
Recursion

EECS2030 F: Advanced
Object Oriented Programming

Fall 2022

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes

This module is designed to help you learn about:
1. How to solve problems recursively
2. Example recursions on string and arrays
3. Some more advanced example (if time permitted)

2 of 28

Beyond this lecture . . .

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2

● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

3 of 28

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Recursion: Principle
● Recursion is useful in expressing solutions to problems that

can be recursively defined:
○ Base Cases: Small problem instances immediately solvable.
○ Recursive Cases:
● Large problem instances not immediately solvable.
● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]
● Recursion can be easily expressed programmatically in Java:

m (i) {
if(i == . . .) { /* base case: do something directly */ }
else {

m (j);/* recursive call with strictly smaller value */
}

}

○ In the body of a method m, there might be a call or calls to m itself .
○ Each such self-call is said to be a recursive call .
○ Inside the execution of m(i), a recursive call m(j) must be that j < i.

4 of 28

Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.

⇒ The stack contains activation records of all active methods.
○ Top of stack denotes the current point of execution .
○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

5 of 28

Recursion: Factorial (1)
● Recall the formal definition of calculating the n factorial:

n! =
⎧
⎪⎪
⎨
⎪⎪
⎩

1 if n = 0
n ⋅ (n − 1) ⋅ (n − 2) ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1 if n ≥ 1

● How do you define the same problem recursively?

n! =
⎧
⎪⎪
⎨
⎪⎪
⎩

1 if n = 0
n ⋅ (n − 1)! if n ≥ 1

● To solve n!, we combine n and the solution to (n - 1)!.

int factorial (int n) {
int result;
if(n == 0) { /* base case */ result = 1; }
else { /* recursive case */

result = n * factorial (n - 1);
}
return result;

}

6 of 28

Common Errors of Recursive Methods
● Missing Base Case(s).

int factorial (int n) {

return n * factorial (n - 1);
}

Base case(s) are meant as points of stopping growing the
runtime stack.

● Recursive Calls on Non-Smaller Problem Instances.

int factorial (int n) {
if(n == 0) { /* base case */ return 1; }

else { /* recursive case */ return n * factorial (n); }
}

Recursive calls on strictly smaller problem instances are
meant for moving gradually towards the base case(s).

● In both cases, a StackOverflowException will be thrown.
7 of 28

Recursion: Factorial (2)

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

8 of 28

Recursion: Factorial (3)

○ When running factorial(5), a recursive call factorial(4) is made.
Call to factorial(5) suspended until factorial(4) returns a value.

○ When running factorial(4), a recursive call factorial(3) is made.
Call to factorial(4) suspended until factorial(3) returns a value.
. . .

○ factorial(0) returns 1 back to suspended call factorial(1).
○ factorial(1) receives 1 from factorial(0), multiplies 1 to it, and

returns 1 back to the suspended call factorial(2).
○ factorial(2) receives 1 from factorial(1), multiplies 2 to it, and

returns 2 back to the suspended call factorial(3).
○ factorial(3) receives 2 from factorial(1), multiplies 3 to it, and

returns 6 back to the suspended call factorial(4).
○ factorial(4) receives 6 from factorial(3), multiplies 4 to it, and

returns 24 back to the suspended call factorial(5).
○ factorial(5) receives 24 from factorial(4), multiplies 5 to it, and

returns 120 as the result.
9 of 28

Recursion: Factorial (4)

● When the execution of a method (e.g., factorial(5)) leads to a
nested method call (e.g., factorial(4)):
○ The execution of the current method (i.e., factorial(5)) is

suspended , and a structure known as an activation record or
activation frame is created to store information about the

progress of that method (e.g., values of parameters and local
variables).

○ The nested methods (e.g., factorial(4)) may call other nested
methods (factorial(3)).

○ When all nested methods complete, the activation frame of the
latest suspended method is re-activated, then continue its
execution.

● What kind of data structure does this activation-suspension
process correspond to? [LIFO Stack]

10 of 28

Recursion: Fibonacci Sequence (1)
● Can you identify the pattern of a Fibonacci sequence?

F = 1,1,2,3,5,8,13,21,34,55,89, . . .

● Here is the formal, recursive definition of calculating the nth
number in a Fibonacci sequence (denoted as Fn):

Fn =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

int fib (int n) {
int result;
if(n == 1) { /* base case */ result = 1; }
else if(n == 2) { /* base case */ result = 1; }
else { /* recursive case */

result = fib (n - 1) + fib (n - 2);
}
return result;

}

11 of 28

Recursion: Fibonacci Sequence (2)
fib(5)

= { fib(5) = fib(4) + fib(3); push(fib(5)); suspended: ⟨fib(5)⟩; active: fib(4) }
fib(4) + fib(3)

= { fib(4) = fib(3) + fib(2); suspended: ⟨fib(4), fib(5)⟩; active: fib(3) }
(fib(3) + fib(2)) + fib(3)

= { fib(3) = fib(2) + fib(1); suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(2) }
((fib(2) + fib(1)) + fib(2)) + fib(3)

= { fib(2) returns 1; suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(1) }
((1 + fib(1)) + fib(2)) + fib(3)

= { fib(1) returns 1; suspended: ⟨fib(3), fib(4), fib(5)⟩; active: fib(3) }
((1 + 1) + fib(2)) + fib(3)

= { fib(3) returns 1 + 1; pop(); suspended: ⟨fib(4), fib(5)⟩; active: fib(2) }
(2 + fib(2)) + fib(3)

= { fib(2) returns 1; suspended: ⟨fib(4), fib(5)⟩; active: fib(4) }
(2 + 1) + fib(3)

= { fib(4) returns 2 + 1; pop(); suspended: ⟨fib(5)⟩; active: fib(3) }
3 + fib(3)

= { fib(3) = fib(2) + fib(1); suspended: ⟨fib(3),fib(5)⟩; active: fib(2) }
3 + (fib(2) + fib(1))

= { fib(2) returns 1; suspended: ⟨fib(3), fib(5)⟩; active: fib(1) }
3 + (1 + fib(1))

= { fib(1) returns 1; suspended: ⟨fib(3), fib(5)⟩; active: fib(3) }
3 + (1 + 1)

= { fib(3) returns 1 + 1; pop() ; suspended: ⟨fib(5)⟩; active: fib(5) }
3 + 2

= { fib(5) returns 3 + 2; suspended: ⟨⟩ }
5

12 of 28

Java Library: String
public class StringTester {
public static void main(String[] args) {
String s = "abcd";
System.out.println(s.isEmpty()); /* false */
/* Characters in index range [0, 0) */
String t0 = s.substring(0, 0);
System.out.println(t0); /* "" */
/* Characters in index range [0, 4) */
String t1 = s.substring(0, 4);
System.out.println(t1); /* "abcd" */
/* Characters in index range [1, 3) */
String t2 = s.substring(1, 3);
System.out.println(t2); /* "bc" */
String t3 = s.substring(0, 2) + s.substring(2, 4);
System.out.println(s.equals(t3)); /* true */
for(int i = 0; i < s.length(); i ++) {
System.out.print(s.charAt(i));

}
System.out.println();

}
}

13 of 28

Recursion: Palindrome (1)

Problem: A palindrome is a word that reads the same forwards
and backwards. Write a method that takes a string and
determines whether or not it is a palindrome.

System.out.println(isPalindrome("")); true
System.out.println(isPalindrome("a")); true
System.out.println(isPalindrome("madam")); true
System.out.println(isPalindrome("racecar")); true
System.out.println(isPalindrome("man")); false

Base Case 1: Empty string Ð→ Return true immediately.
Base Case 2: String of length 1 Ð→ Return true immediately.
Recursive Case: String of length ≥ 2 Ð→
○ 1st and last characters match, and
○ the rest (i.e., middle) of the string is a palindrome .

14 of 28

Recursion: Palindrome (2)

boolean isPalindrome (String word) {
if(word.length() == 0 || word.length() == 1) {
/* base case */
return true;

}
else {
/* recursive case */
char firstChar = word.charAt(0);
char lastChar = word.charAt(word.length() - 1);
String middle = word.substring(1, word.length() - 1);
return

firstChar == lastChar
/* See the API of java.lang.String.substring. */

&& isPalindrome (middle);
}

}

15 of 28

Recursion: Reverse of String (1)

Problem: The reverse of a string is written backwards. Write a
method that takes a string and returns its reverse.

System.out.println(reverseOf("")); /* "" */
System.out.println(reverseOf("a")); "a"
System.out.println(reverseOf("ab")); "ba"
System.out.println(reverseOf("abc")); "cba"
System.out.println(reverseof("abcd")); "dcba"

Base Case 1: Empty string Ð→ Return empty string.
Base Case 2: String of length 1 Ð→ Return that string.
Recursive Case: String of length ≥ 2 Ð→

1) Head of string (i.e., first character)
2) Reverse of the tail of string (i.e., all but the first character)

Return the concatenation of 2) and 1).

16 of 28

Recursion: Reverse of a String (2)

String reverseOf (String s) {
if(s.isEmpty()) { /* base case 1 */
return "";

}
else if(s.length() == 1) { /* base case 2 */
return s;

}
else { /* recursive case */
String tail = s.substring(1, s.length());

String reverseOfTail = reverseOf (tail);
char head = s.charAt(0);
return reverseOfTail + head;

}
}

17 of 28

Recursion: Number of Occurrences (1)
Problem: Write a method that takes a string s and a character
c, then count the number of occurrences of c in s.

System.out.println(occurrencesOf("", ’a’)); /* 0 */
System.out.println(occurrencesOf("a", ’a’)); /* 1 */
System.out.println(occurrencesOf("b", ’a’)); /* 0 */
System.out.println(occurrencesOf("baaba", ’a’)); /* 3 */
System.out.println(occurrencesOf("baaba", ’b’)); /* 2 */
System.out.println(occurrencesOf("baaba", ’c’)); /* 0 */

Base Case: Empty string Ð→ Return 0.
Recursive Case: String of length ≥ 1 Ð→

1) Head of s (i.e., first character)
2) Number of occurrences of c in the tail of s (i.e., all but the first
character)
If head is equal to c, return 1 + 2).
If head is not equal to c, return 0 + 2).

18 of 28

Recursion: Number of Occurrences (2)

int occurrencesOf (String s, char c) {
if(s.isEmpty()) {
/* Base Case */
return 0;

}
else {
/* Recursive Case */
char head = s.charAt(0);
String tail = s.substring(1, s.length());
if(head == c) {

return 1 + occurrencesOf (tail, c);
}
else {

return 0 + occurrencesOf (tail, c);
}

}
}

19 of 28

Making Recursive Calls on an Array
● Recursive calls denote solutions to smaller sub-problems.
● Naively , explicitly create a new, smaller array:

void m(int[] a) {
if(a.length == 0) { /* base case */ }
else if(a.length == 1) { /* base case */ }
else {
int[] sub = new int[a.length - 1];

for(int i = 1 ; i < a.length; i ++) { sub[i - 1] = a[i]; }
m(sub) } }

● For efficiency , we pass the reference of the same array and
specify the range of indices to be considered:
void m(int[] a, int from, int to) {
if(from > to) { /* base case */ }
else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]
● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]
● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]20 of 28

Recursion: All Positive (1)
Problem: Determine if an array of integers are all positive.
System.out.println(allPositive({})); /* true */
System.out.println(allPositive({1, 2, 3, 4, 5})); /* true */
System.out.println(allPositive({1, 2, -3, 4, 5})); /* false */

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a number not positive) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st element positive, and
○ the rest of the array is all positive .
Exercise: Write a method boolean somePostive(int[]
a) which recursively returns true if there is some positive
number in a, and false if there are no positive numbers in a.
Hint: What to return in the base case of an empty array? [false]
∵ No witness (i.e., a positive number) from an empty array

21 of 28

Recursion: All Positive (2)

boolean allPositive(int[] a) {

return allPositiveHelper (a, 0, a.length - 1);

}

boolean allPositiveHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return a[from] > 0;

}
else { /* recursive case */

return a[from] > 0 && allPositiveHelper (a, from + 1, to);

}
}

22 of 28

Recursion: Is an Array Sorted? (1)

Problem: Determine if an array of integers are sorted in a
non-descending order.
System.out.println(isSorted({})); true

System.out.println(isSorted({1, 2, 2, 3, 4})); true

System.out.println(isSorted({1, 2, 2, 1, 3})); false

Base Case: Empty array Ð→ Return true immediately.
The base case is true ∵ we can not find a counter-example
(i.e., a pair of adjacent numbers that are not sorted in a
non-descending order) from an empty array.
Recursive Case: Non-Empty array Ð→
○ 1st and 2nd elements are sorted in a non-descending order, and
○ the rest of the array , starting from the 2nd element,

are sorted in a non-descending order .
23 of 28

Recursion: Is an Array Sorted? (2)

boolean isSorted(int[] a) {

return isSortedHelper (a, 0, a.length - 1);

}

boolean isSortedHelper (int[] a, int from, int to) {

if (from > to) { /* base case 1: empty range */
return true;

}
else if(from == to) { /* base case 2: range of one element */
return true;

}
else {
return a[from] <= a[from + 1]

&& isSortedHelper (a, from + 1, to);

}
}

24 of 28

Beyond this lecture . . .
● Recursions on Arrays: Lab Exercise from EECS2030-F19
● Notes on Recursion:
http://www.eecs.yorku.ca/˜jackie/teaching/
lectures/2021/F/EECS2030/notes/EECS2030_F21_
Notes_Recursion.pdf

● API for String:
https://docs.oracle.com/javase/8/docs/api/
java/lang/String.html

● Fantastic resources for sharpening your recursive skills for the
exam:
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2

● The best approach to learning about recursion is via a
functional programming language:
Haskell Tutorial: https://www.haskell.org/tutorial/

25 of 28

http://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
http://www.eecs.yorku.ca/~jackie/teaching/lectures/2021/F/EECS2030/notes/EECS2030_F21_Notes_Recursion.pdf
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/

Index (1)

Learning Outcomes

Beyond this lecture . . .

Recursion: Principle

Tracing Method Calls via a Stack

Recursion: Factorial (1)

Common Errors of Recursive Methods

Recursion: Factorial (2)

Recursion: Factorial (3)

Recursion: Factorial (4)

Recursion: Fibonacci Sequence (1)

Recursion: Fibonacci Sequence (2)
26 of 28

Index (2)
Java Library: String

Recursion: Palindrome (1)

Recursion: Palindrome (2)

Recursion: Reverse of a String (1)

Recursion: Reverse of a String (2)

Recursion: Number of Occurrences (1)

Recursion: Number of Occurrences (2)

Making Recursive Calls on an Array

Recursion: All Positive (1)

Recursion: All Positive (2)

Recursion: Is an Array Sorted? (1)
27 of 28

Index (3)
Recursion: Is an Array Sorted? (2)

Beyond this lecture . . .

28 of 28

	Learning Outcomes
	Beyond this lecture …
	Recursion: Principle
	Tracing Method Calls via a Stack
	Recursion: Factorial (1)
	Common Errors of Recursive Methods
	Recursion: Factorial (2)
	Recursion: Factorial (3)
	Recursion: Factorial (4)
	Recursion: Fibonacci Sequence (1)
	Recursion: Fibonacci Sequence (2)
	Java Library: String
	Recursion: Palindrome (1)
	Recursion: Palindrome (2)
	Recursion: Reverse of a String (1)
	Recursion: Reverse of a String (2)
	Recursion: Number of Occurrences (1)
	Recursion: Number of Occurrences (2)
	Making Recursive Calls on an Array
	Recursion: All Positive (1)
	Recursion: All Positive (2)
	Recursion: Is an Array Sorted? (1)
	Recursion: Is an Array Sorted? (2)
	Beyond this lecture …

