Recursion

EECS2030 F: Advanced
Object Oriented Programming

YORKQI

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

-
—

Learning Outcomes

This module is designed to help you learn about:

1. How to solve problems recursively

2. Example recursions on string and arrays

3. Some more advanced example (if time permitted)

Beyond this lecture . ..

et ae o

¢ Fantastic resources for sharpening your recursive skills for the

exam:

http://codingbat.com/java/Recursion—1

http://codingbat.com/java/Recursion—2

* The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

I

Recursion: Principle

e Recursion is useful in expressing solutions to problems that

can be recursively defined:

o Base Cases: Small problem instances immediately solvable.
o Recursive Cases:

e Large problem instances not immediately solvable.

e Solve by reusing solution(s) to strictly smaller problem instances.

e Similar idea learnt in high school: [mathematical induction]
¢ Recursion can be easily expressed programmatically in Java:

}

m (1) |
if (i =

else {

}

m (J);/+*

)

/

{ /* Dbase case: Ao S«

recursive call witn strictly smaller value

o In the body of a method m, there might be a call or calls to m itself.

o Each such self-call is said to be a recursive call .

o Inside the execution of m(i), a recursive call m(j) must be that j < i.

I

Tracing Method Calls via a Stack

* When a method is called, it is activated (and becomes active)
and pushed onto the stack.

¢ When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.

= The stack contains activation records of all active methods.
o Top of stack denotes the’current point of execution ‘
o Remaining parts of stack are (temporarily) suspended.

¢ When entire body of a method is executed, stack is popped .

= The ’ current point of execution ‘ is returned to the new top
of stack (which was suspended and just became active).

e Execution terminates when the stack becomes empty .

Recursion: Factorial (1)

fAssmgﬁ
» Recall the formal definition of calculating the n factorial
nl - 1 ifn=0
n(n=1)-(n-2)----- 3.2.1 ifn>1

e How do you define the same problem recursively?

1 ifn=0
n! =
n-(n-1)! ifnx>1

 To solve n!, we combine n and the solution to (n - 7)!.

1
int factorial (int n) {
int result;
if(n == 0) { /* basc se #/ result = 1; }
else { /+ recu: > case */
result = n = factorial (n - 1);
}
return result;
}

I

Common Errors of Recursive Methods

¢ Missing Base Case(s).
r 1
‘int factorial (int n) { ‘

return n * factorial (n - 1); ‘

I

Base case(s) are meant as points of stopping growing the
runtime stack.
¢ Recursive Calls on Non-Smaller Problem Instances.

T 1
int factorial (int n) {
if(n == 0) { /# base case =/ return 1; }

else { /«x recursive case x/ return n x factorial (n); } ‘

i

Recursive calls on strictly smaller problem instances are
meant for moving gradually towards the base case(s).

¢ |In both cases, a StackOverflowException will be thrown.

Recursion: Factorial (2)

return 5 x 24 = 120

N

return 4 x 6 = 24

factorial(5)
factorial(4)

(factorial(3)
factorial(2) \
return 1 x 1 =1

‘

return 3 x 2 =106

return 2 x 1 =2

return 1

Recursion: Factorial (3)

o When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.
o When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.

o factorial(0) returns 1 back to suspended call factorial(1).

o factorial(1) receives 1 from factorial(0), multiplies 1 to it, and
returns 1 back to the suspended call factorial(2).

o factorial(2) receives 1 from factorial(1), multiplies 2 to it, and
returns 2 back to the suspended call factorial(3).

o factorial(3) receives 2 from factorial(1), multiplies 3 to it, and
returns 6 back to the suspended call factorial(4).

o factorial(4) receives 6 from factorial(3), multiplies 4 to it, and
returns 24 back to the suspended call factorial(5).

o factorial(5) receives 24 from factorial(4), multiplies 5 to it, and
returns 120 as the result.

I

Recursion: Factorial (4)

¢ When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.q., factorial(4)):
o The execution of the current method (i.e., factorial(5)) is
suspended, and a structure known as an activation record or

activation frame is created to store information about the
progress of that method (e.g., values of parameters and local
variables).

o The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).

o When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its

execution.
e What kind of data structure does this activation-suspension
process correspond to? [LIFO Stack]

i oroH

Recursion: Fibonacci Sequence (1)

I

e Can you identify the pattern of a Fibonacci sequence?
F=1,1,2,3,5,8,13,21,34,55,89, ...

e Here is the formal, recursive definition of calculating the ny,

number in a Fibonacci sequence (denoted as Fj):
1 if n=1
Fn=11 ifn=2
F}_1+>F}_2 ifn>2

I
int fib (int n) {
int result;

if(n == 1) / result = 1; }
else if (n > +/ result = 1; }
else { /« ~as

result = 1 fib (n - 2);

}

return result;

}

Lot oo

Recursion: Fibonacci Sequence (2)

LASSONDE

£ib (5)

= { fib(5) = fib(4) + £ib(3); push(fib(5)); (£ib (5));
fib(4) + fib(3)

= { fib(4) = £ib(3) + £fib(2); (£ib (4),
(fib(3) +£fib(2))+ fib(3)

= { fib(3) = £fib(2) + fib(1); s nded: (fib(3),

((£fib(2) +£fib(1l))+ £ib(2))+ £ib(3)

= { fib(2) returns 1; ed: (fib(3), fib(4),
((1+ fib(1))+ fib(2)+f1b(3)

= { fib(1l) returns 1; 1: (£ib(3), fib(4),
((1+1)+£ib(2)) + £ib(3)

= { £ib(3) returns 1 + 1; pop(); sus
(2+ fib(2))+ £fib(3)

= { fib(2) returns 1; st
(2+1) +£ib(3)

= { fib(4) returns 2 + 1; pop(); suspe
3+ fib(3)

= { fib(3) = fib(2) + fib(1);
3+ (£ib(2) + fib(1))

= { £ib(2) returns 1; st
3+(1+ fib(1))

= { £ib(1) returns 1; st

(fib(4),

3+(1+1)
= { £ib(3) returns 1 + 1; pop() ;
3+2

fib(5) returns 3 + 2;

I

\n,

Java Library: String LASSONDE

public class StringTester {
public static void main(String[] args) {
String s = "abcd";
System out. prlntln(s lSEmpty()), /+ false */

racters 1in 1 ra
String t0 = s.substrlng(o, O);

System out.println(t@) / * x/

ge [0, 4) */

String tl S. substrlng(O, 4);
System.out. prlntln(tl) /* "a

“ters in index range |

String t2 = s.substrlng(l, 3);

System.out.println(t2); /* "bc" x/

String t3 = s.substring(0, 2) + s.substring(2, 4);

System.out.println(s.equals(t3)); /* true =%/

for(int i = 0; i < s.length(); 1 ++) {
System.out.print (s.charAt (1)) ;

}

System.out.println();

T EEEEA

I

Recursion: Palindrome (1) LASSONDE

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.

System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome ("madan")) ; true
System.out.println(isPalindrome ("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string — Return frue immediately.
Base Case 2: String of length 1 — Return frue immediately.

Recursive Case: String of length >2 —

o 1st and last characters match, and
o the rest (i.e., middle) of the string is a palindrome .

4 ot oH

-
—

Recursion: Palindrome (2) LASSONDE

T
boolean isPalindrome (String word) {
1f(word length() == 0 || word.length() == 1) {
'+ base case #*/
return true;
}
else {
/% rec re case #*/
char firstChar = word.charAt (0);
char lastChar = word.charAt (word.length() - 1);
String middle = word.substring (1, word.length() - 1);
return
firstchar == lastChar
&& 1sPalindrome (middle);
}
}

15 o1 oo

I

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.

S M/

System.out.println(reverseOf("")
System.out.println(reverseOf (")) "an
System.out.println(reverseOf ("ab")); "ba"
(("
((

System.out.println(reverseOf abc)); "cbha"
System.out.println(reverseof ("abcd")); "dcba"

Base Case 1: Empty string — Return empty string.

Base Case 2: String of length 1 — Return that string.
Recursive Case: String of length >2 —

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 2) and 1).

b ot JH

-
—

Recursion: Reverse of a String (2)

T
String reverseOf (String s) {

if(s.isEmpty()) { /~* case 1 */
return "";

}

else if(s.length() == 1) { /x I e case 2 #*/

return s;
}
else { /x recu ve case */
String tail = s.substring(l, s.length());

String reverseOfTail = reverseOf (tail);

char head = s.charAt(0);
return reverseOfTail + head;

L oroH

I

Recursion: Number of Occurrences (1)

Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.

System.out.println(occurrencesOf ("", ’a’)),
System.out.println(occurrencesOf("a", "a’));
System.out.println(occurrencesOf ("b", "a’));
System.out.println(occurrencesof("baaba" ’
System.out.println(occurrencesOf ("baaba", '
(’

System.out.println(occurrencesOf ("baaba",

Ne oNe Ny

4

a
b")
c

Base Case: Empty string — Return 0.
Recursive Case: String of length > 1 —

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)

If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

I

Recursion: Number of Occurrences (2)

T

int occurrencesOf (String s, char c) {
if(s.isEmpty()) {
/% Base Case *x/
return 0;
}
else {
/#+ Recursive Case */
char head = s.charAt (0);
String tail = s.substring(l, s.length());
if (head == c) {
return 1 + occurrencesOf (tail, c);
}

else {

return 0 + occurrencesOf (tail, c);

19 o1 oo

I

Making Recursive Calls on an Array LASSONDE
* Recursive calls denote solutions to smaller sub-problems.
» Naively, explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /+»
else if (a.length == 1) /)
else {
int[] sub = new int[a.length - 1];
for(int i = [1]; i < a.length; i ++) { subli - 1] = alil; }
m(sub) } }

For efficiency, we pass the reference of the same array and
specify the range of indices to be considered:

void m(int[] a, int from, int to) {
if (from > to) { /* base c %/}
else if (from == to) { /= case */ }
l else { m(a, , to) } } J‘
e m(a, 0, a.length - 1) [Initial call; entire array]
e m(a, 1, a.length - 1) [1str.c. on array of size a.length—-1]

e m(a, a.length-1, a.length-1) [Lastr.c. on array of size 1]

I

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.

;. /* true x/
2, 3, 4, 5})); /* true */
2, -3, 4, 5})); /+ false */

System.out.println(allPositive({})
System.out.println(allPositive ({1,
4

System.out.println(allPositive ({1l

Base Case: Empty array — Return frue immediately.

The base case is frue -.- we can not find a counter-example
(i.e., a number not positive) from an empty array.

Recursive Case: Non-Empty array —

o 1st element positive, and

o the rest of the array is all positive .

Exercise: Write a method boolean somePostive (int[]

a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]

-~ No witness (i.e., a positive number) from an empty array

I

Recursion: All Positive (2)

’boolean allPositive(int[] a) { ‘
‘ return allPositiveHelper (a, 0, a.length - 1); ‘
}

‘boolean allPositiveHelper (int[] a, int from, int to) {
if (from > to) { /* base 2 /
return true;

}
else if (from == to) { /* base case 2: of ent */
return a[from] > 0;
}
else { /% recursive case #*,
return a[from] > 0 && allPositiveHelper (a, from + 1, to);
}

P oroH

I

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.

System.out.println(isSorted({})); true
System.out.println(isSorted ({1, 2, 2, 3, 4})); true

System.out.println(isSorted ({1, 2, 2, 1, 3})); false

Base Case: Empty array — Return frue immediately.

The base case is frue -.- we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.

Recursive Case: Non-Empty array —

o 1st and 2nd elements are sorted in a non-descending order, and
o the rest of the array, starting from the 2nd element,

are sorted in a non-descending order .

-
—

Recursion: Is an Array Sorted? (2)

’boolean isSorted(int[] a) {
return isSortedHelper (a, 0, a.length - 1); ‘

}

‘boolean isSortedHelper (int[] a, int from, int to) ({

if (from > to) { /* base case 1: empty
return true;

}

else if (from == to) { /* base c e 2: r of */

return true;

}
else {
return al[from] <= al[from + 1]

&& 1isSortedHelper (a, from + 1, to);

P4 ot oo

Beyond this lecture . ..

* Recursions on Arrays: Lab Exercise from EECS2030-F19

¢ Notes on Recursion:
http://www.eecs.yvorku.ca/~jackie/teaching/
lectures/2021/F/EECS2030/notes/EECS2030 FZ21
Notes Recursion.pdf

e APl for string:
https://docs.oracle.com/javase/8/docs/api/
Jjava/lang/String.html

¢ Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion—1

http://codingbat.com/Jjava/Recursion—2
e The best approach to learning about recursion is via a
functional programming language:

Haskell Tutorial: https://www.haskell.org/tutorial/

http://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Index (1)

[Cearning Oufcomes
[Beyond this Tecture]
[Recursion: Principle|

racing nvietno alls via a stac

[Recursion: Factorial (1)

Common Errors of Hecursive Methods

[Recursion: Factorial (2)

[Recursion: Factorial (3)
[Recursion: Factorial (4)

ecursion: rioonacci sequence

[Recursion: Fibonacci Sequence (2)

Index (2)

Pava Cibrary: String|

[Recursion: Palindrome (1))
[Recursion: Palindrome (2}
[Recursion: Reverse of a String (1))

[Recursion: Reverse of a S[r|n§ !ZI

[Recursion: Number of Occurrences (1)

ecursion: Number or Occurrences

[Making Recursive Calls on an Array|
[Recursion: All Positive (1)
[Recursion: All Positive (2)
[Recursion: Ts an Array Sorted? (1)

v/ oto8

I

Index (3) :A§SCEZI&BNE
Recursion: Is an Array Sorted? (2)
Beyond this Tecture .|

PE ot oo

	Learning Outcomes
	Beyond this lecture …
	Recursion: Principle
	Tracing Method Calls via a Stack
	Recursion: Factorial (1)
	Common Errors of Recursive Methods
	Recursion: Factorial (2)
	Recursion: Factorial (3)
	Recursion: Factorial (4)
	Recursion: Fibonacci Sequence (1)
	Recursion: Fibonacci Sequence (2)
	Java Library: String
	Recursion: Palindrome (1)
	Recursion: Palindrome (2)
	Recursion: Reverse of a String (1)
	Recursion: Reverse of a String (2)
	Recursion: Number of Occurrences (1)
	Recursion: Number of Occurrences (2)
	Making Recursive Calls on an Array
	Recursion: All Positive (1)
	Recursion: All Positive (2)
	Recursion: Is an Array Sorted? (1)
	Recursion: Is an Array Sorted? (2)
	Beyond this lecture …

