
axm0_2
axm2._1
axm2_2
inv0_1
inv0_2
inv1_1
invl_2
inv1_3
invi 4
invi5
inv2_1
inv2 2
inv2 3
inv2 4
inv2.5
Concrete guards of ML_out

Concrete invariant inv2_4
with ML_out’s effect in the post-state

d>0

COLOUR = {green, red}
green = red

neN

a= Ovc 0

mi_tl e COLOUR

il_.tle COLOUR
mi_tl=green=a+b<drc=0
il_tl=green=b>0ra=0
mi_tl = red v il_tl = red

{ mi_tl = green

-

?
{
{
{
o
} ceN
{
?
{
{
{
{

{ il tI=green=b>0n(a+1)=0
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ML _out/inv2_4/INV
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INV PO of my: IL_out/inv2_3/INV — Updated |..ssonoe

axm01 { deN
axm02 { d>0
axm2_1 COLOUR = {green, red}
axm22 E green = red
inv01 { neN
invo2 { n<d
invi_1 aeN
invi2 { beN
inv1_3 ceN

vt 4 }a*b*c " IL_out/inv2_3/INV
inv2_1 mi_tl e COLOUR
inv2.2 { il-tte COLOUR
inv23 { mitl=green=a+b<dnrc=0
inv24 { iltl=green=b>0nra=0
inv2.5 mi_tl = red v il_tl = red
Concrete guards of IL_out iltl = green
-
{

Concrete invariant inv2_3

with ML_out’s effect in the post-state mitl=green=a+(b-1)<dn(c+1)=0
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Proving ML out/inv2 4/INV: Second Attempt

LAS

qew

a>0
COLOUR - {green red)

a-=0ve=0
mLil< COLOUR

i< COLOUR

ML= green=a+b<dnc=0
.11 = green = b> 01 2= 0

mLi= green

green=b>04(a+1)=0

PR

mp_L

L1~ green

1-0

Green=7eq
mLil - green

EQLR.

EQLR
MON

1-0




\n,

Proving IL out/inv2_3/INV: Second Attempt |.ssonoe

>0
COLOUR - (green red)

Green=red

mit - green

e o0 aib-1)<d
atbed

AND-R | EqLR

MON

pr
e o |anoy

Green=red reen=red
arb-1)cda(ort as(b-1)cda(ern=0 . Lt~ green
S EaLR 1= rod oL = red
MON | mLil~ green (AR Lt - groen
0+1-0 10 cotn

Mo
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Fixing m>: Adding Actions LASSONDE

® Recall that an invariant was added to m.:

invariants:
inv2.5: mi_tl = red v il_tl = red

® Additional 6 x 1 sequents to be generated due to this new invariant:
o e.g., ML_tl_green/inv2_5/INV [ for ML_tl_green to preserve inv2.5 ]
o e.g., IL_tl_green/inv2_5/INV [ for IL_tl_green to preserve inv2.5 ]
® For the above sequents to be provable, we need to revise the two events:

ML_tl_green IL_tl_green
when when
mi_tl = red il_tl = red
a+b<d b>0
c=0 a=0
then then
mi_tl := green il_tl := green
il-tl = red ml_tl:= red
end end

Exercise: Specify and prove ML_tl_green/inv2_5/INV & IL_tl_green/inv2_5/INV.



INV PO of m,: ML out/inv2 3/INV

I

axm0_1
axm0_2
axm2._1
axm2_2
inv0_1
inv0_2
invi_1
invi_2
invi3
invl 4
invi5
inv2_1
inv2_2
inv2_3
inv2 4
inv2 5
Concrete guards of ML_out

Concrete invariant inv2_3
with ML_out’s effect in the post-state

{deN
{d>0
{ COLOUR = {green, red}
{ green + red

{neN

{n<d

{aeN

{ beN

ceN

a+b+c=n
{a=0vec=0

{ mi_tl e COLOUR

{ il_tle COLOUR

{ mi_tl=green=a+b<dnrc=0
{ iltl=green=b>0ra=0
{ mi_tl = red v il_tl = red

{ mi_tl = green

-

{ mi_tl=green=(a+1)+b<dnrc=0
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ML _out/inv2_3/INV
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Proving ML out/inv2_3/INV: First Attempt  |.ssono:

deN

d>0

COLOUR = {green. red}
green + red

neN

n<d

aeN

beN

ceN

a+b+c=n

a=0vc=0

mi_tl e COLOUR

il_tl e COLOUR
mi_tl = green=a+b<drc=0
il-tl = green=b>0ra=0
mi_tl = red v il_tl = red
mi_tl = green

.
mi_tl = green=(a+1)+b<dnc=0

MON

a+b<d
c=0
mi_tl = green |??
a+b<d -

c=0 (a+1)+b<d
AND_L | m/_tl = green AND_R

Tid - green—a+b<drc-0 a+b<drc-0
CM - green PR :n/,r/ - green

(a+1)+b<dnc=0 (a+1)+b<drc=0

miti-green—a+b<dnc-0

IMP_R

-
mi_tl=green=(a+1)+b<dac=0 - a+b<d
(a+1)+b<dnc=0 c=0
mi_tl = green |HYP
-

c=0
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Failed: ML _out/inv2_3/INV LASSONDE

e Quir first attempt of proving ML _out/inv2_3/INV failed the 1st case (resulted
from applying IR AND_R):

a+b<dnanc=0Aml_tl=green - (a+1)+b<d

® This unprovable sequent gave us a good hint:
o Goal (a+1)+ b < d specifies the capacity requirement.
~—— ~——

a b’

o Hypothesis ’ c =0 A ml_tl = green | assumes that it'’s safe to exit the ML.

o Hypothesis is not strong enough to entail (a+1) + b<d.

eg.,d=38,b=0,a=0 [ (a+1)+ b<devaluates to frue]

eg.,d=3,b=1,a=0 [(a+1)+b<devaluates to true]
eg.,d=3,b=0a=1 [(a+1)+b<devaluates to true]
eg.,d=3,b=0,a=2 [ (a+ 1)+ b<devaluates to false ]
eg.,d=3,b=1,a=1 [(a+1)+b<devaluates to false ]
eg.,d=3,b=2,a=0 [(a+ 1)+ b<devaluates to false ]
o Therefore, a+ b < d (allowing one more car to exit ML) should be split:
a+b+1=d [ more later cars may exit ML, ml_tl remains green ]
a+b+1=d [ no more later cars may exit ML, ml_t/ turns red ]
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Fixing m.: Splitting ML out and /L _out

I

® Recall that ML _out/inv2_3/INV failed -.- two cases not handled separately:

[ more later cars may exit ML, m/_t/ remains green ]
[ no more later cars may exit ML, ml_t/ turns red ]

e Similarly, IL_out/inv2_4/INV would fail - two cases not handled separately:

[ more later cars may exit IL, il_t/ remains green ]
[ no more later cars may exit IL, il_tl turns red ]

® Accordingly, we split ML_out and IL_out into two with corresponding guards.

a+b+1=+d
a+b+1=d

b-1=+0
b-1=0

ML_out_1
when
mi_tl = green
a+b+1=d
then
a=a+1
end

Exercise: Specify and prove ML_out/inv2_3/INV & IL_out/inv2_4/INV.

ML _out_2
when
ml_tl = green
a+b+1=d
then
a:=a+1
ml_tl := red
end

IL_out_1

when
il_tl = green
b+1

then
b:=b-1
ci=c+1

end

ILout2

when
il_tl = green
b=1

then
b:=b-1
c:=c+1
il_tl := red

end

Exercise: Given the latest m,, how many sequents to prove for invariant preservation?
Exercise: Each split event (e.g., ML_out_1) refines its abstract counterpart (e.g., ML_out)?
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mo Livelocks: New Events Diverging

® Recall that a system may livelock if the new events diverge.
® Current mo’s two new events ML_tl_green and IL_tl_green may diverge :

ML_tl_green IL_tl_green
when when
mi_tl = red il_tl = red
a+b<d b>0
c=0 a=0
then then
mi_tl := green iltl := green
il_tl := red mi_tl := red
end end

® ML_tl_green and IL_tl_green both enabled and may occur indefinitely, preventing
other “old” events (e.g., ML_out) from ever happening:

( init , MLt green , MLoutl1 | IL_in , IL_tl.green , ML tl_.green , |IL_tl.green ,...)
—— —_— —_— ——
d=2 d=2 d=2 d=2 d=2 d=2 d=2
a=0 a=0 a=1 a=0 a =0 a =0 a =0
b =0 b =0 b =0 b =1 b =1 b =1 b =1
c¢'=0 ¢ =0 ¢'=0 c'=0 ¢ =0 =0 =0
mitl=red  mi_t'=green mI-t"=green  mit=green  mit/=red  mi_t'=green  mitl = red
il_tl = red il-tl" = red il_tl" = red il-tl" = red il-tl" = green iltl" = red il_tl" = green

= Two traffic lights keep changing colors so rapidly that no drivers can ever pass!
® Solution: Allow color changes between traffic lights in a disciplined way.
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Fixing m.: Regulating Traffic Light Changes|..ssono:

I

We introduce two variables/flags for regulating traffic light changes:
o ml_pass is 1if, since ml_tl was last turned green, at least one car exited the ML

onto the bridge. Otherwise, ml_pass is 0.

o il passis 1if, since il_tl was last turned green, at least one car exited the IL
onto the bridge. Otherwise, il_pass is 0.

variables: ml_pass, il_pass

invariants:
inv2.6: ml_passe{0,1}
inv2.7:il_pass e {0,1}
inv2.8: ml_tl = red = ml_pass = 1
inv2.9:l_tl = red = il_pass = 1

ML_tl_green
when
mi_tl = red
a+b<d
c=0
il pass =1
then
mi_tl := green
il_tl := red
ml_pass :=0
end

ILout_1
ML _out_1 when
when il_tl = green
mi_tl = green b=1
a+b+1z+d then
then b:=b-1
a=a+1 ci=c+1
ml_pass :=1 il_pass:=1
end end
ML_out2 ILout2
when when
ml_tl = green il_tl = green
a+b+1=d b=1
then then
a:=a+1 b:=b-1
mi_tl = red ci=c+1
ml_pass :=1 il_tl = red
end il_pass :=1
end

IL_tl_green
when
il_tl = red
b>0
a=0
ml_pass = 1
then
il_tl := green
mi_tl := red
il_pass:=0
end
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Fixing m»: Measuring Traffic Light Changes |.ssono:

® Recall:
o Interleaving of new events charactered as an integer expression: variant.
o Avariant V(c, w) may refer to constants and/or concrete variables.

o In the latest mo, let’s try ’ variants : m/_pass + i/,pass‘

e Accordingly, for the new event ML_tl_green:

deN d>0
COLOUR = {green, red} green = red
neN n<d
aeN beN ceN
a+b+c=n a=0vc=0
mi_tl e COLOUR il_tl e COLOUR
mi_tl = green= a-+ b<dnarc=0 il tl=green=b>0na=0 ML.{l_areen/VAR
mi_tl = red v il_tl = red SLgreen/ VAR
mi_pass € {0,1} il_pass € {0,1}
mi_tl = red = ml_pass = 1 il_tl = red = il_pass = 1
ml_tl = red a+b<d c=0
il_pass =1
.
0 + il_pass < ml_pass + il_pass

Exercises: Prove ML _tl_green/VAR and Formulate/Prove IL_tl_green/VAR.



PO Rule: Relative Deadlock Freedom of m-

I

LASSONDE

axmo0_1
axm0.2
axm2_1
axm2_2
inv01
inv0_2
invi1
invl 2
invi3
invi 4
invi5
inv21
inv2.2
inv2.3
inv2 4
inv2 5
inv2_ 6
inv2.7
inv2.8
inv2 9

Disjunction of abstract guards

Disjunction of concrete guards

deN

d>0

COLOUR = {green, red}
green + red

neN

n<d

aeN

beN

ceN

a+b+c=n

a=0vec=0
mi_tl e COLOUR
il_tl e COLOUR
mi_tl=green=a+b<dnrc=0
green=b>0nra=0
mi_tl = red v il tl = red
mi_pass e {0,1}
il_pass € {0,1}

{
{
{
{
i
|
|
{
{m
{
{
{
§ mi_tl = red = ml_pass = 1

il

il_tl = red = il_pass = 1
a+b<dac=0 guards of ML_out in my
% guards of ML_inin my
guards of /L_inin my

guards of /L_out in my

v c>0
v a>0
v b>0nra=0

mi_tl=redna+b<dnarc=0nil_pass=1
iltl=redAb>0na=0naml_pass=1 ;
mi_tl=greenra+b+1=d
m/[/fgreenAa+b—1fd§
=greennb=1}
=greennb=1}
a>0}
}

<< < << <<

guards of ML_tl_green in my
guards of IL_tl_green in my
guards of ML_out_1 in m,
guards of ML_out_2 in my
guards of /L_out_1 in m,
guards of /L_out_2 in my
guards of ML_inin my
guards of /L_inin m,

DLF




I

\n,

Proving Refinement: DLF of m, LASSONDE

de

COLOUR - {green. red)
green = red

nen

n<d

mi_tl < COLOUR
il-tle COLOUR
mitl=green=a+b<drc=0
reen=b>0nra=0
red v iltl = red
mi_pass < {0,1}
il.pass € {0.1}
mi_tl = red = ml_pass = 1
it = red = il_pass = 1
atb<dac=0
v >0
v a0
b>0na=0

miti=redna+b<dnc=0nilpass=1

v iltl=redAb>0nra=0nmlpass=1
v mitl- green
v iltl = green
v as0
v c>0
o o a>0 a>0
ben beN b>0 orRz| 7”0 lve
ml.t - red mitl - red >0 G50
iltl= red it = red be b>0vb=0 bedvb-0 b0
. ARI ORL
mi_tl = red = mi_pass = 1 - - 0 — -
it = red = iL_pass - 1 b<dvb>0 b<dvb>0 b0 '
- K EQLRMON | ORR1|  |HvP
b<dnmlpass-1nilpass-1 b<dnmi_pass=1nilpass-1 .
v b>0nmlpass=1nilpass=1 v b>0nmlpass=1nilpass=1 b<dvb>0 0:dv0>0 0<d
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Second Refinement: Summary LASSONDE

® The final version of our second refinement m, is provably correct w.r.t.:

o Establishment of Concrete Invariants [ init]
o Preservation of Concrete Invariants [ old & new events ]
o Strengthening of guards [old events ]
o Convergence (a.k.a. livelock freedom, non-divergence) [ new events ]
o Relative Deadlock Freedom

® Here is the final specification of m.:

variables: Ml—l.\‘gveen
a when
b mi_tl = red o
c a+b<d p
- e 1L < groen o
i Lepass =1 then when
il_pass r/"U/ = géee" cimc+ then
! N mi_pass il_pass =1 ci=c-1
sets: COLOR invariants: ond end end
inv2.1: mitl e COLOUR L
inv2.2: jl.tt e COLOUR
axioms: inv23: mitl=green=a+b<drc=0 ILtl.green ML.out-2 ILin
axm0.1:deN inv2.4: ilt- green—=b>0na-0 When when when
axm0.2:d>0 inv2.5: mi_tl = red v il_tl = red itl = red mi_tl = green as
axm2.1: COLOR = (green. red) inv2.6 - mi_pass < {01} bs0 then
axm2.2: green + red. inv2.7: il_pass ¢ {0.1} a-0 a:=a-1
inv2.8: mi_tl = red = ml_pass = 1 mLpass = 1 bi=b+1
inv2.9: il = red = il.pass - 1 then end
il_tl = green
mitl := red
iLpass = 0
end
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