Generics in Java

EECS2030 B & E: Advanced
Object Oriented Programming

' Fall 2021

E
Y CHEN-WEI WANG

Learning Outcomes LASSONDE

ooooooooooooooooo

This module is designed to help you learn about:

1. A general collection Object []: storage vs. retrieval

2. A generic collection E []: storage vs. retrieval

3. Reinforce: Polymorphism, Type Casting, instanceof checks

2 of 19)

Motivating Example: A Book of Objects

public class Book {
private String[] names;
private Object[] records;
/+* add a name-record pair to the book x/
public void add (String name, Object record) { ... }

* return thne recora associatead witn a given name */

NOoO O~ wWN =

public Object get (String name) { ... } }

Question: Which line has a type error?

Date birthday; String phoneNumber;

Book b; boolean isWednesday;

b = new Book();

phoneNumber = "416-67-1010";

b.add ("Suyeon", phoneNumber);

birthday = new Date (1975, 4, 10);

b.add ("Yuna", birthday);

isWednesday = b.get ("Yuna") .getDay() == 4;

ONO O~ WN =

3 of 19)

Motivating Example: Observations (1) LASSONDE

ooooooooooooooooo

e In the Book class:
o By declaring the attribute

’ Object[] records

We meant that each book instance may store any object whose
static type is a descendant class of Object.

o Accordingly, from the return type of the get method, we only know
that the returned record is an Object, but not certain about its
dynamic type (e.g., Date, String, efc.).

.. a record retrieved from the book, e.g., b.get ("Yuna"), may
only be called upon methods in its static type (i.e,. Object).
¢ In the tester code of the Book class:

o In Line 1, the static types of variables birthday (i.e., Date) and
phoneNumber (i.e., String) are descendant classes of
Object.

o So, Line 5 and Line 7 compile.

Motivating Example: Observations (2) o

ooooooooooooooooo

—

In a polymorphic collection, dynamic types of stored objects

(e.g., phoneNumber and birthday) need not be the same.

o Methods expected on the dynamic types (e.g., method getDay
of class Date) may be new methods not inherited from Object.

o This is why Line 8 would fail to compile, and may be fixed using an
explicit cast :

isWednesday = ((Date) b.get("Yuna")).getDay() == 4;

o But what if the dynamic type of the returned object is not a Date?

isWednesday = ((Date) b.get ("Suyeon")) .getDay() == 4;

o To avoid such a ClassCastException at runtime, we need to
check its dynamic type before performing a cast:

if (b.get("Suyeon") instanceof Date) {
isWednesday = ((Date) b.get("Suyeon")).getDay() == 4;
}

5 of 19

Motivating Example: Observations (2.1) |ssones

ooooooooooooooooo

¢ |t seems: Combining instanceof checks & type casts works.
e Can you see any potential problem(s) w.r.t. the
Single-Choice design principle?

¢ Hints: What happens when you have a large number of
records of distinct dynamic types stored in the book
(e.g., Date, String, Person, Account, etc.)?

6 of 19

\wy

—

Motivating Example: Observations (2.2)

Imagine that the tester code (or an application) stores 100
different record objects into the book.

o All of these records are of static type Ob-ject, but of distinct

ASSONDE

ooooooooooooooooo

dynamic types.
Object recl = new CI1(); b.add(..., recl);
Object rec2 = new C2(); b.add(..., rec2);
Object recl00 = new C100(); b.add(..., recl00);

where classes C1to C100 are descendant classes of Object.
o Every time you retrieve a record from the book, you need to check
“exhaustively” on its dynamic type before calling some method(s).

Object rec = b.get("Jim");
if (rec instanceof Cl1) { ((Cl1) rec).ml; }

else if (rec instanceof C100) { ((C100) rec).ml00; }

o Writing out this list multiple times is tedious and error-prone!

Motivating Example: Observations (3) LASSONDE
We need a solution that:
e Saves us from explicit instanceof checks and type casts
¢ Eliminates the occurrences of ClassCastException
As a sketch, this is how the solution looks like:
¢ When the user declares a Book object b, they must
commit to the kind of record that b stores at runtime .
e.g., b stores either Date objects only or St ring objects only,
but not a mix.
¢ When attempting to store a new record object rec into b, what
if rec’s static type is not a descendant class of the type of
book that the user previously commits to?
= A compilation error
¢ When attempting to retrieve a record object from b, there is
no longer a need to check and cast .
S— Static types of all records in b are guaranteed to be the same.

Parameters LASSONDE

¢ In mathematics:

o The same function is applied with different argument values.
eg.,2 + 3,1 + 1,10 + 101, etc.

o We generalize these instance applications into a definition.
e.g., +: (Z xZ) - 7Z is a function that takes two integer

parameters and returns an integer.
¢ In Java programming:

o We want to call a method, with different argument values, to
achieve a similar goal.

e.g., acc.deposit (100), acc.deposit (23), efc.

o We generalize these possible method calls into a definition.
e.g., Inclass Account, a method void deposit (int amount)
takes one integer parameter .

¢ When you design a mathematical function or a Java method,
always consider the list of parameters , each of which

representing a set of possible argument values.
9 of 19

Java Generics: Design of a Generic Book |.ssonoe

ooooooooooooooooo

class Book <E> {
private String[] names;
private E [] records;

/ * e-record pair to the book #*/
public void add (String name, E record) { ...}

rec 1 CNne Ire

public E get (String name

Question: Which line has a type error?

Date birthday; String phoneNumber;
Book<Date> b ; boolean isWednesday;

b = new Book<Date>() ;

phoneNumber = "416-67-1010";

b.add ("Suyeon", phoneNumber);

birthday = new Date (1975, 4, 10);

b.add ("Yuna", birthday);

isWednesday = b.get ("Yuna").getDay() == 4;

ONO A WN =

10 of 19

Java Generics: Observations

e In class Book:
o At the class level, we parameterize the type of records that an

instance of book may store: ’ class Book< E >

where E is the name of a type parameter, which should be
instantiated when the user declares an instance of Book.

o Every occurrence of object (the most general type of records) is
replaced by E .

o Assoonas E atthe class level is committed to some known type
(e.g., Date, String, efc.), every occurrence of E will be
replaced by that type.

¢ In the tester code of Book:

o In Line 2, we commit that the book b will store Date objects only.
Line 5 now fails to compile. [String is not Date’s descendant]
Line 7 still compiles.

Line 8 does not need any instance check and type cast, and does
not cause any ClassCastException.

- Only Date objects were allowed to be stored.

O O O

[11 of 19|

Example Generic Classes: ArrayList

An ArrayList acts like a “resizable” array (indices start at 0).
Extra tutorial here.

int size()
Returns the number of elements in this list.

boolean add(E e)
Appends the specified element to the end of this list.

void add(int index, E element)
Inserts the specified element at the specified position in this list.

boolean contains (Object o)
Returns true if this list contains the specified element.

E remove(int index)
Removes the element at the specified position in this list.

boolean remove(Object o)

Removes the first occurrence of the specified element from this list, if it
is present.

int index0f (Object o)

Returns the index of the first occurrence of the specified element in this
list, or -1 if this list does not contain the element.

E get(int index)
Returns the element at the specified position in this list.

12 of 19

Using Generic Classes: ArrayList LASSONDE

STHOOL OF ENGINEERING.

1 import java.util.ArrayList;

2 public class ArrayListTester

3 public static void main(String[] args) {

4 ArrayList<String> list = new ArrayList<String>();

5 println(list.size());

6 println(list.contains("A"));

7 println(list.indexOf("A"));

8 list.add("A");

9 list.add("B");

10 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
1 println(list.indexOf ("A")); println(list.indexOf("B")); println(list.indexOf("C"));

12 list.add(l, "C");

13 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
14 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));

15 list.remove ("C");

16 println(list.contains("A")); println(list.contains("B")); println(list.contains("C"));
17 println(list.indexOf("A")); println(list.indexOf("B")); println(list.indexOf("C"));
18

19 for(int i = 0; i < list.size(); i ++) {

20 println(list.get(i));

21 }

22 }

23 |}

13 of 19

Example Generic Classes: HashTable LASSONDE

CHOOL OF ENGINEERING.

A HashTable|acts like a two-column table of (searchable) keys
and values. |Extra tutorial here.

int size()
Returns the number of keys in this hashtable.

boolean containsKey(Object key)
Tests if the specified object is a key in this hashtable.

boolean containsValue(Object value)
Returns true if this hashtable maps one or more keys to this value.

'] get(Object key)
Returns the value to which the specified key is mapped, or null if this
map contains no mapping for the key.

Vv put (K key, V value)
Maps the specified key to the specified value in this hashtable.

v remove (Object key)
Removes the key (and its corresponding value) from this hashtable.

14 of 19

Using Generic Classes: HashTable LASSONDE

STHOOL OF ENGINEERING.

1 import java.util.Hashtable;

2 | public class HashTableTester {

3 public static void main(String[] args) {

4 Hashtable<String, String> grades = new Hashtable<String, String>();

5 System.out.println("Size of table: " + grades.size());

6 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));

7 System.out.println("Value B+ exists: " + grades.containsValue("B+"));

8 grades.put ("Alan", "A")

9 grades.put ("Mark", "B+")

10 grades.put ("Tom", "C");

11 System.out.println("Size of table: " + grades.size());

12 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));

13 System.out.println("Key Mark exists: " + grades.containsKey("Mark"));

14 System.out.println("Key Tom exists: " + grades.containsKey("Tom"));

15 System.out.println("Key Simon exists: " + grades.containsKey("Simon"));
16 System.out.println("Value A exists: " + grades.containsValue("A"));

17 System.out.println("Value B+ exists: " + grades.containsValue("B+"));

18 System.out.printin("Value C exists: " + grades.containsValue("C"));

19 System.out.println("Value A+ exists: " + grades.containsValue("A+"));
20 System.out.println("Value of existing key Alan: " + grades.get("Alan"));
21 System.out.println("Value of existing key Mark: " + grades.get("Mark"));
22 System.out.println("Value of existing key Tom: " + grades.get ("Tom"));
23 System.out.println("Value of non-existing key Simon: " + grades.get ("Simon"));
24 grades.put ("Mark", "F")
25 System.out.println("Value of existing key Mark: " + grades.get ("Mark"));
26 grades.remove ("Alan") ;
27 System.out.println("Key Alan exists: " + grades.containsKey("Alan"));
28 System.out.println("Value of non-existing key Alan: " + grades.get ("Alan"));
29 1
30

Bad Example of using Generics LASSONDE

STHOOL OF ENGINEERING.

Has the following client made an appropriate choice?

Book<Object> book

o It allows all kinds of objects to be stored.
-+ All classes are descendants of Object.

o We can expect very little from an object retrieved from this book.
- The static type of book’s items are Object, root of the class
hierarchy, has the minimum amount of methods available for use.
-~ Exhaustive list of casts are unavoidable.

[bad for extensibility and maintainability]

16 of 19

Beyond this lecture ... LASSONDE

e Study https://docs.oracle.com/javase/tutorial/
java/generics/index.html|for further details on Java
generics.

¢ Play with the source code ExampleBooks.

¢ Review the basic ArrayList and HashTable methods:

o ArrayList:
https://www.youtube.com/watch?v=Gg_RRaGN708&1ist=
PL5dxAmCmjv_4uhxBzBt-CnSGwokZ9C-—xe&index=5

o Hashtable:
https://www.youtube.com/watch?v=vM_JTnvDnlg&list=
PL5dxAmCmiv_4uhxBzBt-CnSGwb6kZ9C—-xe&index="7

17 of 19

Index (1) :AssoNDE

|[Learning Outcomes|

[Motivating Example: A Book of Objects|

[Motivating Example: Observations (1)|

[Motivating Example: Observations (2)|

[Motivating Example: Observations (2.1)|

[Motivating Example: Observations (2.2)|

[Motivating Example: Observations (3)|
|[Java Generics: Design of a Generic Book|

[Java Generics: Observations|

|[Example Generic Classes: ArrayList|

Index (2)

|Using Generic Classes: ArrayList|

|[Example Generic Classes: HashTable|

|Using Generic Classes: HashTable]

[Bad Example of using Generics|

|[Beyond this lecture . . .|

19 of 19

