Overview of Compilation
Readings: EAC2 Chapter 1

EECS4302 A:
Compilers and Interpreters

chv) R K ' Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

What is a Compiler? (1)

A software system that automatically translates/transforms
input/source programs (written in one language) to
output/target programs (written in another language).

input output
semantic domain semantic domain

/ \ /7 \
i Input/Source “ -4/ Output/Target \
Language ™, gncaded encoded .- Language

1
1
1
1
I
I
l
|
|
\

generates Output/Target
[t
\ Program
\ !
\ /

Input/Source
Program

o Semantic Domain : Context with its own vocabulary & meanings
e.g., OO0 (EECS1022/2030/2011), database (3421), predicates (1090)

o Source and target may be in different semantic domains.
e.g., Java programs to SQL relational database schemas/queries
e.g., C procedural programs to MISP assembly instructions

D ot o)

-
What is a Compiler? (2) LASSONDE
e The idea about a compiler is extremely powerful:

You can turn anything to anything else,

as long as the following are clear about these two things:

o SYNTAX [specifiable as CFGs]

o SEMANTICS [programmable as mapping functions]

Mental Exercise. Let’s consider an A+ challenge.
e A compiler should be constructed with good SE principles .

o Modularity

[interacting components]
o Information Hiding

[hiding unstable, revealing stable]
o Single Choice Principle

[a change only causing minimum impact]
o Design Patterns
[polymorphism & dynamic binding]
o Regression Testing
— [e.g., unit-level, acceptance-level]

/|

Compiler: Typical Infrastructure (1) LASSONDE
Source Front End LR Back End Target
Program Program
Compiler
o FRON END:

e Encodes: knowledge of the source language
o Transforms: from the source to some IR (intermediate representation)
¢ Principle: meaning of the source must be preserved in the IR.
o BACK END:
e Encodes knowledge of the target language
o Transforms: from the IR to the target
e Principle: meaning of the IR must be reflected in the target.
Q. How many /Rs needed for building a number of compilers:
JAVA-TO-C, C#-T0-C, JAVA-TO-PYTHON, C#-TO-PYTHON?
A. Two IRs suffice: One for OO; one for procedural.

= IR should be as language-independent as possible.

/|

Compiler: Typical Infrastructure (2)

Source Target
u Front End R Optimizer R Back End g
Program Program
Compiler
OPTIMIZER:

o An IR-to-IR transformer that aims at “improving” the output of

front end, before passing it as input of the back end.
o Think of this transformer as attempting to discover an “optimal”
solution to some computational problem.
e.g., runtime performance, static design
Q. Behaviour of the target program depends upon?
1. Meaning of the source preserved in IR?
2. IR-to-IR transformation of the optimizer semantics-preserving?
3. Meaning of IR preserved in the generated target?
(1) — (3) necessary & sufficient for the soundness of a compiler.

_

Example Compiler 1

/|

e Consider a conventional compiler which turns

a C-like program into executable machine instructions.

e The source and target are at different levels of abstractions :
o C-like program is like “high-level” specification.
o Macine instructions are the low-level, efficient implementation.

Front End

Scanner

Elaboration

Optimizer

Optimization 1
Optimization 2

Optimization n

Back End

Inst Selection
Inst Scheduling

Reg Allocation

Infrastructure

a.of 20

-
—

LASSONDE

Compiler Infrastructure:
Scanner vs. Parser vs. Optimizer

Semantic Analysis

Lexical Analysis Syntactic Analysis

T e [inininiiuiuiuiuie IR !

' I

1| Source Program ' v ! pretty printed

| (seq. of charagclers) | ASTy el ASTh :pre Lo Target Program
! '
! '

'

,,,,,,,,,,,,,,,,,,,,

e The same input program may be perceived differently:

1. As a character sequence [subject to lexical analysis]
2. As a token sequence [subject to syntactic analysis |

3. As a abstract syntax tree (AST) [subjectto semantic analysis]
e (1) & (2) are routine tasks of lexical/grammar rule specification.
e (3) is where the] most creativity‘ is used to a compiler:

A series of semantics-preserving AST-to-AST transformations.

_

/|

Compiler Infrastructure: Scanner

e The source program is perceived as a sequence of characters.
* A scanner performs lexical analysis on the input character
sequence and produces a sequence of tokens.
e ANALOGY: Tokens are like individual words in an essay.
= Invalid tokens ~ Misspelt words

e.g., a token for a useless delimiter: e.g., space, tab, new line
e.g., a token for a useful delimiter: e.g., (,), {, }, ,

e.g., a token for an identifier (for e.g., a variable, a function)
e.g., a token for a keyword (e.g,. int, char, if, for, while)
e.g., a token for a number (for e.g., 1.23, 2.456)

Q. How to specify such pattern of characters?
A. Regular Expressions (REs)

e.g., RE for keyword while [while]
e.g., RE for an identifier [[a—zA-7Z] [a—zA-Z0-9_] *]
e.g., RE for a white space [[\t\r]+]

/|

Compiler Infrastructure: Parser LASSONDE

e A parser’s input is a sequence of fokens (by some scanner).
» A parser performs syntactic analysis on the input token
sequence and produces an abstract syntax tree (AST).
e ANALOGY: ASTs are like individual sentences in an essay.
= Tokens not parseable into a valid AST ~ Grammatical errors
Q. An essay with no speling and grammatical errors good enough?
A. No, it may talk about non-sense (sentences in wrong contexts).
= An input program with no lexical/syntactic errors should still be
subject to semantic analysis (e.g., type checking, code optimization).
Q.: How to specify such pattern of tokens?
A.: Context-Free Grammars (CFGs)
e.g., CFG (with terminals and non-terminals) for a while-loop:

WhileLoop
Impl

WHILE LPAREN BoolExpr RPAREN LCBRAC /mpl RCBRAC

Instruction SEMICOL Impl

9 of 2}

/|

Compiler Infrastructure: Optimizer (1)
e Consider an input AST which has the pretty printing:
b :=...; Cc = ... ; a:= ...
across 1 |..| n is 1
loop
read d
a:=ax* 2 b x c * d
end

Q. AST of above program optimized for performance?
A. No - values of 2, b, c stay invariant within the loop.

e An optimizer may transform AST like above into:

b= ...; Cc = ... ; a:= ...
temp := 2 % b * C
across i |..| n is 1
loop
read d
a = a x temp x d
end

_

/|

Compiler Infrastructure: Optimizer (2)

Problem: Given a user-written program, optimize it for best
runtime performance.

bi=..jCi=.njai=.. bim.icim.iaim.
across i |..| nis i L temp := 2 *» b » ¢
loop optimized across i |..| nis i
read d P> loop
N read d
am=ax2+bxcxd a i=a x temp * d
end end
parsed pretty-printed

mmmmmm

VAN T

oor

'/‘\' ’/\' '/\' /R‘Mf\/ u%yg;\;m< transformed ?/\' :[\: ?/\‘ :
TR N
' [

aaaaaaaaa

11 of 20

/|

Example Compiler 2

e Consider a compiler which turns an object-based
Domain-Specific Language (DSL) into a SQL database.

e Why is an object-to-relational compiler valuable?

Hint. Which semantic domain is better for high-level specification?

Hint. Which semantic domain is better for data management?

[managing big data | specifying data & updates |

object-oriented environment

X

v

relational database

v

X

e Challenge : Object-Relational Impedance Mismatch

Example Compiler 2

/|

e The input/source contains 2 parts:
o DATA MODEL: classes & associations

e.g., data model of a Hotel Reservation System:

License Account

ermit
consultants per
*seq
employers
. licensee
1

account _owner|
0.1

1 Traveller

registered

clients i
- Hotel
reservations host host allocations
B]] B
reservations = host
*seq 1
rooms

Allocation

allocations

o BEHAVIOURAL MODEL: update methods specified as predicates

/|

Example Compiler 2: Transforming Data LASSONDE

class A { class B {
attributes attributes
s: string is: set (int)
bs: set(B . a) [*] } a: A . bs }

e Each class is turned into a class table:

o Column oid stores the object reference. [PRIMARY KEY]
o Implementation strategy for attributes:
] | SINGLE-VALUED [MULTI-VALUED |
PRIMITIVE-TYPED column in class table \ collection table
REFERENCE-TYPED association table

e Each collection table:

o Column o1id stores the context object.

o 1 column stores the corresponding primitive value or oid.
e Each association table:

o Column oid stores the association reference.

o 2 columns store oid’s of both association ends. [FOREIGN KEY]

/|

Example Compiler 2: Input/Source ¥

e Consider a valid input/source program:

class Account { class Traveller {
attributes attributes
owner: Traveller . account name: string
balance: int reglist: set (Hotel . registered) [*
} }

class Hotel {
attributes
name: string
registered: set (Traveller . reglist) [«]

methods
register {
t? : extent (Traveller)

& t? /: registered
==>
registered
|| t?.reglist :
}

registered \/ {t?}
t?.reglist \/ {this}

e How do you specify the scanner and parser accordingly?
————————

/|

Example Compiler 2: Output/Target LASSONDE

o Class associations are transformed to database schemas.

CREATE TABLE ‘Account‘(
‘oid' INTEGER AUTO_INCREMENT, ‘balance‘ INTEGER,
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Traveller‘(
‘oid' INTEGER AUTO_INCREMENT, ‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Hotel(
‘oid' INTEGER AUTO_INCREMENT, ‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Account_owner_Traveller_account®(
‘oid' INTEGER AUTO_INCREMENT, ‘owner‘' INTEGER, ‘account‘ INTEGER,
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Traveller_reglist_Hotel_registered’(
‘oid' INTEGER AUTO_INCREMENT, ‘reglist‘ INTEGER, ‘registered‘ INTEGER,
PRIMARY KEY (‘oid‘));

* Method predicates are compiled into stored procedures.

CREATE PROCEDURE ‘Hotel_ register'(IN ‘this?‘ INTEGER, IN ‘t?‘ INTEGER)
BEGIN

END

/|

Example Compiler 2: Transforming Updates).ssono:

Challenge : Transform dot notations into relational queries.

e.g., The AST corresponding to the following dot notation
(in the context of class Account,
retrieving the owner’s list of registrations)

this.owner.reglist

may be transformed into the following (nested) table lookups:

SELECT (VAR ‘reglist?‘)
(TABLE ‘Hotel_registered_Traveller_reglist®)
(VAR ‘registered‘ = (SELECT (VAR ‘owner‘)
(TABLE ‘Account_owner_Traveller_account ‘)
(VAR ‘owner' = VAR ‘this‘)))

Beyond this lecture ...

e Read Chapter 1 of EAC2 to find out more about Example
Compiler 1

» Read this paper to find out more about Example Compiler 2:
http://dx.doi.orq/10.4204/EPTCS.105.8

_

http://dx.doi.org/10.4204/EPTCS.105.8

Index (1) :Agsgurgig“s

IWhat is a Compiler? (1)
What is a Compiler? (2)|
[Compiler: Typical Infrastructure (1)

[Compiler: Typical Infrastructure (2)

[Example Compiler 1]

[Compiler Infrastructure: |
IScanner vs. Parser vs. Optimizer|

[Compiler Infrastructure: Scanner

[Compiler Infrastructure: Parser|

[Compiler Infrastructure: Optimizer (1)

[Compiler Infrastructure: Optimizer (2)

Index (2)
[Example Compiler 2|

[Example Compiler 2|
[Example Compiler 2: Transforming Datal

[Example Compiler 2: Tnput/Source]
[Example Compiler 2: Output/Target
[Example Compiler 2: Transtorming Updates|
Beyond this Tecture.]

_

Scanner: Lexical Analysis
Readings: EAC2 Chapter 2

EECS4302 A:
Compilers and Interpreters

chv) R K ' Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Scanner in Context

/|

LASSONDE

o Recall:

Lexical Analysis Syntactic Analysis

ource Program

(seq. of characters)

2w
(n
&
8
5
3
g
@
2
°
=3
g
=
3
3
@
bl
g
@
E

-)
' Il
i
1| AST, - ! pretty printed
T
! Il
i

,,

Semantic Analysis

Target Program

(e]

o

o

Upon termination:

Treats the input programas as a a sequence of characters
Applies rules recognizing character sequences as fokens

[lexical analysis]

e Reports character sequences not recognizable as tokens

e Produces a a sequence of tokens

o

[e]

Only part of compiler touching every character in input program.
Tokens recognizable by scanner constitute a regular language .

Scanner: Formulation & Implementation [sono:

Kleene’s Construction

Code for
a scanner
RE DFA Minimization DFA
Thompson’s Subset
Construction Construction

NFA

/|

Alphabets i

An alphabet is a finite, nonempty set of symbols.

o The convention is to write X , possibly with a informative
subscript, to denote the alphabet in question.

o Use either a set enumeration or a set comprehension to define
your own alphabet.

eg. Xeng={ab,...,z,AB,....Z} [the English alphabet]
e.g., Xpin=1{0,1} [the binary alphabet]
€.0., Xgec={d|0<d<9} [the decimal alphabet]

e.0., ey [the keyboard alphabet]

4 of 6F

/|

Strings (1) LASSONDE

e A string ora word is finite sequence of symbols chosen

from some alphabet.
e.g., Oxford is a string over the English alphabet 3,4
e.g., 01010 is a string over the binary alphabet ¥,
e.g., 01010.01 is not a string over L,
e.g., 57 is a string over the decimal alphabet ¥ 4.
e |tis not correct to say, e.g., 01010 € X, [Why?]
e The length of a string w, denoted as |w|, is the number of

characters it contains.
o e.g., |Oxford| =6
o e isthe empty string (|e| = 0) that may be from any alphabet.
e Given two strings x and y, their concatenation , denoted as xy,
is a new string formed by a copy of x followed by a copy of y.
o eg.,Letx=071107and y =110, then xy=01101110
o The empty string ¢ is the identity for concatenation :

EW = w = we for any string w

/|

Strings (2) s

« Given an alphabet 5, we write £X , where k ¢ N, to denote the
set of strings of length k from %=

YK = {w| wisastring over ¥ A |w| =k}

more formal?

o eg., {0,1}2 ={00, 01, 10, 11}

o Given X, £0 is {¢}
e Given X, X* is the set of nonempty strings.

st=y'ur?uriu... = {w|wexkak>0}=J =¥
k>0
e Given X, ¥* is the set of strings of all possible lengths.
Y =Y u{e}

b.of A8

/|

Review Exercises: Strings e sous

1. What is [{a, b, ..., z}°|?

2. Enumerate, in a systematic manner, the set {a, b, 0}4.
3. Explain the difference between ¥ and X '.

4. Prove or disprove: Y1 Sy =X cX;

I of 65

/|

Languages LASSONDE

e Alanguage L over ¥ (where || is finite) is a set of strings s.t.
Lcy*
e When useful, include an informative subscript
to denote the language L in question.
o e.g., The language of compilable Java programs
Luava = {prog | prog € X, Aprog compiles in Eclipse}

Note. prog compiling means no lexical, syntactical, or type errors.

o e.g., The language of strings with n 0’s followed by n 1’s (n > 0)
{¢,01,0011,000111,...} ={0™" | n>0}

o e.g., The language of strings with an equal number of 0’s and 1’s
{¢,01,10,0011,0101,0110,1100,1010,1001,...}
= {w|# of 0’s in w = # of 1’s in w}

8 of A8

/|

Review Exercises: Languages

1.

w N

Use set comprehensions to define the following languages.

Be as formal as possible.

o A language over {0, 1} consisting of strings beginning with some
0’s (possibly none) followed by at least as many 1’s.

o A language over {a, b, c} consisting of strings beginning with
some a’s (possibly none), followed by some b’s and then some C’s,
s.t. the # of a’s is at least as many as the sum of #s of b’s and c’s.

Explain the difference between the two languages {¢} and &.

. Justify that *, @, and {¢} are all languages over ¥.

Prove or disprove: If L is a language over ¥, and ¥, 2 ¥, then L
is also a language over X».

Hint: Provethat Y c Yo AL cYy* = Lc Y5

Prove or disprove: If L is a language over ¥, and ¥» c ¥, then L
is also a language over ¥».

Hint: Provethat Yo c Y ALcY* = Lc¥;

/|

Pr0b|emS LASSONDE

e Given a language L over some alphabet 3, a problem is the
decision on whether or not a given string w is a member of L.

wel

Is this equivalent to deciding w € ¥*? [No]
weX* = we Lis not necessarily true.

e e.g., The Java compiler solves the problem of deciding if a
user-supplied string of symbols is a member of L ...

/|

Regular Expressions (RE): Introduction

* Regular expressions (RegExp’s) are:
o A type of language-defining notation
e This is similar to the equally-expressive DFA, NFA, and ¢-NFA.
o Textual and look just like a programming language
e e.g., Set of strings denoted by 01* + 10*? [specify formally]
L={0x|xe{1}*}u{ix]|xe{0}}
e e.g., Set of strings denoted by (0*10*10%) *10*?
L={w|w has odd # of 1’s}
This is dissimilar to the diagrammatic DFA, NFA, and e-NFA.
e RegExp’s can be considered as a “user-friendly” alternative to NFA for
describing software components. [e.g., text search]
o Writing a RegExp is like writing an algebraic expression, using the
defined operators, e.g., ((4 + 3) %= 5) % 6
» Despite the programming convenience they provide, RegExp’s,
DFA, NFA, and ¢-NFA are all provably equivalent .

o They are capable of defining all and only regular languages.

_

/|

RE: Language Operations (1)

« Given X of input alphabets, the simplest RegExp is? [seX']
o e.g., Given X ={a, b, c}, expression a denotes the language { a }
consisting of a single string a.
e Given two languages L, M ¢ **, there are 3 operators for
building a larger language out of them:

1. Union
LuM={w|welLvweM}

In the textual form, we write + for union.
2. Concatenation
IM={xy|xeLryeM}

In the textual form, we write either . or nothing at all for
concatenation.

_

/|

RE: Language Operations (2)

3. Kleene Closure (or Kleene Star)
L* = ULI
>0

where

{e}
L

{X1X2|X1 EL/\XZEL}

~ =~
N = O
I

=
I

{ xixa...x; |[xela1<j<i}
S —
i concatenations

In the textual form, we write « for closure.

Question: What is |L'| (i € N)? [IL)]
Question: Given that L = {0}*, what is L*? [L]

/|

RE: Construction (1)

We may build regular expressions recursively:

e Each (basic or recursive) form of regular expressions denotes
a language (i.e., a set of strings that it accepts).

e Base Case:
o Constants ¢ and @ are regular expressions.

LCe) = {e}
L(o) = ©

o Aninput symbol a€ X is a regular expression.

L(a)={a}

If we want a regular expression for the language consisting of only
the string w € £*, we write w as the regular expression.
o Variables such as L, M, etc., might also denote languages.

/|

RE: Construction (2)

e Recursive Case: Given that E and F are regular expressions:
o The union E + F is a regular expression.

L(CE+F)=L(E)uL(F)

o The concatenation EF is a regular expression.
L(EF)=L(E)L(F)

o Kleene closure of E is a regular expression.
LCE") =(L(E))”

o A parenthesized E is a regular expression.
L((E)) = L(E)

/|

RE: Construction (3)
Exercises:
e g+L [o+L=L=g+L]
e gL [ol=o=Lz]
o ¥
gt = gPuglug?u...

= {eJugugu...

= {e}
.Q*L [g*L:L:Lg*]

/|

RE: Construction (4)

Write a regular expression for the following language

{w]|w has alternating 0’s and 1’s}

Would (01)* work? [alternating 10’s?]
Would (01)* + (10)* work? [starting and ending with 17]
0(10)* + (01)* + (10)* + 1(01)*

It seems that:

o 1st and 3rd terms have (10)* as the common factor.
o 2nd and 4th terms have (01)* as the common factor.

Can we simplify the above regular expression?
e (e+0)(10)* + (e+1)(01)*

/|

RE: Review Exercises LASSONDE

Write the regular expressions to describe the following languages:
e {w|w ends with 01}

e {w|w contains 01 as a substring}

e {w|w contains no more than three consecutive 1’s}

{w]|w ends with 01vw has an odd # of 0’s}

se{+,— €}

*
A XEXH .

A YeX.
A =(X=€eAny=¢€)

sx.y

xe{0,1} Aye{0,1}*
A X has alternating 0’s and 1’s
A ¥ has an odd # 0’s and an odd # 1’s

/|

RE: Operator Precedence

¢ In an order of decreasing precedence:
o Kleene star operator
o Concatenation operator
o Union operator
* When necessary, use parentheses to force the intended order
of evaluation.

° e.g.,
o 10* vs. (10)* [10" is equivalent to 1(0%)]
o 01*+1vs. 0(1*+1) [01* + 1 is equivalentto (0(1*)) + (1)]
o 0+1*vs. (0+1)" [0+1*is equivalentto (0) + (1*)]

_

/|

DFA: Deterministic Finite Automata (1.1)

e A deterministic finite automata (DFA) is a finite state

machine (FSM) that accepts (or recognizes) a pattern of

behaviour.

o For lexical analysis, we study patterns of strings (i.e., how
alphabet symbols are ordered).

o Unless otherwise specified, we consider strings in {0,1}*

o Each pattern contains the set of satisfying strings.

o We describe the patterns of strings using set comprehensions:
e {w|w has an odd number of 0’s}
e {wW|WwW has an even number of 1’s}

W *e
* {W| A W has equal # of alternating 0’s and 1’s }
e {w|w contains 01 as a substring}
W has an even number of 0’'s
A W has an odd number of 1’s
¢ Given a pattern description, we design a DFA that accepts it.

o The resulting DFA can be transformed into an executable program.

o {w|

DFA: Deterministic Finite Automata (1.2)

o The transition diagram below defines a DFA which
accepis/recognizes exactly the language

{w|w has an odd number of 0’s}

o Each incoming or outgoing arc (called a transition) corresponds
to an input alphabet symbol.

o sp with an unlabelled incoming transition is the start state.

o sz drawn as a double circle is a final state.

o All states have outgoing transitions covering {0, 1}.

DFA: Deterministic Finite Automata (1.3)

The transition diagram below defines a DFA which
accepis/recognizes exactly the language

W +e
w .
{ | A W has equal # of alternating 0’s and 1’s }

/|

Review Exercises: Drawing DFAs LASSONDE

Draw the transition diagrams for DFAs which accept other
example string patterns:

e {W|w has an even number of 1’s}

e {w|w contains 01 as a substring }

A W has an odd number of 1’s

. {W| W has an even number of 0’s }

/|

DFA: Deterministic Finite Automata (2.1) |ssooe

A deterministic finite automata (DFA) is a 5-tuple

M:(Qv Z? 67 Qo F)

Q is a finite set of states.
Y is afinite set of input symbols (i.e., the alphabet).
0 :(QxX)— Qis a transition function
0 takes as arguments a state and an input symbol and returns a state.
Qo € Q is the start state.
F < Qis a set of final or accepting states.

o

(e]

[e]

[e]

[e]

DFA: Deterministic Finite Automata (2.2) |ssonoe

We formalize the above DFA as M = (Q, X, 6, qu, F), where
* Q={so,s1}
e > ={0,1}
* 0={((50,0),51),((S0,1),%0), ((51,0), %), ((s1,1),81)}
state \ input || 0 | 1
So S1 | So
Sq So | S1

® o = So
o F={s1}

DFA: Deterministic Finite Automata (2.3.1) |ssoo

string

We formalize the above DFA as M= (Q, X, 6, qo, F), where
* Q={s0,51,52,83,54, S5}

e > ={0,1}

® Go =350

o = {33,34}

DFA: Deterministic Finite Automata (2.3.2) |sono

e)=
state \ input || 0 | 1
So S1 | S2
S1 S5 | S3
So S4 | S5
S3 S1 | S5
S4 S5 | So
S5 S5 | Ss

/|

DFA: Deterministic Finite Automata (2.4) |sonoe

e GivenaDFAM=(Q, X, 6, qu, F):
o We write L(M) to denote the language of M : the set of strings

that M accepts.
o A string is accepted if it results in a sequence of transitions:
beginning from the start state and ending in a final state.

_ aids...an |
L(M)_{ 1sisnAa,-eZA(S(qH,a,-):q,-/\q,,eF}
o M rejects any string w ¢ L(M).
e We may also consider L(M) as concatenations of labels from

the set of all valid paths of M ’s transition diagram; each such
path starts with go and ends in a state in F.

/|

DFA: Deterministic Finite Automata (2.5) [.sonoe
e Givena DFAM = (Q, ¥, 9, qu, F), we may simplify the
definition of L(M) by extending ¢ (which takes an input symbol)
to & (which takes an input string).
0:(QxT)-Q
We may define § recursively, using 4!
i(qe) = q
o(g,xa) = 6(o(g,x),a)
where ge Q, xeX*,and ac X
¢ A neater definition of L(M) : the set of strings w € ¥* such that
5(qo, w) is an accepting state.
LIM)={w|weX*Ad(qo,w)eF}
e Alanguage L is said to be a regular language , if there is some

DFA M such that L = L(M).

/|

Review Exercises: Formalizing DFAs

Formalize DFAs (as 5-tuples) for the other example string patterns
mentioned:

e {W|w has an even number of 0’s}
e {w|w contains 01 as a substring }

. W| W has an even number of 0’s
A W has an odd number of 1’s

NFA: Nondeterministic Finite Automata (1.1)sono:
Problem: Design a DFA that accepts the following language:
L={x01|xe{0,1}"}

That is, L is the set of strings of 0Os and 1s ending with 01.
1 [4)

Given an input string w, we may simplify the above DFA by:
o nondeterministically treating state qp as both:

¢ a state ready to read the last two input symbols from w
¢ a state not yet ready to read the last two input symbols from w
o substantially reducing the outgoing transitions from ¢; and @

Compare the above DFA with the DFA in slide

NFA: Nondeterministic Finite Automata (1.2) sono:

e A non-deterministic finite automata (NFA) that accepts the
same language:

e How an NFA determines if an input 00701 should be processed:
9% % 9

9% % %
N q N q N
! (stuck) ! \ \

/|

NFA: Nondeterministic Finite Automata (2) |.assonoe

e A nondeterministic finite automata (NFA) , like a DFA, is a
FSM that accepts (or recognizes) a pattern of behaviour.

e An NFA being nondeterministic means that from a given state,
the same input label might corresponds to multiple
transitions that lead to distinct states.

o Each such transition offers an alternative path.

o Each alternative path is explored in parallel.

o If there exists an alternative path that succeeds in processing the
input string, then we say the NFA accepts that input string.

o If all alternative paths get stuck at some point and fail to process
the input string, then we say the NFA rejects that input string.

e NFAs are often more succinct (i.e., fewer states) and easier to
design than DFAs.
e However, NFAs are just as expressive as are DFAs.

o We can always convert an NFA to a DFA.

/|

NFA: Nondeterministic Finite Automata (3.1) oo

* A nondeterministic finite automata (NFA) is a 5-tuple

M:(Qv Zv 67 CIO7 F)

Q is a finite set of states.
> is a finite set of input symbols (i.e., the alphabet).
o §:(QxX)—P(Q)is a transition function
¢ Given a state and an input symbol, ¢ returns a set of states.
o Equivalently, we can write: 6: (QxX) » Q [a partial function]
o qp € Qis the start state.
o Fc Qis asetof final or accepting states.

¢ What is the difference between a DFA and an NFA?

o § of a DFA returns a single state.
o ¢ of an NFA returns a (possibly empty) set of states.

[e]

[e]

NFA: Nondeterministic Finite Automata (3.2)) oo

Given an input string 00101:

* Read 0: 6(q0,0)={ qo,q1 }

Read 0: 6(g0 .0)ud(g1,0)={ qo.q1 }ua={qo, ¢ }
Read 1: 6(qo,1)ui(gr,1)={q }u{g}={ q,.q}
Read 0: 5(g0 ,0)ud(92,0)={ q,q1 }vo={q, G }

Read":(s(qO"I)U(S(a1 ’1):{070#71 }U{Q2}={QOaQ1> 92 }

{ Qo, 41, Q2 }ﬁ{ qo } +#@..00101 is accepted

/|

NFA: Nondeterministic Finite Automata (3.3).

e Givena NFAM=(Q, X, §, qo, F), we may simplify the

definition of L(M) by extending § (which takes an input symbol)

to 4 (which takes an input string).
E (QAxXZ")->P(Q)
We may define 4 recursively, using ¢!
@(076) = {q} X
o(g,xa) = U{0(q",a)[q €i(q,x)}
where ge Q, xeX*,and ae X

A neater definition of L(M) : the set of strings w € ¥* such that

5(qo, w) contains at least one accepting state.
LIM)={w|weX*Ai(qo,w)nF # 2}

N
DFA = NFA (1) :A§SONDE

o

o

[e]

o

o

For many languages, constructing an accepting NFA is easier than
a DFA.
From each state of an NFA:
e QOutgoing transitions need not cover the entire %.
e From a given state, the same symbol may non-deterministically lead
to multiple states.
In practice:
e An NFA has just as many states as its equivalent DFA does.
o An NFA often has fewer transitions than its equivalent DFA does.

In the worst case:

e While an NFA has n states, its equivalent DFA has 2" states.

Nonetheless, an NFA is still just as expressive as a DFA.

o A language accepted by some NFA is accepted by some DFA:
VN ¢ Ne NFA= (3D e De DFAAL(D)=L(N))

e And vice versa, trivially?

VD e DeDFA= (3N o Ne NFAAL(D) = L(N))

DFA = NFA (2.2): Lazy Evaluation (1)
Given an NFA:

0, 1

ons

Subset construction (with lazy evaluation) produces a DFA with ¢ as:

state \ input || 0 \ 1
5(qo,0) 9(qo, 1)
{0} = {q.q1) = {a0}
(S(QO,O)Uf;(Ch,O) c)‘(q071)uz5(q1,1)
{0, 91} = {Qq}tve = {qo}u{g}
= {qo, a1} = {qo, g2}
09(qo;0) ud(ge,0) 9(qo;1) v (e, 1)
{90, g2} = {q.q1}ue = {qtuo
= {qo, a1} = {q}

DFA = NFA (2.2): Lazy Evaluation (2)

Applying subset construction (with lazy evaluation), we arrive

in a DFA transition table:
state \ input H 0 ‘ 1

{qo} {q,a1} | {q0}
{qo, a1} {qo0, a1} | {q, %}
{90, G2} {90,a1} | {qo}
We then draw the DFA accordingly:
1 0

Compare the above DFA with the DFA in slide Bl

DFA = NFA (2.2): Lazy Evaluation (3)

et ae o

e Givenan NFA N = (Qpn, X n, 0N, Qo, Fn):

ALGORITHM: ReachableSubsetStates
INPUT: qo: Qu ; OUTPUT: Reachable < P(Qy)
PROCEDURE:
Reachable := { {q} }
ToDiscover := { {qv} }
while (ToDiscover + @) {
choose S:P(Qu) such that S e ToDiscover
remove S from ToDiscover
NotYetDiscovered :=
({ {6n(s,0) | s€S} }u{ {on(s,1) | s€S} })\Reachable
Reachable := ReachableU NotYetDiscovered
ToDiscover := ToDiscover u NotYetDiscovered
}
return Reachable

e RT of ReachableSubsetStates? [029]

e Often only a small portion of the | P(Qy)| subset states is

reachable from {q} = Lazy Evaluation efficient in practice!

/|

e-NFA: Examples (1) ngsgrg{gNE
Draw the NFA for the following two languages:
1.
xe{0,1}*
X A ye{0,1}*
Y1 A x has alternating 0’s and 1’s
A ¥ has an odd # 0’s and an odd # 1’s
2.
w0 11 W has alternating 0’s and 1’'s
0.1 V. W has an odd # 0’s and an odd # 1’'s
3.
se{+,— ¢}
A XeX}
SX. dec
Y1 a YeXl
A =(X=€eAny=¢€)

e-NFA: Examples (2)

From qg to g4, reading a sign is optional: a p/us or a minus, or

nothing at all (i.e., €).

/|

E'NFA: Formalizatlon (1) LASSONDE

An e-NFA is a 5-tuple

M=(Q, z? 57 Qo F)

Q is a finite set of states.

Y is a finite set of input symbols (i.e., the alphabet).

o §:(Qx(Xu{e}))—>P(Q) is a transition function
0 takes as arguments a state and an input symbol, or an empty string
¢, and returns a set of states.

Qo € Q is the start state.

F c Qis a set of final or accepting states.

o

o

[e]

o

/|

«-NFA: Formalization (2)

9,1,..,9 9,1,..,9

@ €k, - @ 0,1,..,9

Draw a transition table for the above NFA'’s § function:

H € +, - . 0..9
QP | {¢) {m} @ %)
a1 %) %) (G2} {91,qa}
| 2 % @ {as}
& | {95} o %) {a3}
Qs || @ 2 {g} %)
gs %) %) %) %)

/|

E'NFA: EpSilon-C|OSUI‘eS (1) LASSONDE

e Given e-NFA N
N:(Qa zv 57 Qo, F)

we define the epsilon closure (or e-closure) as a function

ECLOSE : Q- P(Q)

e Forany state ge Q
ECLOSE(Q) ={q}u |J ECLOSE(p)

pes(q.e)

E'NFA: EpSilon-C|OSUI'eS (2) LASSONDE

ECLOSE(Qo)
= { (qo,e) ={q1,q} }
{Qo} UECLOSE(Q1) UECLOSE(Qz)
= { ECLOSE(q1), 0(q1,€)={qs}, ECLOSE(Qz), 0(Qz.€)=2 }
{@o}u({qi}uECLOsE(qs) YU ({2} UD)
= { ECLOSE(q3), 6(gs,€)={gs} }
{go} v ({aqi}u({gs}vECLOSE(gs)) YU ({ge}ud)
= { ECLOSE(Qs), 9(Gs,€)=0 }

{q}v({g}u({gtu({gva)))uv({etve)

/|

E'NFA: Formalizatlon (3) i\gsoms

e Givenac¢-NFAM = (Q, =, §, qv, F), we may simplify the

definition of L(M) by extending § (which takes an input symbol)

to 4 (which takes an input string).
E (QAxXZ")->P(Q)
We may define 4 recursively, using ¢!
5(q,e) = ECLOSE(Q)
5(g,xa) = U{ECLOSE(Q")|q" ci(q',a)nq €i(q,x)}

where ge Q, xeX*,and ae X
e Then we define L(M) as the set of strings w € ¥* such that

5(qo, w) contains at least one accepting state.
LIM)={w|weX*Ai(qo,w)nF # 2}

«-NFA: Formalization (4)

0,1,.,9
0,1,.,9

Given an input string 5.6:
5(Qo,€) = ECLOSE(qo) = {qo, ¢1}
* Read 5: 9(q0,5)vd(q1,5) =2u{qr,qat ={q1,qs }
3(qo,5) = ECLOSE(G1) UECLOSE(Qs) = {1} U {qu} = {1, qa}
e Read .: 0(q1,.)ud(qs,.) ={q}u{qs} ={ g, 05 }
0(Qo,5.) = ECLOSE(Qe) UECLOSE(qs) = {G2} U {3, G5} = {q2, Gs, G5}
* Read 6: 0(q2,6) L d(qs,6)Li(05,6) = {g}u{giuo={qg}

5(go,5.6) = ECLOSE(qs) = {q3, G5} [5.6 is accepted]

e
DFA = -NFA: Extended Subset Const. (1) |ssonoe

Subset construction (with lazy evaluation and
epsilon closures) produces a DFA transition table.

|| de0..9 | se{+,-} | .

{Qo, a1} (91,94} | {g1} {q}
{g1,04} {g1,q} | @ {92,05,05}
{qi} {g1,q4} | @ {q}
{2} {93,5} | @]
{Q27Q37QS} {q37q5} 1%} %}
{3,095} {5, G5} %) @

For example, 6({qo, g1}, d) is calculated as follows: [d€0..9]

U{ECLOSE(Q) | g€ 9(qo,d) ud(qr,d)}
U{ECLOSE(Q) | g€ @uU{qi,qa}}
U{ECLOSE(Q) | g€ {q1,qu}}
ECLOSE(Qy) UECLOSE(Qs)

{gtu{g}
{q17q4}

e
DFA = -NFA: Extended Subset Const. (2) |ssonoe

Given an e=NFA N = (Qu, Xy, 0n, o, Fn), by applying the
extended subset construction to it, the resulting DFA
D =(Qp,%p.dp.9p,.,.. Fp) is such that:

>p =
9Dstart =
Fp =
Qp =
5D (S, a)

Y

ECLOSE(Qp)

{S|ScQuASnFy+o}
{S|ScOQur(BweweX* = S=dn(qo,w)) }
U{ ECLOSE(S") | se SA S eip(s,a) }

/|

Regu‘ar EXpI‘eSSiOI‘I tO E'NFA LASSONDE

» Just as we construct each complex regular expression
recursively, we define its equivalent ¢-NFA recursively .

e Given a regular expression R, we construct an e-NFA E, such
that L(R) = L(E), with
o Exactly one accept state.
o No incoming arc to the start state.
o No outgoing arc from the accept state.

Regu‘ar EXpI‘eSSiOI‘I to «-NFA LASSONDE

Base Cases:

® ¢

° g [aeX]

/|

Regu‘ar EXpI‘eSSiOI‘I tO E'NFA LASSONDE

Recursive Cases: [Rand S are RE’s]
e R+S

Regular Expression to -NFA: Examples (1.1])sono:

e 0+1

e (0+1)"

Regular Expression to «-NFA: Examples (1.2):

e (0+1)*1(0+1)

/|

Minimizing DFA: Motivation LASSONDE

* Recall: ’ Regular Expresion ‘ —] e-NFA \ —] DFA\

e DFA produced by the extended subset construction (with
lazy evaluation) may not be minimum on its size of state.

e When the required size of memory is sensitive
(e.g., processor’s cache memory),
the fewer number of DFA states, the better.

/|

Minimizing DFA: Algorithm LASSONDE

ALGORITHM: MinimizeDFAStates
INPUT: DFA M=(Q, X, 6, qo, F)
OUTPUT: M’ s.t. minimum |Q| and equivalent behaviour as M
PROCEDURE :
P =g /% refi
T :={FOQ-F}
while (P # T):

/ *

P :=T
T := g
for(p € P):

find the maximal S c p s.t. splittable(p, S)
if S #J then
T :=TuU {s, p-S}
else
T := T U {p}
end

splittable(p, S) holds iff there is c € X s.t.
1. Scp(orequivalently: p- S + @)

2. Transitions via c lead all s € S to states in same partition p1 (p1 + p).

Minimizing DFA: Examples LASSONDE

Exercises: Minimize the DFA from Jaere} Q1 & Q2, p59, EAC2.

Exercise: ‘i’ésgsom

Regular Expression to Minimized DFA

Given regular expression r [0. . 9]+ which specifies the pattern of
a register name, derive the equivalent DFA with the minimum
number of states. Show all steps.

/|

Implementing DFA as Scanner LASSONDE
o The source language has a list of syntactic categories:
e.g., keyword while [while]
e.g., identifiers [[a-zA-2] [a-zA-20-9_]]
e.g., white spaces [[\t\r]+]

o A compiler's scanner must recognize words from all syntactic
categories of the source language.
o Each syntactic category is specified via a regular expression.

r + r + ...+ I'n
~—— ~—— ~—~—
syn. cat. 1 syn. cat. 2 syn. cat. n

e Overall, a scanner should be implemented based on the minimized
DFA accommodating all syntactic categories.
o Principles of a scanner:
o Returns one word at a time
o Each returned word is the longest possible that matches a pattern
» A priority may be specified among patterns
(e.g., new is a keyword, not identifier)

Implementing DFA: Table-Driven Scanner (1 fléggésm

Classifier (CharcCat)
r 0,1,2,...,9 EOF Other
Register Digit Other Other

Transition

Consider the syntactic category of register names.
Specified as a regular expression : r [0.
Afer conversion to e-NFA, then to DFA, then to minimized DFA:

.91+

The following tables encode knowledge about the above DFA:

(9)

So
s
S2
Se

Register Digit Other | Token Type (Type)

S
Se
Se
Se

Se
$2
52
Se

Se
Se
Se
Se

So S1 s2 Se

invalid invalid register invalid

The scanner then is implemented via a 4-stage skeleton:

NextWord()
-— Stage 1: Initialization
state := Sy ; word := €

initialize an empty stack S ; s.push (bad)
-—- Stage 2: Scanning Loop
while (state # Sg)
NextChar (char) ; word := word + char
if state € F then reset stack S end
s.push (state)
cat := CharCat|[char]
state := d[state, cat]
-— Stage 3: Rollback Loop
while (state ¢ F A state # bad)
state := s.pop ()
truncate word
—-— Stage 4: Interpret and Report
if state € F then return Type[state]
else return invalid
end

Index (1)

|

Bcanner: Formulation & Implementation|
Review Exercises: Strings|

Review Exercises: Languages|

Problems

Reqular Expressions (RE): Introduction|

RE: Language Operations (1)

Index (2) :A§SCE>MI&BNE

RE: Language Operations (2)

[RE: Construction (1)

[RE: Construction (2)

[RE: Construction (3)|

[RE: Construction (4)

IRE: Operator Precedence|

IDFA: Deterministic Finite Automata (1.7)
[DFA: Deterministic Finite Automata (1.2)
[DFA: Deterministic Finite Automata (1.3)

Hewew Exercises: Drawmg DFIQ

Index (3) :Agsgurgig“s

IDFA:

Deterministic Finite Automata (2.1)

DFA:

Deterministic Finite Automata (2.2)

IDFA:

Deterministic Finite Automata (2.3.1)|

DFA:

Deterministic Finite Automata (2.3.2)|

IDFA:

Deterministic Finite Automata (2.4)

DFA:

Deterministic Finite Automata (2.5)

[Review Exercises: Formalizing DFAS|

INFA:

Nondeterministic Finite Automata (1.1)

INFA:

Nondeterministic Finite Automata (1.2)

INFA:

Nondeterministic Finite Automata (2)

INFA:

Nondeterministic Finite Automata (3.1)

Index (4) :A§SCE>MI&BNE

INFA: Nondeterministic Finite Automata (3.2)
INFA: Nondeterministic Finite Automata (3.3)

= .2): Lazy Evaluation

= .2): Lazy Evaluation

= .2): Lazy Evaluation
[-NFA: Examples (1)

-NFA: Examples (2)

[-NFA: Formalization (1)

[-NFA: Formalization (2)

- : Epsilon-Closures

Index (5) :Agsgurgig“s

-NFA: Epsilon-Closures
[-NFA: Formalization (3)
-NFA: Formalization (4)
[DFA=c-NFA: Extended Subset Const. (1)

= «-NFA: Extended Subset Const.

[Reqular Expression to -NFA|
Reqular Expression to c-NFA|
[Reqular Expression to -NFA|
&gular Expression to ¢-NFA: Examples (1.1)|
[Reqular Expression to -NFA: Examples (1.2)
[Minimizing DFA: Motivation|

_

Index (6) :A§SCE>MI&BNE

I\Illnlmlzmg DFA: Algorithm|

[Minimizing DFA: Examples|

[Exercise: |
[Reqular Expression to Minimized DFA|

implementing DFA as Scannen

implementing DFA: Table-Driven Scanner (1)
Implementing DFA: Table-Driven Scanner (2)

Parser: Syntactic Analysis
Readings: EAC2 Chapter 3

EECS4302 A:
Compilers and Interpreters

chv) R K ' Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Parser in Context
o Recall:
Lexical Analysis Syntactic Analysis Semantic Analysis

Source Program

i
i
]
|| (seq. of characters)
i

4 1
L '
D !
Parser |—ta| ASTy [—pl AST, | \PEVPTIES, | Target Program
T i
. !

[e]

Treats the input programas as a a sequence of classified
tokens/words
Applies rules parsing token sequences as

o

abstract syntax trees (ASTSs) [syntactic analysis]

Upon termination:
¢ Reports token sequences not derivable as ASTs
e Produces an AST

No longer considers every character in input program.
Derivable token sequences constitute a

context-free language (CFL) .

o

[e]

o

P of 98

/|

Context-Free Languages: Introduction

We have seen regular languages:

o Can be described using finite automata or regular expressions.
o Satisfy the pumping lemma.

e Language with recursive structures are provably non-regular.
e.g., {0™M"| n>0}

Context-Free Grammars (CFG’s) are used to describe strings
that can be generated in a recursive fashion.

Context-Free Languages (CFLs) are:

o Languages that can be described using CFG’s.
o A proper superset of the set of regular languages.

3 0of 98

S
CFG: Example (1.1)

» The following language that is non-regular
{0"#1" | n>0}
can be described using a context-free grammar (CFG):

A — 0A1
A - B
B - #

e A grammar contains a collection of substitution or production
rules, where:
o Aterminalisaword we X" (e.g., 0, 1, etc.).
o A variable or non-terminal is aword w ¢ X* (e.g., A, B, etc.).
o A start variable occurs on the LHS of the topmost rule (e.g., A).

/|

CFG: Example (1 .2) :A§SONDE

e Given a grammar, generate a string by:
1. Write down the start variable.
2. Choose a production rule where the start variable appears on the
LHS of the arrow, and substitute it by the RHS.
3. There are two cases of the re-written string:
3.1 It contains no variables, then you are done.
3.2 It contains some variables, then substitute each variable using the
relevant production rules.
4. Repeat Step 3.
¢ e.g., We can generate an infinite number of strings from

A — 0A1

A - B
B - +#

A=B=#
A= 0A1 = 0B1 = 0#1
A= 0A1 = 00A11 = 00B11 = 00#11

ﬁ
goooo

CFG: Example (1.2)

Given a CFG, a string’s derivation can be shown as a parse free.

e.g., The derivation of 000#111 has the parse tree

A

A

A

A

B
OOO#Llll

/|

CFG: Example (2)

Design a CFG for the following language:

{w|we{0,1}"Aw is a palidrome}

e.g., 00, 11, 0110, 1001, etc.

0PO
1P1

T TUVTTUTTUT
R R

iz of 98

S
CFG: Example (3)

Design a CFG for the following language:

{wwf | we{0,11*}

e.g., 00, 11,0110, etc.

P - ¢
P - 0PO
P - 1P1

B of Of

/|

CFG: Example (4)

Design a CFG for the set of binary strings, where each block of
0’s followed by at least as many 1’s.

e.g., 000111, 0001111, etc.

¢ We use S to represent one such string, and A to represent
each such block in S.

S -

>>>>W0m
AR

9 of OF

€
AS
€

01
0A1
Al

{BC
{RC
{BC
{BC
{RC
{RC

of
of
of
of
of
of

S}

S}

A}

A}

A: equal 0’s and 1’s}
A: more 1’s}

S
CFG: Example (5.1) Version 1 s

Design the grammar for the following small expression language,
which supports:

Arithmetic operations: +, —, *, /

Relational operations: >, <, >=, <=, ==, /=

Logical operations: true, false, !, &&, | |, =>

Start with the variable Expression.

There are two possible versions:

1. All operations are mixed together.
2. Relevant operations are grouped together.
Try both!

10 of 96|

S
CFG: Example (5.2) Version 1 s

Expression

IntegerConstant

Digit

BooleanConstant

—

IntegerConstant
—IntegerConstant
BooleanConstant
BinaryQOp
UnaryOp

(Expression)

Digit
Digit IntegerConstant

0/1]2|3]4|5|6]7|8]9

TRUE
FALSE

S
CFG: Example (5.3) Version 1 s

BinaryOp — Expression + Expression
| Expression — Expression
| Expression » Expression
| Expression / Expression
| Expression & Expression
| Expression | | Expression
| Expression => Expression
| Expression == Expression
| Expression /= Expression
| Expression > Expression
| Expression < Expression

UnaryOp — ! Expression

/|

CFG: Example (5.4) Version 1 LASSONDE

However, Version 1 of CFG:
o Parses string that requires further semantic analysis (e.g., type
checking):
eg.,3 => 6
o Is ambiguous, meaning?
o Some string may have more than one ways to interpreting it.
¢ An interpretation is either visualized as a parse tree, or written as a
sequence of derivations.

e.g., Draw the parse tree(s) for3 = 5 + 4

/|

CFG: Example (5.5) Version 2 S
Expression — ArithmeticOp
| RelationalOp
| LogicalOp
| (Expression)

IntegerConstant —

Digit -

BooleanConstant —

Digit
Digit IntegerConstant

0/1]2|3]4|5|6]7|8]9

TRUE
FALSE

/|

CFG: Example (5.6) Version 2 LASSONDE

ArithmeticOp — ArithmeticOp + ArithmeticOp

| ArithmeticOp - ArithmeticOp

| ArithmeticOp « ArithmeticOp

| ArithmeticOp / ArithmeticOp

| (ArithmeticOp)

| IntegerConstant

| -IntegerConstant
RelationalOp — ArithmeticOp == ArithmeticOp

| ArithmeticOp /= ArithmeticOp

| ArithmeticOp > ArithmeticOp

| ArithmeticOp < ArithmeticOp

— LogicalOp s s LogicalOp

| LogicalOp | | LogicalOp

| LogicalOp => LogicalOp

| ! LogicalOp

| (LogicalOp)

| RelationalOp

| BooleanConstant

LogicalOp

S
CFG: Example (5.7) Version 2 s

However, Version 2 of CFG:
o Eliminates some cases for further semantic analysis:
e.g., (1 + 2) => (5 / 4) [no parse tree |
o Still parses strings that might require further semantic analysis:
eg., (I +2) / (5-(2+ 3))
o Still is ambiguous.
e.g., Draw the parse tree(s) for3 = 5 + 4

/|

CFG: Formal Definition (1)

* A context-free grammar (CFG) is a 4-tuple (V, £, R, S):
o Vs afinite set of variables.
o Y is a finite set of terminals. [VNnX=2]
o R is afinite set of rules s.t.

Rc{v->s|veVase(Vul)*}

o Se Visisthe start variable.
e Given strings u,v,we (VuX)*, variable Ae V,arule A— w:

o | UAv = uwv |menas that uAv yields uwv.

* - .
o | u= v|means that u derives v, if:
e U=V;oOr
e U =>lh==>U=>V [a yield sequence]

e GivenaCFG G=(V, ¥, R, S), the language of G

LG ={weZ*|S=>w)

/|

CFG: Formal Definition (2): Example LASSONDE

e Design the CFG for strings of properly-nested parentheses.

eg., O, 00, (OO O,etc
Present your answer in a formal manner.
e G=({S}, {(,)}, R, S),where Ris

S—> (8)|SS|e

e Draw parse firees for the above three strings that G generates.

/|

CFG: Formal Definition (3): Example LASSONDE
e Consider the grammar G=(V,%L,R,S):
o Ris
Expr - Expr + Term
| Term
Term - Term » Factor
| Factor
Factor — (Expr)
|

o V ={Expr, Term, Factor}
o Z:{a,-&-,*, (,)}
o S=Expr
e Precedence of operators +, = is embedded in the grammar.
o “Plus” is specified at a higher level (Expr) than is “times” (Term).
o Both operands of a multiplication (Factor) may be parenthesized.

/|

Regular Expressions to CFG’s

¢ Recall the semantics of regular expressions (assuming that we
do not consider @):

L(e) = {e}
L(a) = {a}
L(LE+F) = L(E)uL(F)
L(EF) = L(E)L(F)
LCE") = (L(E))”
LC(E)) = LE)
e e.9., Grammar for (00+1)* + (11 +0)*

S - A|B

A - €e|AC

C - 00]1

B - ¢|BD

D - 11]0

00 of 96|

DFA to CFG,S LASSONDE

e GivenaDFAM=(Q, &, 6, qu, F):
o Make a variable R; for each state g; € Q.
o Make Ry the start variable, where qq is the start state of M.
o Add arule R; — aR; to the grammar if §(q;, a) = g;.
o AddaruIeR,-—>eifq,-eF.

e e.9., Grammar for

Ry — 1Ry |OR;
R1 g 0R0|1R1|6

/|

CFG: Leftmost Derivations (1)

Expr - Expr + Term| Term
Term — Term x Factor | Factor
Factor — (Expr) |a

o Given a string (¢ (VuX)*), a left-most derivation (LMD) keeps
substituting the leftmost non-terminal (¢ V).
o Unique LMD for the stringa + a * a:

Expr

a

A 2R I A

DO D

+

+
+
+
+

Expr + Term
Term + Term
Factor + Term

Term

Term = Factor
Factor « Factor
a = Factor

a x a

o This LMD suggests that a » a is the right operand of +.

/|

CFG: Rightmost Derivations (1)

Expr - Expr + Term| Term
Term — Term = Factor | Factor
Factor - (Expr) |a

o Given a string (¢ (V uX)*), a right-most derivation (RMD) keeps
substituting the rightmost non-terminal (e V).
o Unique RMD for the stringa + a x a:

Expr = Expr + Term
= Expr + Term » Factor
= Expr + Term » a
= Expr + Factor ~ a
= Expr + a » a
= Term + a » a
= Factor + a ~ a
= a+a~a

o This RMD suggests that a » a is the right operand of +.

/|

CFG: Leftmost Derivations (2)

Expr - Expr + Term| Term
Term — Term x Factor | Factor
Factor — (Expr) |a

o Unique LMD for the string (a + a) * a:

Term

Term = Factor
Factor ~ Factor

(Expr) = Factor

(Expr + Term) x Factor
(Term + Term) =« Factor
(Factor + Term) « Factor
(a+ Term) » Factor
(
(
(

Expr

+ Factor) = Factor
+ a) = Factor
+ a) = a

L

a
a
a

o This LMD suggests that (a + a) is the left operand of *.

/|

CFG: Rightmost Derivations (2)

Expr - Expr + Term| Term
Term — Term = Factor | Factor
Factor - (Expr) |a

o Unique RMD for the string (a + a) * a:
Expr = Term

= Term « Factor

= Term = a

= Factor ~ a

= (Expr) = a

= (Expr + Term) x a
= (Expr + Factor) ~ a
= (Expr + a) x a
= (Term + a) * a
= (Factor + a) * a
= (a+a) * a

o This RMD suggests that (a + a) is the left operand of «.

CFG: Parse Trees vs. Derivations (1)

/|

o Parse trees for (leftmost & rightmost) derivations of expressions:

* *
a+a*a I (a+a)*a
Expr
|
Term
7
Term * Factor
I I
Factor a
Expr / | \
| (- Expr)
E / + \T / | \
Xpr erm Expr + Term
[N \ [
Term Term Factor Term Factor
\ \ \ \ \
Factor Factor a Factor a
a a a

o Orders in which derivations are performed are not reflected on

parse trees.

CFG: Parse Trees vs. Derivations (2) S

e A string w € ¥* may have more than one derivations.
Q: distinct derivations for w € ¥* = distinct parse trees for w?
A: Not in general -+ Derivations with distinct orders of variable
substitutions may still result in the same parse tree.

e For example:

Expr - Expr + Term| Term
Term — Term » Factor | Factor
Factor — (Expr) |a

Forstringa + a a,the LMD and RMD have distinct
orders of variable substitutions, but their corresponding parse
trees are the same.

/|

CFG: Ambiguity: Definition LASSONDE

Given a grammar G=(V, X, R, S):
o Astring w e X* is derived ambiguously in G if there exist
two or more distinct parse trees or, equally,

two or more distinct LMDs or, equally,
two or more distinct RMDs.

We require that all such derivations are completed by following a
consisten order (leftmost or rightmost) to avoid false positive.

o Gis ambiguous if it generates some string ambiguously.

S
CFG: Ambiguity: Exercise (1)

e |s the following grammar ambiguous ?
Expr — Expr + Expr | Expr = Expr| (Expr) |a

e Yes --it generates the stringa + a = a ambiguously :

Expr Expr
Expr * Expr Expr + Expr
| \ | | / |
Expr + Expr a a Expr * Expr
I I \ l
a a a a

e Distinct ASTs (for the same input) imply distinct semantic
interpretations: e.g., a pre-order traversal for evaluation

e Exercise: Show LMDs for the two parse trees.

/|

CFG: Ambiguity: Exercise (2.1) LASSONDE

¢ |s the following grammar ambiguous ?

Statement — if Expr then Statement
| if Expr then Statement else Statement
| Assignment
* Yes - it derives the following string ambiguously :

if Expry then if EXpr, tnen Assignment; else Assignment,

Statement Statement
if Expry then Statement if Expry then Statement else Statement
if Expr, then Statement else Statement if Exprp then Statement Assignment,
Assignment, Assignment, Assignment,

e This is called the dangling else problem.

e Exercise: Show LMDs for the two parse trees.

/|

CFG: Ambiguity: Exercise (2.2) LASSONDE

(Meaning 1) Assignment, may be associated with the inner i f:

Statement
if Expry then Statement

if Expr, then Statement else Statement

Assignment, Assignment,

(Meaning 2) Assignment, may be associated with the outer i f:

Statement
if Expry then Statement else Statement

|

if Expr, then Statement Assignment,

Assignment,

/|

CFG: Ambiguity: Exercise (2.3) LASSONDE

* We may remove the ambiguity by specifying that the
dangling else is associated with the nearest if:

Statement — if Expr then Statement
| if Expr then WithElse else Statement
| Assignment

WithElse — if Expr then WithElse else WithElse
|

Assignment

e When applying [if ... then WithElse clse Statement |:

o The true branch will be produced via WithElse.
o The false branch will be produced via Statement.

There is no circularity between the two non-terminals.

_

/|

Discovering Derivations LASSONDE

e GivenaCFG G=(V, X, R, S) and an input program pe ¥*:
o So far we manually come up a valid derivation s.t. S = p.
o A parser is supposed to automate this derivation process.

. m: A sequence of ({, c) pairs, where each tokent (e.g., r241)
belongs to a syniactic category c (e.g., register); and a CFG G.
. : A valid derivation (as an AST); or A parse error.
¢ In the process of constructing an AST for the input program:
o Root of AST: The start symbol S of G
o Internal nodes: A subset of variables V of G
o Leaves of AST: A token/terminal sequence
= Discovering the grammatical connections (w.r.t. R of G) between the
root, internal nodes, and leaves is the hard part!
* Approaches to Parsing: [we(Vux)*, AeV, €R]
o Top-down parsing
For a node representing A, extend it with a subtree representing w.

o Bottom-up parsing
For a substring matching w, build a node representing A accordingly.

/|

TDP: Discovering Leftmost Derivation

ALGORITHM: TDParse
INPUT: cFG G=(V, ¥, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error

PROCEDURE :
root := a new node for the start symbol S
focus := root

initialize an empty stack trace
trace.push (null)
word := NextWord()
while (true):
if focuse V then
if 3 unvisited rule focus — B1Bs...Bn € R then
create B1,B2...08n as children of focus
trace.push (8nBp_1 - - - B2)
focus := B4
else
if focus = S then report syntax error
else backtrack
elseif word matches focus then
word := NextWord()
focus := trace.pop ()
elseif word = EOF A focus = null then return root
else backtrack

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren

TDP: Exercise (1)

¢ Given the following CFG G:

Expr — Expr + Term
| Term

Term - Term »« Factor
| Factor

Factor — (Expr)
| a

Trace TDParse on how to build an AST forinputa + a * a.
e Running TDParse with G results an infinite loop !!!

o TDParse focuses on the leftmost non-terminal.
o The grammar G contains left-recursions.

e We must first convert left-recursions in G to right-recursions.

/|

TDP: Exercise (2)

» Given the following CFG G:

Expr
Expr’

- Term Expr’
- + Term Expr
| e
Term - Factor Term'
Term’ - « Factor Term'
| €
- (Expr)
| a
Exercise. Trace TDParse on building AST fora + a = a.
Exercise. Trace TDParse on building AST for (a + a) * a.
Q: How to handle e-productions (e.g., Expr — €)?
A: Execute focus := frace.pop () to advance to next node.
e Running TDParse will terminate -- G is right-recursive.
e We will learn about a systematic approach to converting

left-recursions in a given grammar to right-recursions.

Factor

Left-Recursions (LR): Direct vs. Indirect

GivenCFG G=(V, X, R, S), a,8,7v¢(VuX)*, Gcontains:
o A cycle if JAcV o« A A
o Adirect LR if A— Aa € R for non-terminal Ae V

e.g., e.g.,
Expr - Expr + Term Expr — Expr + Term
| Term | Expr - Term
Term - Term = Factor | Term
| Factor Term — Term x Factor
Factor — (Expr) | Term / Factor
| |

a

Factor

o An indirect LR if A - Bf € R for non-terminals A,Be V, B = Ay

A - Br
B - Cd
C - At

A
B
C
D

A - Br,B= Atd

—

—
—
—

Ba
Cd
Df

f

| b
| e
| g

| Aa | Cg

A - Ba,B= Aafd

TDP: (Preventively) Eliminating LRs

/|

©CoONOOORAWN =

o L9 to L12: Remove indirect left-recursions from A; to A;_1.
o L13 to L14: Remove direct left-recursions from A; to A;_1.
o Loop Invariant (outer for-loop)? At the start of i iteration:

ALGORITHM: RemoveLR

INPUT: CFG G=(V, £, R, S)

ASSUME: G has no e-productions

OUTPUT: G s.t. G'=G, G has no

indirect & direct left-recursions

PROCEDURE :

impose an order on V: ((A1,Aqs,...,An))

for i: 1 .. n:

for j: 1 .. i-1:

if 3 A,'—>Aj’y€R AN A}—>51 ‘52“6/176:‘? then
replace Aj — Ay with A;j— 17y |d2y|...|0my
end

for Ai— Aia|BeR:
replace it with: A;— A}, Al > oA |e

e No direct or indirect left-recursions for Ai, Az, ..., Ai_1.
e More precisely: Vj:j<i e =(Ikek<jrAj - Ac---€R)

/|

CFG: Ellmlnatlng e-Productions (1) LASSONDE

¢ Motivations:

o TDParse handles each e-production as a special case.

o RemoveLR produces CFG which may contain e-productions.
e¢L=3CFGG=(V, &, R, S) s.t. G has no e-productions.

An e-production has the form A — e.

A variable A is nullable if A= e.
o Each terminal symbol is not nullable.
o Variable A is nullable if either:

e A—-cecR;or

e A— BiB,...Bx ¢ R, where each variable B; (1 < i < k) is a nullable.
Given a production B — CAD, if only variable A is nullable,
then there are 2 versions of B: B - CAD | CD
In general, given a production A — X1 Xz ... Xi with k symbols, if
m of the k symbols are nullable:
o m< k: There are 2™ versions of A.

o m=k: There are 2™ — 1 versions of A. [excluding A — €]

/|

CFG: Ellmlnatlng e-Productions (2) LASSONDE

e Eliminate e-productions from the following grammar:

S - AB
A - ahAle
B — bBB]|e

¢ Which are the nullable variables? [S, A, B]

S - A|B|AB {S-¢ not included}
A - aAA|aAla {A- aA duplicated}
B - bBB|bB|b {B-bB duplicated}

Backtrack-Free Parsing (1) LASSONDE
o TDParse automates the top-down, leftmost derivation process
by consistently choosing production rules (e.g., in order of their
appearance in CFG).
o This inflexibility may lead to inefficient runtime performance due to
the need to backtrack .
¢ e.g., It may take the construction of a giant subtree to find out a
mismatch with the input tokens, which end up requiring it to
backtrack all the way back to the roof (start symbol).
o We may avoid backtracking with a modification to the parser:
e When deciding which production rule to choose, consider:
(1) the current input symbol
(2) the consequential first symbol if a rule was applied for focus
[lookahead symbol]
e Using a one symbol lookhead, w.r.t. a right-recursive CFG, each
alternative for the leftmost nonterminal leads to a unique terminal,
allowing the parser to decide on a choice that prevents backtracking .
o Such CFG is backtrack free with the lookhead of one symbol.
o We also call such backtrack-free CFG a predictive grammar.

_

/|

The FIRST Set: Definition

e Say we write Tc P(X*) to denote the set of valid tokens
recognizable by the scanner.

e FIRST («) = set of symbols that can appear as the first word
in some string derived from «.

* More precisely:
{a} ifaeT
(Wlwes*ra=>wBaBe(Vux)} ifaeV

FIRST(a) = {

The FIRST Set: Examples
 Consider this right-recursive CFG:

0 Goal — Expr 6 Term’ — X Factor Term’

1 Expr — TermExpr’ 7 | = Factor Term’

2 Expr' — + Term Expr’ 8 | €

3 | - Term Expr’ 9 Factor — (Expr)

4 | € 10 | num

5 Term — Factor Term’ 11 | name

e Compute FIRST for each terminal (e.g., num, +, ():

num name + - X + () eof e

FIRST num name + - x = () eof e

e Compute FIRST for each non-terminal (e.g., Expr, Term'):

Expr Expr’ Term Term’ Factor

FIRST (, name,num +, -,€e (,name,num x,=<,e (,name, num

/|

Computing the FIRST Set
{{a} ifaeT
FIRST(a) = .
Wlwes* ra=wBArBe(VUD)*} ifacV

ALGORITHM: GetFirst
INPUT: CFG G=(V, £, R, S)
TcXY* denotes valid terminals
OUTPUT: FirsT: VU TuU{¢ eof} — P(Tu{e, eof})
PROCEDURE :
for ae(Tu{eof,e}): First(a) := {a}
for AeV: FirsT(A) := &
lastFirst := @
while (/astFirst #+ FIRST) :
lastFirst := FIRrsT
for A—B1f2...0keR s.t. VBj:Bje(TuV):
rhs := First(f1) - {€}

for(i := 1; eecFirsT(B))Ai<K; i++):
rhs := rhsU (FIrsT(Biy1) - {€})

if i=kAeeFIrsT(fg) then
rhs := rhsu{e}

end

FIrsT(A) := FirsT(A)Urhs

/|

Computing the FIRST Set: Extension

¢ Recall: FIRST takes as input a token or a variable.
[FIRST: VU T U {¢,e0f} — P(T u{c, e0f})|

e The computation of variable rhs in algoritm GetFirst actually
suggests an extended, overloaded version:

[FIRST:(V U T U {c, e0f})"— P(T u{e, e0f}) |
FIRST may also take as input a string 5152 ... 5, (RHS of rules).

* More precisely:
FIRST(S162...08n) =

Vi:1<i<keeceFIRST(S;
A
e ¢ FIRST(B)

FIRST(31) UFIRST(32) U--- UFIRST(Bk_1) U FIRST(Bx)

Note. 5y is the first symbol whose FIRST set does not contain e.

/|

Extended FIRST Set: Examples

Consider this right-recursive CFG:

0
1
2
3
4
5

Goal —
Expr —
Expr' —
|
|

Term —

Expr

Term Expr’

+ Term Expr’
- Term Expr’
€

Factor Term’

6 Term’ — X Factor Term'

7 |+ Factor Term’
8 | €
9 Factor — (Expr)

10 | num

11 | name

e.g., FIRST(Term Expr’) = FIRST(Term) ={ (,name, num}
e.g., FIRST(+ Term Expr’) = FIRST(+) = {+}
e.g., FIRST(- Term Expr’) = FIRST(-) = {-}
e.g., FIRST(¢) = {¢}

/|

Is the FIRST Set Sufficient

e Consider the following three productions:

Expr' - + Term Term’ (1)
| - Term Term’ (2)
| € (3)

In TDP, when the parser attempts to expand an Expr’ node, it
looks ahead with one symbol to decide on the choice of rule:
FIRST(+) = {+}, FIRST(-) = {-}, and FIRST(¢) = {¢}.
Q. When to choose rule (3) (causing focus := trace.pop())?
A?. Choose rule (3) when focus # FIRST(+) A focus + FIRST(-)?
o Correct but inefficient in case of illegal input string: syntax error is
only reported after possibly a long series of backirack.
o Useful if parser knows which words can appear, after an application of
the e-production (rule (3)), as leadling symbols.
e FoLLow (v: V) = set of symbols that can appear to the
immediate right of a string derived from v.

FOLLOW(V) = {W| W, X,y e T* AV = XA S = xwy}

I

The FoLLoOw Set: Examples LASSONDE

e Consider this right-recursive CFG:

0 Goal — Expr 6 Term’ — X Factor Term'
1 Expr — Term Expr' 7 |+ Factor Term’
2 Expr' — + Term Expr' 8 | €

3 | - Term Expr’ 9 Factor — (Expr)

4 | € 10 | num

5 Term — Factor Term’ 11 | name

e Compute FoLLow for each non-terminal (e.g., Expr, Term'):

Expr Expr’ Term Term’ Factor

FOLLOW eof,) eof,) eof,+,-,) eof,+,-,) eof,+,-,x,+,)

-
—

Computing the FoLLow Set

’FOLLow(v): {w| W,x,ye):*/\v:iX/\S=*>xwy}‘

ALGORITHM: GetFollow
INPUT: CFG G=(V, X, R, S)
OUTPUT: Foriow:V — P(T u{eof})
PROCEDURE :
for AeV: Forrow(A) := @
ForLow(S) := {eof}
lastFollow := @
while (/astFollow # FoLvLow) :
lastFollow := FoLrLow
for A— B1B2...8k € R:
trailer := FoLLow(A)
for i: k .. 1:
if BjeV then
Forrow(B;) := Foruow(f;)Utrailer
if eeFIrsT(S))
then trailer := traileru (First(f;)—c¢€)
else trailer := FIrstT([3;)
else
trailer := FIrsT(f;)

_

/|

Backtrack-Free Grammar

e A backtrack-free grammar (for a top-down parser), when
expanding the focus internal node, is always able to choose
a unique rule with the one-symbol lookahead (or report a
syntax error when no rule applies).

¢ To formulate this, we first define:

FIRST() if ¢ ¢ FIRST(3)
FIRST(S) u FOLLOW(A) otherwise

START(A- f3) = {

FIRST(3) is the extended version where 5 may be $162...5n
* A backtrack-free grammar has each of its productions
A=y |72 |...|vn satisfying:

Vi,j:1<i,j<nAi#jeSTART(y;) N START(y)) = &

/|

TDP: Lookahead with One Symbol

\n,

ALGORITHM: TDParse
INPUT: cFG G=(V, £, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE :
root := a new node for the start symbol S
focus := root
initialize an empty stack frace
trace.push (null)
word := NextWord()
while (true):
if focuse V then
\ if 3Junvisited rule focus — B1B2...B8n€ R A word € Start(8) then

create f(1,B2...8pn as children of focus

trace. push (Bpfp-1 - .. B2)
focus := B4
else

if focus = S then report syntax error
else backtrack
elseif word matches focus then
word := NextWord()
focus := trace.pop ()
elseif word = EOF A focus = null then return root
else backtrack

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren

/|

Backtrack-Free Grammar: Exercise

Is the following CFG backtrack free?

11 Factor — name

12 | name [ArgList]

13 | name (ArgList)

15 ArgList — Expr MoreArgs

16 MoreArgs — , Expr MoreArgs

17 | €
o ¢ ¢ FIRST(Factor) = START(Factor) = FIRST(Factor)
o FIRST(Factor - name) = {name}
o FIRST(Factor - name [ArglList]) = {name}
o FIRST(Factor - name (Arglist)) = {name}

.. The above grammar is not backtrack free.
= To expand an AST node of Factor, with a lookahead of name,
the parser has no basis to choose among rules 11, 12, and 13.

Backtrack-Free Grammar: Left-Factoring |ssono:

* A CFG is not backtrack free if there exists a common prefix
(name) among the RHS of multiple production rules.

* To make such a CFG backtrack-free, we may transform it
using left factoring : a process of extracting and isolating
common prefixes in a set of production rules.

o |ldentify |a common prefix «:

A-api|afe|...laBalyi 2] . |
[each of 4,72, ...,~; does not begin with «]

° that production rule as:

A - aBly|7l...|v
B — B1|B2|...|6Bn

o Newrule B— 31| 32| ... |8, may also contain common prefixes.
o Rewriting | continues | until no common prefixes are identified.

/|

Left-Factoring: Exercise

» Use left-factoring to remove all common prefixes from the
following grammar.

11 Factor
12
13

— name
|
|
15 ArgList — Expr MoreArgs
—
|

name [ArgList]
name (ArgList)

16 MoreArgs , Expr MoreArgs

17 €

¢ |dentify common prefix name and rewrite rules 11, 12, and 13:

Factor — name Arguments
Arguments — [ArglList]
| (ArgList)
| e
Any more common prefixes? [No]

/|

TDP: Terminating and Backtrack-Free

e Given an arbitrary CFG as input to a top-down parser :
o Q. How do we avoid a non-terminating parsing process?
A. Convert left-recursions to right-recursion.
o Q. How do we minimize the need of backtracking?
A. left-factoring & one-symbol lookahead using START
* Not every context-free language has a corresponding
backtrack-free context-free grammar.
Given a CFL /, the following is undecidable:

’ Jefg | L(cfg) = | A isBacktrackFree(cfg) ‘
e GivenaCFGg=(V, &, R, S), whether or not g is
backtrack-free is decidable:
Foreach A=~ |72 |... |7 € R:

Vi,j:1<i,j<nniz+jeSTART(vy;) N START(y;) =@

Backtrack-Free Parsing (2.1) ¥

e A recursive-descent parser is:
o A top-down parser
o Structured as a set of mutually recursive procedures
Each procedure corresponds to a non-terminal in the grammar.
See an
e Given a backtrack-free grammar, a tool (a.k.a.
parser generator) can automatically generate:
o FIRST, FoLLOW, and START sets
o An efficient recursive-descent parser
This generated parser is called an LL(1) parser , which:

e Processes input from Left to right
e Constructs a Leftmost derivation
¢ Uses a lookahead of 1 symbol

e LL(1) grammars are those workinginan LL(7) scheme.

LL(1) grammars are backtrack-free by definition.

Backtrack-Free Parsing (2.2)

/|

e Consider this CFG with START sets of the RHSs:

Production

2 Expr’ — + Term Expr’
3 | - Term Expr’
4 | €

FIRST'

{+}
{-}
{e,eof,)}

e The corresponding recursive-descent parser is structured as:

ExprPrim()
if word = + v word = - then /+ Rules 2, 3 =/
word := NextWord()
if(Term())

then return ExprPrim()
else return false
elseif word =) v word = eof then /+ Rule 4 =/
return true
else
report a syntax error
return false
end

Term()

See: parser generato

/|

LL(1) Parser: Exercise LASSONDE

Consider the following grammar:

L - R a R — aba Q - bbc
| Q ba | caba | bc
| R bc

Q. Is it suitable for a fop-down predictive parser?

o If so, show that it satisfies the LL(7) condition.

o If not, identify the problem(s) and correct it (them). Also show that
the revised grammar satisfies the LL(7) condition.

BUP: Discovering Rightmost Derivation

* In TDP, we build the start variable as the root node, and then
work towards the leaves. [leftmost derivation]
e In Bottom-Up Parsing (BUP):
o Words (terminals) are still returned from left to right by the
scanner.
o As terminals, or a mix of terminals and variables, are identified as
reducible to some variable A (i.e., matching the RHS of some

production rule for A), then a layer is added.
o Eventually:

e accept:

The start variable is reduced and all words have been consumed.
e reject:

The next word is not eof, but no further reduction can be identified.
Q. Why can BUP find the rightmost derivation (RMD), if any?

A. BUP discovers steps in a RMD in its reverse order.
e

BUP: Discovering Rightmost Derivation (1) |

e fable-driven LR(1) parser: an implementation for BUP, which
o Processes input from Left to right
o Constructs a Rightmost derivation
o Uses a lookahead of 1 symbol
* Alanguage has the LR(1) property if it:
o Can be parsed in a single Left to right scan,
o To build a reversed Rightmost derivation,
o Using a lookahead of 1 symbol to determine parsing actions.

o Critical step in a bottom-up parser is to find the next handle .

_

/|

BUP: Discovering Rightmost Derivation (2) |.ssonoe

ALGORITHM: BUParse
INPUT: CFG G=(V, ¥, R, S), Action & Goto Tables
OUTPUT: Report Parse Success or Syntax Error
PROCEDURE :
initialize an empty stack trace
trace.push(0) /% start state x/

word := NextWord()
while (true)
state := trace.top ()
act := Action|state, word]
if act = ‘‘accept’’ then
succeed ()
elseif act = ‘‘reduce based on A— B’’ then
trace.pop () 2x|B| times /* word + state x/
state := trace.top ()
trace. push (A)
next := Goto[state, A]

trace. push (next)
elseif act = ‘‘shift to §;’’ then
trace . push (word)
trace. push (i)
word := NextWord()
else
fail()

BUP: Example Tracing (1) LASSONDE

/|

o Consider the following grammar for parentheses:

1 Goal — List
2 List — List Pair
3 | Pair
4 Pair — (Pair)

5 o)

o Assume: tables Action and Goto constructed accordingly:

State eof

o

r5
r4

VWO NOU A WN =

- o

¢

s3
s3
r3
s6
r2

56
rs
r4

Action Table

)

s7

s8
s10

s 11
r5
r4

Goto Table

List

1

Pair

2
4

5

In Action table:
e s;: shift to state /
 r;: reduce to the LHS of production #j

BUP: Example Tracing (2.1)

et ae o

Consider the steps of performing BUP on input | () |:

initial

1

v b W N

- N N W O

Iteration State word

{

{

)
eof
eof
eof

Stack Handle
$0 — none —
$0 — none —
$0C(3 — none —
$0(3)7)
$ 0 Pair 2 Pair
$ 0 List 1 List

Action

shift 3
shift 7
reduce 5
reduce 3
accept

BUP: Example Tracing (2.2) LASSONDE

Consider the steps of performing BUP on input| (()) () [:

Iteration State word Stack Handle Action
initial — C $0 — none — —

1 0 ($0 — none — shift 3

2 3 ($0C3 — none — shift 6

3 6) $0(3(6 — none — shift 10

4 10) $0(3(6) 10) reduce 5

5 5) $0 (3 Pair5 — none — shift 8

6 8 ($0 (3 Pair5)8 (Pair) reduce4

7 2 ($ 0 Pair 2 Pair reduce 3

8 1 C $ 0 List 1 — none — shift 3

9 3) $0 List 1 (3 — none — shift 7

10 7 eof $O0List1 (3)7) reduce 5

1 4 eof $ 0 List 1 Pair 4 List Pair ~ reduce 2

12 1 eof $ 0 List 1 List accept

BUP: Example Tracing (2.3)

Consider the steps of performing BUP on input| ()) |

Iteration State word Stack Handle Action
initial — C $o — none — —
1 0 $o0 — none — shift 3
2 3) $0C3 — none — shift 7
3 7) $0(3)7 —none— error

LR(1) ltems: Definition LASSONDE

e In LR(1) parsing, Action and Goto tabeles encode legitimate
ways (w.r.t. a CFG) for finding handles (for reductions).

¢ In a table-driven LR(1) parser, the table-construction algorithm
represents each potential handle (for a reduction) with an

LR(1) item e.g.,
[A—> Bey, a]
where:

o A production rule is currently being applied.
o A terminal symbol | a | servers as a lookahead symbol.
o A placeholder [e]indicates the parser’s stack top.
v' The parser’s stack contains 3 (“left context”).
Vv~ ~is yet to be matched.
¢ Upon matching g, if a matches the current word, then we “replace”
B~ (and their associated states) with A (and its associated state).

_

/|

LR(1) Items: Scenarios
An LR(1) item can denote:
1. POSSIBILITY [A— e(3y, a]

o In the current parsing context, an A would be valid.
o e represents the position of the parser’s stack top
o Recognizing a 8 next would be one step towards discovering an A.
2. PARTIAL COMPLETION [A—> Bery, a]
o The parser has progressed from [A — o3y, a] by recognizing £.
o Recognizing a v next would be one step towards discovering an A.
3. COMPLETION [A— [Bve, a]
o Parser has progressed from [A — 3y, a] by recognizing /7.
o B~ found in a context where an A followed by a would be valid.
o If the current input word matches a, then:
o Current complet itemis a handle .
e Parser can reduce v 1to A

o Accordingly, in the stack, 5~ (and their associated states) are
replaced with A (and its associated state).

/|

LR(1) Items: Example (1.1) LASSONDE

Consider the following grammar for parentheses:

Goal — List

I C

1

2 List — List Pair
3 | Pair

4 Pair — (Pair
5

)

)

Initial State: [Goal — eList, eof]
Desired Final State: [Goal — Liste, eof]
Intermediate States: Subset Construction

Q. Derive all LR(1) items for the above grammar.
o FoLLow(List) = {eof, (} FoLLOW(Pair) = {eof, (,)}
o For each production A — 3, given FOLLOW(A), LR(1) items are:

{
{

{[A— (v, a]|ac FOLLOW(A) }
[A—> (e, a]|acFoLLOW(A) }

[A— Bvye, a]| ac FOLLOW(A) }

_

.
LR(1) Items: Example (1.2)

Q. Given production A - 3 (e.g., Pair - (Pair)), how many

LR(1) items can be generated?
o The current parsing progress (on matching the RHS) can be:

1. o(Pair)
2. (ePair)
3. (Paire)
4. (Pair)e

o Lookahead symbol following Pair? = FOLLOW(Pair) = {eof, (,) }
o All possible LR(1) items related to Pair - (Pair)?

V' [e(Pair), ecf] [e(Pair), (] [e(Pa/r)]
V [(ePair), eof] [(ePair), (] [(ePair),)]
V' [(Paire), eof] [(Paire), (] [(Paire ,)]
V' [(Pair)e, eof] [(Pair Ye, (] [(Pair)e,)]

A. How many in general (in terms of A and 3)?
18]+ 1 x |FoLLOW(A)|

—— —_——
possible positions of e possible lookahead symbols

/|

LR(1) Items: Example (1.3) LASSONDE

A. There are 33 LR(1) items in the parentheses grammar.

[Goal — e List,eof]
[Goal — List e,e0f]

[List — e List Pair,eof] [List — e List Pair,(]
[List — List ® Pair,e0f] [List — List e Pair,(]
[List — List Paire,eof] [List— List Paire,(]
[List — e Pair,eof] [List — o Pair,(]
[List — Pair e,e0f | [List — Paire,(]

[Pair — o (Pair),eof] [Pair— e (Pair),)] [Pair — e (Pair),(]
[Pair — (e Pair),eof] [Pair— (e Pair),)] [Pair— (e Pair),(]
[Pair — (Paire),eof] [Pair— (Paire),)] [Pair— (Paire),(]
[Pair — (Pair) e,e0f] [Pair— (Pair)e,)] [Pair — (Pair) e,(]
[Pair — o (),eof] [Pair — o (),(] [Pair — o (),)]
[Pair — (o),e0f] [Pair — (o),(] [Pair — (o),)]
[Pair — () e,e0f] [Pair — () e,(] [Pair— () e,)]

Z0 of 9|

I

LR(1) ltems: Example (2) LASSONDE
Consider the following grammar for expressions:
0 Goal — Expr 6 Term’ — X Factor Term’
1 Expr — Term Expr’' 7 |+ Factor Term’
2 Expr' — + Term Expr’ 8 | €
3 | - Term Expr’ 9 Factor — (Expr)
4 | € 10 | num
5 Term — Factor Term’ 11 | name

Q. Derive all LR(1) items for the above grammar.
Hints. First compute FoLLOW for each non-terminal:

Expr Expr’ Term Term’ Factor

FOLLOW eof,) eof,) eof,+,-,) eof,+,-,) eof,+,-,x,+,)

Tips. Ignore ¢ production such as Expr’ — ¢

since the FOLLOW sets already take them into consideration.

/|

Canonical Collection (CC) vs. LR(1) items |assonoe

1 Goal — List Recall:
Q) List — List Pair LR(1) Items: 33 items
3 | Pair
4 Pair — (pair) | [nitial State: [Goal — eList, eof]
5 1 C) Desired Final State: [Goal — Liste, eof]
o The canonical collection [[Example of CC|]

CC = {ccy, ccy, CCo, ..., CCn}
denotes the set of valid subset states of a LR(1) parser.
e EachccieCC (0<i<n)isasetof LR(1) items.
e CC c P(LR(1) items) lcc|? [|cc| < 2!FR) itemsi |
o To model a LR(1) parser, we use techniques analogous to how an
e-NFA is converted into a DFA (subset construction and e-closure).
o Analogies.
v LR(1) items =~ states of source NFA

v' CC »~ subset states of target DFA

/|

Constructing CC: The closure Procedure (1) |ssonoe

1 | ALGORITHM: closure

2 INPUT: cFG G=(V, ¥, R, S), a set § of LR(1) items
3 OUTPUT: a set of LR(1) items

4 | PROCEDURE :

5 lastS := @

6 while (lastS # s) :

7 lastS := s

8 | for [A—---e C§, a]es: |
9 | for C —yeR: |
10 ‘ for beFirst(da): ‘
11 s:=su{[Cc —ey, b]}

12 return S

o Line8:[A—---e C 4, a] ¢ sindicates that the parser’s next task is to match C ¢
with a lookahead symbol a.

o Line 9: Given: matching ~ can reduce to C
o Line 10: Given: b € FIRST(da) is a valid lookahead symbol after reducing v to C

o Line 11: Add anew item [C — e, b]into s.
o Line 6: Termination is guaranteed.

- Each iteration adds > 1 item to s (otherwise /astS + s is false).

1 Goal — List

2 List — List Pair

3 | Pair Initial State: [Goal — eList, eof]
4 Pair — (Pair)

5

L C)

Calculate ccy = closure({ [Goal — eList, eof] }).

/|

Constructing CC: The goto Procedure (1) LASSONDE

ALGORITHM: goto
INPUT: a set S of LR(1) items, a symbol X
OUTPUT: a set of LR(1) items
PROCEDURE :
moved := &
for iteme s:
if jtem=[a — S ex5, a] then
moved := moveduU{ [a— Bxed, a] }
end
return closure(moved)

COWON®UAWN =

Line 7: Given: item [a — 3 e X4, a] (where x is the next to match)
Line 8: Add [« —~ 8x e ¢, a] (indicating x is matched) to moved
Line 10: Calculate and return closure(moved) as the “next
subset state” from s with a “transition” x.

/|

Constructing CC: The goto Procedure (2) LASSONDE

1 Goal — List

2 List — List Pair [Goal — e List, eof] [List— e List Pair, eof] [List— e List Pair, (]

3 | Pair CCo = { [List — e Pair, eof] [List — e Pair, (] [Pair — e (Pair), eof]
4 Pair — (Pair) [Pair — e (Pair),(] [Pair — e (), eof] [Pair — e (),(]

5)

Calculate goto(ccy, (). [“next state” from ccy taking (]

_

/|

Constructing CC: The Algorithm (1) LASSONDE

™

ALGORITHM: BuildCC
INPUT: a grammar G=(V, ¥, R, S), goal production S— S’
OUTPUT:
(1) a set CC={ccy,ccq,...,CCn} where cci < G's LR(1) items
(2) a transition function
PROCEDURE :
ccy := closure({[S — S, eofl})
CC := {ccy}
processed := {ccy}
10 lastCC := &

O©CoONOOOA~WN =

1 while (lastCC + CC) :

12 lastCC := CC

13 for cc; s.t. ccje CC Accj ¢ processed :
14 processed := processed U {cc;}

15 for x s.t. [-+—>---ex...]ecc

16 temp := goto(cc;, x)

17 if temp ¢ CC then

18 CC := CCu {temp}

19 end

20 6 := du(cc, x, temp)

ZZ of 96

Constructing CC: The Algorithm (2.1)

Goal — List

List — List Pair
| Pair

Pair — (Pair)

P C)

wn AW N

e Calculate CC = {ccy, ccy, ..., cC11}
e Calculate the transition function § : CC x (X u V) - CC

_

/|

Constructing CC: The Algorithm (2.2) LASSONDE

Resulting transition table:

Iteration Item Goal List Pair () eof
0 CCo [CC; CCp CC3 [%) [
1 cCy /] @ ccy ccz B]

CCy]) 1% 7 % %
CC3) @ ccs ccg CC7 @
2 CCy] 0]] % %)
CCs] % 7]] CCg]
CCgq %)] CC9 CCq CCpo [%)
CcCy @ U 1% 7 % %
3 CCg)) 1% 0 % %
CCq]] [B ccyy (%)
CCjo]) 1% % 1% %
4 CCp1 [] [[]]

Z9 of 96|

Constructing CC: The Algorithm (2.3)

Resulting DFA for the parser:

Puir @ Pl
A

© @

LV(
F

Pair

/|

Constructing CC: The Algorithm (2.4.1)

Resulting canonical collection CC: []

[Goal — e List, eof] [List— List Pair, eof] [List— e List Pair, (] [Goal — List e, c0f] [List— List o Pair, [List — List o Pair, (]
cCo = { [List — e Fair, eof] [List— o Pair, (] [Pair — e (Pai ccy = { [Pair — o (Pair), eof] [Pair — e (Pair [Pair — e (), e0f]
[Pair— e (Pair),(1 ~ [Pair— e (), eof] [Pair — [Pair — o (
CCy = [[Li_yz —> Pair e, e0f] [List — Pair e, (]} oy = |Pair — o CPair),)] [Pair— (o Pair), eof] [Pair — ¢ ./uw
= 3T tPair— e),0] [Pair — (e), e0f] [Pair — (o).

ccy = {[Lisr—> List Pair o, c0f] [List — List Pair-.g} ces = {[pa,r_> (Paire), eof] [Pair— (Paire), }

P [Pair — e (Pair),)] [Pair — (e Pair),)]
T [Pair— e ().)] [Pair — (o),)

ccy = {[Pair—> () e,eof] [Pair— ()e, (]

oy = {[Pair—> (Pair) e, e0f] [Pair— (Pair) e, g}

CCo = [[Pair—> (Paire), }

CCIOZ{[P(U.F—> Ll‘,l]} CC11:{[Pair—> (Pair) e,)]

Constructing Action and Goto Tables (1)

/|

O O O O

©CoONOOOA~ WN =

ALGORITHM: BuildActionGotoTables
INPUT:
(1) a grammar G=(V, £, R, S)
(2) goal production S— 8’

(3) a canonical collection CC ={ccy,CCq,...

(4) a transition function 6:CCxX — CC
OUTPUT: Action Table & Goto Table
PROCEDURE:
for ccje CC:
for jtem e cc;:
if jtem=[A— Bexvy, a]ad(cc,x) = CCj then

Action[i, x] := shift j
elseif jtem=[A— Be, a] then
Action[i, a] := reduce A— 3
elseif jtem=[S — S’e, eof] then
Action[i, eof] := accept
end
for veV:

if §(ccj, v)=cc then
Goto[i, v] = j
end

,CCn}

L12, 13: Next valid step in discovering A is to match terminal symbol x.
L14, 15: Having recognized g, if current word matches lookahead a, reduce S to A.
L16, 17: Accept if input exhausted and what’s recognized reducible to start var. S.

L20, 21: Record consequence of a reduction to non-terminal v from state i

/|

Constructing Action and Goto Tables (2)

Resulting Action and Goto tables:

Action Table Goto Table
State eof () List Pair
0 s3 1 2
1 acc s3 4
2 r3 r3
3 s6 s7 5
4 r2 r2
5 s8
6 s6 s10 9
7 r5 r5
8 r4 r4
9 s 11
10 r5
11 r4

BUP: Discovering Ambiguity (1)
1 Goal — Stmt
2 Stmt — if expr then Stmt
3 | if expr then Stmt else Stmt
4 | assign

e Calculate CC = {ccy, ccy, ..., }

¢ Calculate the transition function 6 : CC x ¥ — CC

/|

BUP: Discovering Ambiguity (2.1) LASSONDE

Resulting transition table:

Item Goal Stmt if expr then else assign eof
0 cco [CcCp CCy [[[cC3]
1 ccy [} [? []]] [
cc, ¥ 9 9 ccy [/} [’} [/} ?
¢ [? [[]]] [
2 CCy [4] [4] [[CCs [[]
3 CCs [4] CCq CC7 [4] [} [} CCg [4]
4 CCq [[[[(4] CCy (4} [
cCy [[[CC1o (4} [} [} [4]
cCg [[? []]] [}
5 CCg [cCpp CCy [[4 cCs3]
CcCyo [[[CCpa [[]
6 CCyj [} [? []]] [}
CcCy2 [cCj3 CCy [[[[efe]
7 CCi3 [4] [4] [4] [4] [} CClq [} [4]
8 ccy ¥ ccys cCy [} (/] /] cCg [/}
9 cci;5 O [[[]]] [}

/|

BUP: Discovering Ambiguity (2.2.1) LASSONDE

Resulting canonical collection CC:

CcCy| = {[Goal—> Stmt o,eof]]

| 1Goal— e stmt, e0f] [Stmt— o if expr then Stmt,eof]

CCO= 1 (Stmt — o assign, eof | [Stmt— e 1f expr then Stmtelse Stm,eof]

cor= [Stmt — w_f e expr then Stmt,eof], CC3 — [Stmt — ass1 gne eof]
[Stmt — if e expr then Stmtelse Stmt,eof]

[Stmt — if expr then e Stmt,eof],
[Stmt — if expr then e Stmtelse Stmt,eof],

. CCs = 4 [Stmt f then Stmt, f,el
[Stmt — if expr e then Stmt,eof], } 3 [Stmt — o 1f expr then Smt.{eof.else}l.

ccy =
4 [Stmt — if expr e then Stmt else Stmt,eof]

[Stmt — e assign,{eof,else}],
[Stmt — e if expr then Stmtelse Stmt,{eof,else}]

, _ J[Stmt— if expr then Sumt e,e0f], [Stmt — if o expr then Smt{eof,else}],
CCo = ccy =

[Stmt — if expr then Stmt eelse Stmt,eof] [Stmt — if e expr then Stmt else Stmt,{eof,else}]

BUP: Discovering Ambiguity (2.2.2) LASSONDE

/|

Resulting canonical collection CC:

cCg = {[Stmt — assign e,{eof,else}]}

CCo

CCi2 =

cCiy =

_ J[Stmt— if expr e then Stmt,{eof,else}l],
" |[Stmt — if expr e then Stmtelse Stmt,{eof,else}]

[Stmt — if expr then e Stmt,{eof,else}],

[Stmt — if expr then e Stmtelse Stmt,{eof,else}],
[Stmt — e if expr then Stmt,{eof,else}],

[Stmt — e if expr then Stmtelse Stmt,{eof,else}],
[Stmt — eassign,{eof,else}]

[Stmt — if expr then Stmtelse e Stmt,{eof,else}],
[Stmt — o if expr then Stmt,{eof,else}],

[Stmt — e if expr then Stmtelse Stmt,{eof,else}],
[Stmt — e assign,{eof,else}]

|

[Stmt — if expr then Stmtelse e Stmt,eof],
[Stmt — e if expr then Stmt,eof],

CCy =
o [Stmt — e if expr then Smmtelse Stmt,eof],
[Stmt — e assign,eof]
cCyy = {[Stmt — if expr then Stmtelse Stmt e,e0f]}
- [Stmt — if expr then Stmr o ,{eof,else}],
B\ [Stme— i expr then Stmt o else Stmt,{eof,else}]

/|

BUP: Discovering Ambiguity (3) LASSONDE

e Consider ccy3

CCia — [Stmt — if expr then Stmt e ,{eof,else}],
3= [Stmt — if expr then Stmt e else Stmt,{eof,else}]

Q. What does it mean if the current word to consume is else?
A. We can either shift (then expecting to match another Stmt) or
reduce to a Stmt.
Action[13, else] cannot hold shift and reduce simultaneously.
= This is known as the shift-reduce conflict .
¢ Consider another scenario:
[A = 7de, a], }

[B — ~de, a]

Q. What does it mean if the current word to consume is a?
A. We can either reduce to A or reduce to B.

Action[i, a] cannot hold A and B simultaneously.

= This is known as the reduce-reduce conflict .

CCj =

Index (1) :A§SCE>MI&BNE

Parser in Contexil

[Contexi-Free Languages: Iniroduction|
[CFG: Example (1.1)

[CFG: Example (1.2)

[CFG: Example (1.2)

[CFG: Example (3)

[CFG: Example (4)

[CFG: Example (5.1) Version 1|

[CFG: Example (5.2) Version 1|

[CFG: Example (5.3) Version 1|

Index (2) :Agsgurgig“s

[CFG: Example (5.4) Version 1|

[CFG: Example (5.5) Version 2,

[CFG: Example (5.6) Version 2

[CFG: Example (5.7) Version 2|

[CFG: Formal Definition (1)

[CFG: Formal Definition (2): Example|
[CFG: Formal Definition (3): Example|
Regular Expressions to CFG’s|
DEAi0 CEG’S

[CFG: Cefimost Derivations (1)

[CFG: Rightmost Derivations (1)

Index (3) :Agsgurgig“s

[CFG: Leftmost Derivations (2)]
[CFG: Rightmost Derivations (2)

[CFG: Parse Trees vs. Derivations (1)
[CFG: Parse Trees vs. Derivations (2)
[CFG: Ambigquity: Definition|

[CFG: Ambiguity: Exercise (1)

[CFG: Ambiquity: Exercise (2.1)
[CFG: Ambiguity: Exercise (2.2)]

[CFG: Ambiguity: Exercise (2.3}

Discovering Derivations]

[TDP: Discovering Leftmost Derivation|

Index (4) :A§SCE>MI&BNE

[TDP: Exercise (1)

[TDP: Exercise (2)

[Ceft-Recursions (LF): Direct vs. Indireci
[TDP: (Preventively) Eliminating LRs]
[CFG: Eliminating e-Productions (1)
[CFG: Eliminating e-Productions (2)
Backirack-Free Parsing (1)

[The first Set: Examples|

[Computing the Tirst Sefi

Eomguting the first Set: Extension|

Index (5) :Agsgurgig“s

[Extended Tirst Set: Examples

s the first Set Sufficient?

[The Tollow Set: Examples

[Computing the follow Sef
Backirack-Free Grammad

ITDP: Lookahead with One Symbol
Backirack-Free Grammar: Left-Factoring|

[Ceft-Factoring: Exercise|

[TDP: Iermmatlng and Backirack-Free

Backirack-Free Parsing (2.1)

Index (6) :A§SCE>MI&BNE

Backirack-Free Parsing (2.2)
[CL(1) Parser: Exercise|

IBUP: Discovering Rightmost Derivation|

IBUP: Discovering Rightmost Derivation (1)

IBUP: Discovering Rightmost Derivation (2)|

BUP: Example Tracing (1)
BUP: Example Tracing (2.1)
[BUP: Example Tracing (2.2)
BUP: Example Tracing (2.3)

ICR(1) Ttems: Definition|

ICR(1) tems: Scenarios

Index (7)

‘L;Aﬁsgmeﬁ

ICR(1) Ttems: Example (1.1)

ICR(1) Ttems: Example (1.2)|

tems: Example (1.

[CR(1) tems: Example (2)

[Canonical Collection (CC) vs. LR(1) items]

[Constructing CC:

The closure Procedure (1)

[Constructing CC:

The closure Procedure (2.1)|

[Constructing CC:

The goto Procedure (1)

[Constructing CC:

The goto Procedure (2)|

[Constructing CC:

The Algorithm (1)

[Constructing CC:

The Algorithm (2.1)

Index (8) :Agsgurgig“s

bonstructlng CC: The Algorithm (2.2)
[Constructing CC: The Algorithm (2.3)
[Constructing CC: The Algorithm (2.4)
[Constructing Action and Goto Tables (1)

[Constructing Action and Goto Tables (2)
BUP: Discovering Ambiguity (1)

IBUP: Discovering Ambiguity (2.1)
BUP: Discovering Ambiquity (2.2.7)

IBUP: Discovering Ambiquity (2.2.2)
IBUP: Discovering Ambiguity (3)

Composite & Visitor Design Patterns

EECS4302 A:
Compilers and Interpreters

chv) R K ' Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

Learning Objectives LASSONDE

U e

Motivating Problem: Recursive Systems

Three Design Attempts

Inheritance: Abstract Class vs. Interface

Fourth Design Attempt: Composite Design Pattern

Implementing and Testing the Composite Design Pattern

/|

Motivating Problem (1) LASSONDE

e Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.

e.g., A computer system is composed of:
e Base equipment (hard drives, cd-rom drives)
e.g., Each drive has properties: e.g., power consumption and cost.
e Composite equipment such as cabinets, busses, and chassis
e.g., Each cabinet contains various types of chassis, each of which containing
components (hard-drive, power-supply) and busses that contain cards.

* Design a system that will allow us to easily build systems and
compute their aggregate cost and power consumption.

Motivating Problem (2) LASSONDE

Design of hierarchies represented in tree structures

CABINET

, ?I—fASSIS
| V\ ar >;‘v ‘. q)‘
v \ .EJ |

POWER SUPPLY
CARD HARD_DRIVE DVD-CDROM

CHASSIS

o

Challenge : There are base and recursive modelling artifacts.

\n,

Design Attempt 1: Architecture

equipment

- ~
<abstract> Equipment List<Equipment> children

abstract double price()

Equipment
@m\ quipmente

add(Equipment ¢)
ensure children[children.size()] ==e | _
J

v/ A

<abstract>
CompositeEquipment

lava_ | ist API

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

-
—

Design Attempt 1: Flaw? = [Lsson

Q: Any flaw of this first design?
A: Two “composite” features defined at the Equipment level:

o List<Equipment> children

o add (Equipment child)

= Inherited to each base equipment (e.g., DiskDrive), for
which such features are not applicable.

™

Design Attempt 2: Architecture

equipment

<abstract> Equipment

List<Equipment> children

abstract double price()

7 A

@ VideoCard (<abstract> CompositeEquipment

ensure children[children.size()] == e

VAV

'
'
1
l]
E add(Equipment e) J
'
'
'
'
'

/|

Design Attempt 2: Flaw? LASSONDE

Q: Any flaw of this second design?
A: Two “composite” features defined at the Composite level:

o List<Equipment> children
o add (Equipment child)

= Multiple types of the composite (e.g., equipment, furniture)
cause duplicates of the Composite class.

= Use a generic (type) parameter to abstract away the
concrete type of any potential composite.

/|

Design Attempt 3: Architecture

\n,

equipment patterns

(<abstract> Composite<E>)

List<E> children
add(E ¢)
ensure children[children.size())

/ <abstract> Equipment

List<Equipment> children

abstract double price()

VideoCard
<abstract>
Compos ment

extends Composite<Equipment>

/|

Design Attempt 3: Flaw? LASSONDE

Q: Any flaw of this third design?

A: It does not compile:
Java does not support multiple inheritance!

o See: hitps://docs . oracle.com/iavase/tutorial/iava/Iandl/multinleinheritance . html
o A class may inherit from at most one class (abstract or not).
Rationale. MI results in name clashes
[a.k.a. the Diamond Problem].

o However, a class may implement multiple interfaces.
[workaround for implementation]

https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html

/|

\n,

The Composite Pattern: Architecture

equipment patterns

<interface> Equipment

List<E> children
add(E ¢)
ensure children[children.size()] == ¢

List<Equipment> children

ment ¢
double price()

<abstract>
CompositeEquipment
extends Composite<Equipment>

<abstract>
BaseEquipment

/|

The Composite Pattern: Instantiations

patterns

<abstract> Comp:
List<E> children
add(E ¢)

ensure children[children.size()|

equipment furniture

<interface> Equipment <interface> Furniture

List<Equipment> children List<Furniture> children

double price() double weight()

<abstract>
CompositeFurniture
extends Composite<Furniture>

<abstract>
CompositeEquipment
extends Composite<Equipment>

<abstract>
BaseFurniture

R

Implementing the Composite Pattern (1)

public interface Equipment {
public String name();
public double price(); /+
}

public abstract class BaseEquipment implements Equipment {
private String name;
private double price;
public BaseEquipment (String name, double price) {

this.name = name; this.price = price;
}
public String name() { return this.name; }
public double price() { return this.price; }

public class VideoCard extends BaseEquipment {
public VideoCard(String name, double price) {
super (name, price);
}
}

/|

Implementing the Composite Pattern (2.1) |.assonoe

import java.util.List;

public abstract class Composite<E> {
protected List<E> children;

public void add(E child) {
children.add(child); /* polymorphism %/
}
}

/|

Implementing the Composite Pattern (2.2) | assonoe

import java.util.ArrayList;

public abstract class CompositeEquipment
extends Composite<Equipment>
implements Equipment
{
private String name;
public CompositeEquipment (String name) {
this.name = name;
this.children = new ArrayList<>();
}
public String name() { return this.name; }
public double price() {
double result = 0.0;
for (Equipment child : this.children) {
result = result + child.price(); /#* dynamic binding */
}

return result;

/|

Implementing the Composite Pattern (2.2) |assono:

public class Chassis extends CompositeEquipment {
public Chassis(String name) {
super (name) ;
}
}

/|

Testing the Composite Pattern

@Test

public void test_equipment () {
Equipment card, drive;
Bus bus;

Cabinet cabinet;
Chassis chassis;

card = new VideoCard("1l6Mbs Token Ring", 200);
drive = new DiskDrive("500 GB harddrive", 500);
bus = new Bus ("MCA Bus");

chassis = new Chassis("PC Chassis");

cabinet = new Cabinet ("PC Cabinet");
bus.add(card) ;

chassis.add(bus) ;

chassis.add(drive) ;

cabinet.add(chassis);

assertEquals (700.00, cabinet.price(), 0.1);

Ak

/|

Summay: The Composite Pattern

J : Categorize into base artifacts or recursive artifacts.

Programming ‘:

Build the tree structure representing some hierarchy.

Allow clien

ts to treat base objects (leafs) and recursive

compositions (nodes) uniformly (e.g., price ()).

=

=

Polymorphism |: leafs and nodes are “substitutable”.

Dynamic Binding

: Different versions of the same

operation is applied on base objects and composite objects.
e.g., Given ’ Equipment e ‘:

o may return the unit price, e.g., of a DiskDrive.

(e}

e.price ()

may sum prices, e.g., of a Chassis’ containing equipment.

/|

Learning Objectives

1. Motivating Problem: Processing Recursive Systems

2. First Design Attempt: Cohesion & Single-Choice Principle?
3. Design Principles:

o Cohesion
o Single Choice Principle

o Open-Closed Principle
4. Second Design Attempt: Visitor Design Pattern
5. Implementing and Testing the Visitor Design Pattern

Motivating Problem (1) LASSONDE

Based on the composite pattern you learned, design classes
to model structures of arithmetic expressions
(e.9., 341, 2, 341 + 2).

(<interface> Expressionw r<abstract> CompositeExpressiorﬂ

bstract Expression /left()
l“t value() abstract Expression right()

r Constant Addition

1

J

Motivating Problem (2) LASSONDE

Extend the composite pattern to support operations such as
evaluate, pretty printing (print prefix, print_postfix),
and type_check.

<interface> Expression (<abstract> CompositeExpression]

int value()

void evaluate()
void printPrefix()
void printPostfix()
void typeCheck()

abstract Expression /left()
abstract Expression right()

(CONsTANT+) (ADDITION+)

int value() int value()

void evaluate() void evaluate()
void printPrefix() void printPrefix()
void printPostfix() void printPostfix()

void typeCheck() void typeCheck()

Design Principles: ‘fléésgsom

Information Hiding & Single Choice

e Cohesion:
o A class/module groups relevant features (data & operations).
e Single Choice Principle (SCP):
o When a change is needed, there should be a single place (or a

minimal number of places) where you need to make that change.
o Violation of SCP means that your design contains redundancies.

/|

Problems of Extended Composite Pattern |.ssono:

e Distributing unrelated operations across nodes of the
abstract syntax tree violates the single-choice principle:
To add/delete/modify an operation
= Change of all descendants of Expression

e Each node class lacks in cohesion:

A class should group relevant concepts in a single place.

= Confusing to mix codes for evaluation, pretty printing, type checking.
= Avoid “polluting” the classes with these unrelated operations.

/|

Open/Closed Principle LASSONDE

o Software entities (classes, features, etc.) should be open for
extension, but closed for modification.

= As a system evolves, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.

* e.g., In designing the application of an expression language:
o ALTERNATIVE 1:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.
o ALTERNATIVE 2:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.

Visitor Pattern

e Separation of concerns:

o Set of language (syntactic) constructs

o Set of operations

= Classes from these two sets are decoupled and organized
into two separate packages.

e Open-Closed Principle (OCP): [ALTERNATIVE 2]
o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations
= OCP helps us determine if the Visitor Pattern is applicable.

= If it is determined that language constructs are open and
operations are closed, then do not use the Visitor Pattern.

/|

Visitor Pattern: Architecture LASSONDE

/|

Visitor Pattern Implementation: Structures |.assono:

Package structures
o Declare]void accept (Visitor v) \in abstract class Expression.

o Implement accept in each of Expression’s descendant classes.

public class Constant implements Expression f{

public void accept (Visitor v) {
v.visitConstant (this) ;
}
}

public class Addition extends CompositeExpression {

public void accept (Visitor v) {
v.visitAddition (this);
}
}

_

/|

Visitor Pattern Implementation: Operations |..ssonoe

Package operations
o For each descendant class C of Expression, declare a method header
[void visitC (e: ©) |inthe interface visitor.

public interface Visitor {
public void visitConstant (Constant e);
public void visitAddition(Addition e);
public void visitSubtraction(Subtraction e)
}

[e]

Each descendant of vISITOR denotes a kind of operation.

public class Evaluator implements Visitor {
private int result;

public void visitConstant (Constant e) {
this.result = e.value();

}

public void visitAddition(Addition e) {
Evaluator evall = new Evaluator();
Evaluator evalR = new Evaluator();
e.getLeft () .accept (evall) ;
e.getRight () .accept (evalR);
this.result evalL.result () + evalR.result();

_

/|

Testing the Visitor Pattern LASSONDE
@Test
public void test_expression_evaluation() {

CompositeExpression add;

Expression cl, c2;

Visitor v;

cl = new Constant(l); c2 = new Constant(2);
add = new Addition(cl, c2);

v = new Evaluator();

add. accept (v) ;

assertEquals (3, ((Evaluator) v).result());

- O OVWoONOUAWN =

—_

Double Dispatch in Line 9:

1. DT of add is Addition = Call accept in ADDITION.
|v.visitAddition (add) |
2. DT of visEvaluator = Call visitAddition in Evaluator.

’visiting result of add.left () ‘+ ’ visiting result of add. right () ‘
paar

/|

To Use or Not to Use the Visitor Pattern

e In the visitor pattern, what kind of extensions is easy?
Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | CCodeGenerator \ of visitor,
then implement how to handle each language element in that class.
= Single Choice Principle is satisfied.

* In the visitor pattern, what kind of extensions is hard?
Adding a new kind of structure element is hard.
After adding a descendant class Multiplcation of Expression,
every concrete visitor (i.e., descendant of Visitor) must be amended
with a new ’ visitMultiplication ‘ operation.

= Single Choice Principle is violated.

e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations (applied to structure) change often.

= Do not use visitor if the sfructure changes often.
Biof3y

Index (1) :_A§SCE>MI&BNE

[Cearning Objectives|

[Motivating Problem (1)

[Motivating Problem (2)|

Design Attempt 1: Architecture]
Design Attempt 1: Flaw?

Design Attempt 2: Architecture]
Design Attempt 2: Flaw?|

Design Attempt 3: Architecture]
Design Attempt 3: Flaw?|

['he Composite Pattern: Architecture|

IThe Composite Pattern: Instantiations|
Efora

Index (2) :Agsgurgig“s

implementing the Composite Pattern (1)

Implementing the Composite Pattern (2.1)

implementing the Composite Pattern (2.2)f

Implementing the Composite Pattern (2.3)f

ITesting the Composite Pattern|

ISummary: The Composite Pattern|

[Cearning Objectives|

[Motivating Problem (1)
[Motivating Problem (2)|

Design Principles: |
information Hiding & Single Choicel

Index (3)

Problems of Extended Composite Pattern|

pen/Closed Princip
Nisitor Pafiern

Visiior P —Archi |

\Visitor Pattern Implementation: Structures)

\Visitor Pattern Implementation: Operations]

IIestlng the Visitor Pattern|

Mol Nof fo Use the Visitor Pafiern

	01-Overview-of-Compilation
	What is a Compiler? (1)
	What is a Compiler? (2)
	Compiler: Typical Infrastructure (1)
	Compiler: Typical Infrastructure (2)
	Example Compiler 1
	Compiler Infrastructure: Scanner vs. Parser vs. Optimizer
	Compiler Infrastructure: Scanner
	Compiler Infrastructure: Parser
	Compiler Infrastructure: Optimizer (1)
	Compiler Infrastructure: Optimizer (2)
	Example Compiler 2
	Example Compiler 2
	Example Compiler 2: Transforming Data
	Example Compiler 2: Input/Source
	Example Compiler 2: Output/Target
	Example Compiler 2: Transforming Updates
	Beyond this lecture…

	02-Lexical-Analysis
	Scanner in Context
	Scanner: Formulation & Implementation
	Alphabets
	Strings (1)
	Strings (2)
	Review Exercises: Strings
	Languages
	Review Exercises: Languages
	Problems
	Regular Expressions (RE): Introduction
	RE: Language Operations (1)
	RE: Language Operations (2)
	RE: Construction (1)
	RE: Construction (2)
	RE: Construction (3)
	RE: Construction (4)
	RE: Review Exercises
	RE: Operator Precedence
	DFA: Deterministic Finite Automata (1.1)
	DFA: Deterministic Finite Automata (1.2)
	DFA: Deterministic Finite Automata (1.3)
	Review Exercises: Drawing DFAs
	DFA: Deterministic Finite Automata (2.1)
	DFA: Deterministic Finite Automata (2.2)
	DFA: Deterministic Finite Automata (2.3.1)
	DFA: Deterministic Finite Automata (2.3.2)
	DFA: Deterministic Finite Automata (2.4)
	DFA: Deterministic Finite Automata (2.5)
	Review Exercises: Formalizing DFAs
	NFA: Nondeterministic Finite Automata (1.1)
	NFA: Nondeterministic Finite Automata (1.2)
	NFA: Nondeterministic Finite Automata (2)
	NFA: Nondeterministic Finite Automata (3.1)
	NFA: Nondeterministic Finite Automata (3.2)
	NFA: Nondeterministic Finite Automata (3.3)
	DFA NFA (1)
	DFA NFA (2.2): Lazy Evaluation (1)
	DFA NFA (2.2): Lazy Evaluation (2)
	DFA NFA (2.2): Lazy Evaluation (3)
	-NFA: Examples (1)
	-NFA: Examples (2)
	-NFA: Formalization (1)
	-NFA: Formalization (2)
	-NFA: Epsilon-Closures (1)
	-NFA: Epsilon-Closures (2)
	-NFA: Formalization (3)
	-NFA: Formalization (4)
	DFA -NFA: Extended Subset Const. (1)
	DFA -NFA: Extended Subset Const. (2)
	Regular Expression to -NFA
	Regular Expression to -NFA
	Regular Expression to -NFA
	Regular Expression to -NFA: Examples (1.1)
	Regular Expression to -NFA: Examples (1.2)
	Minimizing DFA: Motivation
	Minimizing DFA: Algorithm
	Minimizing DFA: Examples
	Exercise: Regular Expression to Minimized DFA
	Implementing DFA as Scanner
	Implementing DFA: Table-Driven Scanner (1)
	Implementing DFA: Table-Driven Scanner (2)

	03-Syntactic-Analysis
	Parser in Context
	Context-Free Languages: Introduction
	CFG: Example (1.1)
	CFG: Example (1.2)
	CFG: Example (1.2)
	CFG: Example (2)
	CFG: Example (3)
	CFG: Example (4)
	CFG: Example (5.1) Version 1
	CFG: Example (5.2) Version 1
	CFG: Example (5.3) Version 1
	CFG: Example (5.4) Version 1
	CFG: Example (5.5) Version 2
	CFG: Example (5.6) Version 2
	CFG: Example (5.7) Version 2
	CFG: Formal Definition (1)
	CFG: Formal Definition (2): Example
	CFG: Formal Definition (3): Example
	Regular Expressions to CFG's
	DFA to CFG's
	CFG: Leftmost Derivations (1)
	CFG: Rightmost Derivations (1)
	CFG: Leftmost Derivations (2)
	CFG: Rightmost Derivations (2)
	CFG: Parse Trees vs. Derivations (1)
	CFG: Parse Trees vs. Derivations (2)
	CFG: Ambiguity: Definition
	CFG: Ambiguity: Exercise (1)
	CFG: Ambiguity: Exercise (2.1)
	CFG: Ambiguity: Exercise (2.2)
	CFG: Ambiguity: Exercise (2.3)
	Discovering Derivations
	TDP: Discovering Leftmost Derivation
	TDP: Exercise (1)
	TDP: Exercise (2)
	Left-Recursions (LF): Direct vs. Indirect
	TDP: (Preventively) Eliminating LRs
	CFG: Eliminating -Productions (1)
	CFG: Eliminating -Productions (2)
	Backtrack-Free Parsing (1)
	The first Set: Definition
	The first Set: Examples
	Computing the first Set
	Computing the first Set: Extension
	Extended first Set: Examples
	Is the first Set Sufficient?
	The follow Set: Examples
	Computing the follow Set
	Backtrack-Free Grammar
	TDP: Lookahead with One Symbol
	Backtrack-Free Grammar: Exercise
	Backtrack-Free Grammar: Left-Factoring
	Left-Factoring: Exercise
	TDP: Terminating and Backtrack-Free
	Backtrack-Free Parsing (2.1)
	Backtrack-Free Parsing (2.2)
	LL(1) Parser: Exercise
	BUP: Discovering Rightmost Derivation
	BUP: Discovering Rightmost Derivation (1)
	BUP: Discovering Rightmost Derivation (2)
	BUP: Example Tracing (1)
	BUP: Example Tracing (2.1)
	BUP: Example Tracing (2.2)
	BUP: Example Tracing (2.3)
	LR(1) Items: Definition
	LR(1) Items: Scenarios
	LR(1) Items: Example (1.1)
	LR(1) Items: Example (1.2)
	LR(1) Items: Example (1.3)
	LR(1) Items: Example (2)
	Canonical Collection (CC) vs. LR(1) items
	Constructing CC: The closure Procedure (1)
	Constructing CC: The closure Procedure (2.1)
	Constructing CC: The goto Procedure (1)
	Constructing CC: The goto Procedure (2)
	Constructing CC: The Algorithm (1)
	Constructing CC: The Algorithm (2.1)
	Constructing CC: The Algorithm (2.2)
	Constructing CC: The Algorithm (2.3)
	Constructing CC: The Algorithm (2.4)
	Constructing Action and Goto Tables (1)
	Constructing Action and Goto Tables (2)
	BUP: Discovering Ambiguity (1)
	BUP: Discovering Ambiguity (2.1)
	BUP: Discovering Ambiguity (2.2.1)
	BUP: Discovering Ambiguity (2.2.2)
	BUP: Discovering Ambiguity (3)

	04-Composite-Visitor
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Attempt 1: Architecture
	Design Attempt 1: Flaw?
	Design Attempt 2: Architecture
	Design Attempt 2: Flaw?
	Design Attempt 3: Architecture
	Design Attempt 3: Flaw?
	The Composite Pattern: Architecture
	The Composite Pattern: Instantiations
	Implementing the Composite Pattern (1)
	Implementing the Composite Pattern (2.1)
	Implementing the Composite Pattern (2.2)
	Implementing the Composite Pattern (2.3)
	Testing the Composite Pattern
	Summary: The Composite Pattern
	Learning Objectives
	Motivating Problem (1)
	Motivating Problem (2)
	Design Principles: Information Hiding & Single Choice
	Problems of Extended Composite Pattern
	Open/Closed Principle
	Visitor Pattern
	Visitor Pattern: Architecture
	Visitor Pattern Implementation: Structures
	Visitor Pattern Implementation: Operations
	Testing the Visitor Pattern
	To Use or Not to Use the Visitor Pattern

