
Abstract Classes and Interfaces

EECS2030 B & E: Advanced
Object Oriented Programming

Fall 2021

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you learn about:
● What an abstract method and an abstract class are
● What an interface is
● Reinforce: Polymorphism and dynamic binding
● When to use abstract classes vs. interfaces?

2 of 22

Abstract Class (1)

Problem: A polygon may be either a triangle or a rectangle.
Given a polygon, we may either○ Grow its shape by incrementing the size of each of its sides;○ Compute and return its perimeter ; or○ Compute and return its area.● For a rectangle with length and width, its area is length ×width.● For a triangle with sides a, b, and c, its area, according to
Heron’s formula, is �

s(s − a)(s − b)(s − c)
where

s = a + b + c
2

● How would you solve this problem in Java, while
minimizing code duplicates ?

3 of 22

Abstract Class (2)

public abstract class Polygon {
double[] sides;
Polygon(double[] sides) { this.sides = sides; }
void grow() {
for(int i = 0; i < sides.length; i ++) { sides[i] ++; }

}
double getPerimeter() {
double perimeter = 0;
for(int i = 0; i < sides.length; i ++) {
perimeter += sides[i];

}
return perimeter;

}
abstract double getArea();

}

● Method getArea not implemented and shown header only.
● ∴ Polygon cannot be used as a dynamic type
● Writing new Polygon(. . .) is forbidden!
4 of 22

Abstract Class (3)

public class Rectangle extends Polygon {
Rectangle(double length, double width) {
super(new double[4]);
sides[0] = length; sides[1] = width;
sides[2] = length; sides[3] = width;

}
double getArea() { return sides[0] * sides[1]; }

}

● Method getPerimeter is inherited from the super-class
Polygon.

● Method getArea is implemented in the sub-class Rectangle.
● ∴ Rectangle can be used as a dynamic type
● Writing Polygon p = new Rectangle(3, 4) allowed!

5 of 22

Abstract Class (4)

public class Triangle extends Polygon {
Triangle(double side1, double side2, double side3) {
super(new double[3]);
sides[0] = side1; sides[1] = side2; sides[2] = side3;

}
double getArea() {
/* Heron’s formula */
double s = getPerimeter() * 0.5;
double area = Math.sqrt(

s * (s - sides[0]) * (s - sides[1]) * (s - sides[2]));
return area;

}
}

● Method getPerimeter is inherited from Polygon.
● Method getArea is implemented in the sub-class Triangle.
● ∴ Triangle can be used as a dynamic type
● Writing Polygon p = new Triangle(3, 4, 5) allowed!
6 of 22

Abstract Class (5)

1 public class PolygonCollector {
2 Polygon[] polygons;
3 int numberOfPolygons;
4 PolygonCollector() { polygons = new Polygon[10]; }
5 void addPolygon(Polygon p) {
6 polygons[numberOfPolygons] = p; numberOfPolygons ++;
7 }
8 void growAll() {
9 for(int i = 0; i < numberOfPolygons; i ++) {

10 polygons[i].grow();
11 }
12 }
13 }

● Polymorphism: Line 5 may accept as argument any object
whose static type is Polygon or any of its sub-classes.

● Dynamic Binding: Line 10 calls the version of grow inherited
to the dynamic type of polygons[i].

7 of 22

Abstract Class (6)

1 public class PolygonConstructor {
2 Polygon getPolygon(double[] sides) {
3 Polygon p = null;
4 if(sides.length == 3) {
5 p = new Triangle(sides[0], sides[1], sides[2]);
6 }
7 else if(sides.length == 4) {
8 p = new Rectangle(sides[0], sides[1]);
9 }

10 return p;
11 }
12 void grow(Polygon p) { p.grow(); }
13 }

● Polymorphism:○ Line 2 may accept as return value any object whose static type is
Polygon or any of its sub-classes.○ Line 5 returns an object whose dynamic type is Triangle; Line

8 returns an object whose dynamic type is Rectangle.
8 of 22

Abstract Class (7.1)

1 public class PolygonTester {
2 public static void main(String[] args) {
3 Polygon p;
4 p = new Rectangle(3, 4); /* polymorphism */
5 System.out.println(p.getPerimeter()); /* 14.0 */
6 System.out.println(p.getArea()); /* 12.0 */
7 p = new Triangle(3, 4, 5); /* polymorphism */
8 System.out.println(p.getPerimeter()); /* 12.0 */
9 System.out.println(p.getArea()); /* 6.0 */

10
11 PolygonCollector col = new PolygonCollector();
12 col.addPolygon(new Rectangle(3, 4)); /* polymorphism */
13 col.addPolygon(new Triangle(3, 4, 5)); /* polymorphism */

14 System.out.println(col.polygons[0]. getPerimeter ()); /* 14.0 */

15 System.out.println(col.polygons[1]. getPerimeter ()); /* 12.0 */
16 col.growAll();

17 System.out.println(col.polygons[0]. getPerimeter ()); /* 18.0 */

18 System.out.println(col.polygons[1]. getPerimeter ()); /* 15.0 */

9 of 22

Abstract Class (7.2)

1 PolygonConstructor con = new PolygonConstructor();
2 double[] recSides = {3, 4, 3, 4}; p = con. getPolygon (recSides);
3 System.out.println(p instanceof Polygon); ✓
4 System.out.println(p instanceof Rectangle); ✓
5 System.out.println(p instanceof Triangle); ×
6 System.out.println(p.getPerimeter()); /* 14.0 */
7 System.out.println(p.getArea()); /* 12.0 */
8 con.grow(p);
9 System.out.println(p.getPerimeter()); /* 18.0 */

10 System.out.println(p.getArea()); /* 20.0 */
11 double[] triSides = {3, 4, 5}; p = con. getPolygon (triSides);
12 System.out.println(p instanceof Polygon); ✓
13 System.out.println(p instanceof Rectangle); ×
14 System.out.println(p instanceof Triangle); ✓
15 System.out.println(p.getPerimeter()); /* 12.0 */
16 System.out.println(p.getArea()); /* 6.0 */
17 con.grow(p);
18 System.out.println(p.getPerimeter()); /* 15.0 */
19 System.out.println(p.getArea()); /* 9.921 */
20 } }

10 of 22

Abstract Class (8)

● An abstract class :○ Typically has at least one method with no implementation body○ May define common implementations inherited to sub-classes.● Recommended to use an abstract class as the static type of:○ A variable
e.g., Polygon p○ A method parameter
e.g., void grow(Polygon p)○ A method return value
e.g., Polygon getPolygon(double[] sides)● It is forbidden to use an abstract class as a dynamic type

e.g., Polygon p = new Polygon(. . .) is not allowed!● Instead, create objects whose dynamic types are descendant
classes of the abstract class ⇒ Exploit dynamic binding !
e.g., Polygon p = con.getPolygon(recSides)
This is is as if we did Polygon p = new Rectangle(. . .)

11 of 22

Interface (1.1)

● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● As far as users of a Point object p is concerned, being able to
call p.getX() and p.getY() is what matters.● How p.getX() and p.getY() are internally computed,
depending on the dynamic type of p, do not matter to users.

12 of 22

Interface (1.2)

Recall: sin30○ = 1
2 and cos30○ = 1

2 ⋅√3

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
�

32a · cos30� = a ·
�

3

2a2a

30�30�

(a ·
�

3, a)(a ·
�

3, a)

We consider the same point represented differently as:
● r = 2a, = 30○ [polar system]
● x = 2a ⋅ cos30○ = a ⋅√3, y = 2a ⋅ sin30○ = a [cartesian system]
13 of 22

Interface (2)

public interface Point {
public double getX();
public double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have
no implementations, but headers only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!

14 of 22

Interface (3)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.
● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!
15 of 22

Interface (4)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.
● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, ⇡

6) allowed! [360○ = 2⇡]
16 of 22

Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */
8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?
● Lines 8 and 10 illustrate dynamic binding, how?

17 of 22

Interface (6)

● An interface :○ Has all its methods with no implementation bodies.○ Leaves complete freedom to its implementors.
● Recommended to use an interface as the static type of:○ A variable

e.g., Point p○ A method parameter
e.g., void moveUp(Point p)○ A method return value
e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant
classes of the interface ⇒ Exploit dynamic binding !

18 of 22

Abstract Classes vs. Interfaces:

When to Use Which?

● Use interfaces when:○ There is a common set of functionalities that can be implemented
via a variety of strategies.
e.g., Interface Point declares headers of getX() and getY().○ Each descendant class represents a different implementation
strategy for the same set of functionalities.○ CartesianPoint and PolarPoinnt represent different
strategies for supporting getX() and getY().● Use abstract classes when:○ Some (not all) implementations can be shared by descendants,
and some (not all) implementations cannot be shared .
e.g., Abstract class Polygon:● Defines implementation of getPerimeter, to be shared by

Rectangle and Triangle.● Declares header of getArea, to be implemented by Rectangle and
Triangle.

19 of 22

Beyond this lecture. . .

Study the ExampleAbstractClasses and
ExampleInterfaces source code:○ Draw the inheritance hierarchy based on the class declarations○ Use the debugger to step into the various method calls (e.g.,

getArea() of Polygon, getX() of Point) to see which version of
the method gets executed (i.e., dynamic binding).

20 of 22

Index (1)

Learning Outcomes

Abstract Class (1)

Abstract Class (2)

Abstract Class (3)

Abstract Class (4)

Abstract Class (5)

Abstract Class (6)

Abstract Class (7.1)

Abstract Class (7.2)

Abstract Class (8)

Interface (1.1)

21 of 22

Index (2)

Interface (1.2)

Interface (2)

Interface (3)

Interface (4)

Interface (5)

Interface (6)

Abstract Classes vs. Interfaces:

When to Use Which?

Beyond this lecture. . .

22 of 22

