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Learning Outcomes

This module is designed to help you learn about:
● What an abstract method and an abstract class are
● What an interface is
● Reinforce: Polymorphism and dynamic binding
● When to use abstract classes vs. interfaces?
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Abstract Class (1)

Problem: A polygon may be either a triangle or a rectangle.
Given a polygon, we may either○ Grow its shape by incrementing the size of each of its sides;○ Compute and return its perimeter ; or○ Compute and return its area.● For a rectangle with length and width, its area is length ×width.● For a triangle with sides a, b, and c, its area, according to
Heron’s formula, is �

s(s − a)(s − b)(s − c)
where

s = a + b + c
2

● How would you solve this problem in Java, while
minimizing code duplicates ?

3 of 22

Abstract Class (2)

public abstract class Polygon {
double[] sides;
Polygon(double[] sides) { this.sides = sides; }
void grow() {
for(int i = 0; i < sides.length; i ++) { sides[i] ++; }

}
double getPerimeter() {
double perimeter = 0;
for(int i = 0; i < sides.length; i ++) {
perimeter += sides[i];

}
return perimeter;

}
abstract double getArea();

}

● Method getArea not implemented and shown header only.
● ∴ Polygon cannot be used as a dynamic type
● Writing new Polygon(. . .) is forbidden!
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Abstract Class (3)

public class Rectangle extends Polygon {
Rectangle(double length, double width) {
super(new double[4]);
sides[0] = length; sides[1] = width;
sides[2] = length; sides[3] = width;

}
double getArea() { return sides[0] * sides[1]; }

}

● Method getPerimeter is inherited from the super-class
Polygon.

● Method getArea is implemented in the sub-class Rectangle.
● ∴ Rectangle can be used as a dynamic type
● Writing Polygon p = new Rectangle(3, 4) allowed!
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Abstract Class (4)

public class Triangle extends Polygon {
Triangle(double side1, double side2, double side3) {
super(new double[3]);
sides[0] = side1; sides[1] = side2; sides[2] = side3;

}
double getArea() {
/* Heron’s formula */
double s = getPerimeter() * 0.5;
double area = Math.sqrt(

s * (s - sides[0]) * (s - sides[1]) * (s - sides[2]));
return area;

}
}

● Method getPerimeter is inherited from Polygon.
● Method getArea is implemented in the sub-class Triangle.
● ∴ Triangle can be used as a dynamic type
● Writing Polygon p = new Triangle(3, 4, 5) allowed!
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Abstract Class (5)

1 public class PolygonCollector {
2 Polygon[] polygons;
3 int numberOfPolygons;
4 PolygonCollector() { polygons = new Polygon[10]; }
5 void addPolygon(Polygon p) {
6 polygons[numberOfPolygons] = p; numberOfPolygons ++;
7 }
8 void growAll() {
9 for(int i = 0; i < numberOfPolygons; i ++) {

10 polygons[i].grow();
11 }
12 }
13 }

● Polymorphism: Line 5 may accept as argument any object
whose static type is Polygon or any of its sub-classes.

● Dynamic Binding: Line 10 calls the version of grow inherited
to the dynamic type of polygons[i].
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Abstract Class (6)

1 public class PolygonConstructor {
2 Polygon getPolygon(double[] sides) {
3 Polygon p = null;
4 if(sides.length == 3) {
5 p = new Triangle(sides[0], sides[1], sides[2]);
6 }
7 else if(sides.length == 4) {
8 p = new Rectangle(sides[0], sides[1]);
9 }

10 return p;
11 }
12 void grow(Polygon p) { p.grow(); }
13 }

● Polymorphism:○ Line 2 may accept as return value any object whose static type is
Polygon or any of its sub-classes.○ Line 5 returns an object whose dynamic type is Triangle; Line

8 returns an object whose dynamic type is Rectangle.
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Abstract Class (7.1)

1 public class PolygonTester {
2 public static void main(String[] args) {
3 Polygon p;
4 p = new Rectangle(3, 4); /* polymorphism */
5 System.out.println(p.getPerimeter()); /* 14.0 */
6 System.out.println(p.getArea()); /* 12.0 */
7 p = new Triangle(3, 4, 5); /* polymorphism */
8 System.out.println(p.getPerimeter()); /* 12.0 */
9 System.out.println(p.getArea()); /* 6.0 */

10
11 PolygonCollector col = new PolygonCollector();
12 col.addPolygon(new Rectangle(3, 4)); /* polymorphism */
13 col.addPolygon(new Triangle(3, 4, 5)); /* polymorphism */

14 System.out.println(col.polygons[0]. getPerimeter ()); /* 14.0 */

15 System.out.println(col.polygons[1]. getPerimeter ()); /* 12.0 */
16 col.growAll();

17 System.out.println(col.polygons[0]. getPerimeter ()); /* 18.0 */

18 System.out.println(col.polygons[1]. getPerimeter ()); /* 15.0 */
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Abstract Class (7.2)

1 PolygonConstructor con = new PolygonConstructor();
2 double[] recSides = {3, 4, 3, 4}; p = con. getPolygon (recSides);
3 System.out.println(p instanceof Polygon); ✓
4 System.out.println(p instanceof Rectangle); ✓
5 System.out.println(p instanceof Triangle); ×
6 System.out.println(p.getPerimeter()); /* 14.0 */
7 System.out.println(p.getArea()); /* 12.0 */
8 con.grow( p );
9 System.out.println(p.getPerimeter()); /* 18.0 */

10 System.out.println(p.getArea()); /* 20.0 */
11 double[] triSides = {3, 4, 5}; p = con. getPolygon (triSides);
12 System.out.println(p instanceof Polygon); ✓
13 System.out.println(p instanceof Rectangle); ×
14 System.out.println(p instanceof Triangle); ✓
15 System.out.println(p.getPerimeter()); /* 12.0 */
16 System.out.println(p.getArea()); /* 6.0 */
17 con.grow( p );
18 System.out.println(p.getPerimeter()); /* 15.0 */
19 System.out.println(p.getArea()); /* 9.921 */
20 } }
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Abstract Class (8)

● An abstract class :○ Typically has at least one method with no implementation body○ May define common implementations inherited to sub-classes.● Recommended to use an abstract class as the static type of:○ A variable
e.g., Polygon p○ A method parameter
e.g., void grow(Polygon p)○ A method return value
e.g., Polygon getPolygon(double[] sides)● It is forbidden to use an abstract class as a dynamic type

e.g., Polygon p = new Polygon(. . .) is not allowed!● Instead, create objects whose dynamic types are descendant
classes of the abstract class ⇒ Exploit dynamic binding !
e.g., Polygon p = con.getPolygon(recSides)
This is is as if we did Polygon p = new Rectangle(. . .)
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Interface (1.1)

● We may implement Point using two representation systems:

○ The Cartesian system stores the absolute positions of x and y.○ The Polar system stores the relative position: the angle (in radian)
phi and distance r from the origin (0.0).

● As far as users of a Point object p is concerned, being able to
call p.getX() and p.getY() is what matters.● How p.getX() and p.getY() are internally computed,
depending on the dynamic type of p, do not matter to users.
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Interface (1.2)

Recall: sin30○ = 1
2 and cos30○ = 1

2 ⋅√3

2a · sin30� = a2a · sin30� = a

2a · cos30� = a ·
�

32a · cos30� = a ·
�

3

2a2a

30�30�

(a ·
�

3, a)(a ·
�

3, a)

We consider the same point represented differently as:
● r = 2a,  = 30○ [ polar system ]
● x = 2a ⋅ cos30○ = a ⋅√3, y = 2a ⋅ sin30○ = a [ cartesian system ]
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Interface (2)

public interface Point {
public double getX();
public double getY();

}

● An interface Point defines how users may access a point:
either get its x coordinate or its y coordinate.

● Methods getX and getY similar to getArea in Polygon, have
no implementations, but headers only.

● ∴ Point cannot be used as a dynamic type
● Writing new Point(. . .) is forbidden!
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Interface (3)

public class CartesianPoint implements Point {
private double x;
private double y;
public CartesianPoint(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

}

● CartesianPoint is a possible implementation of Point.
● Attributes x and y declared according to the Cartesian system
● All method from the interface Point are implemented in the

sub-class CartesianPoint.
● ∴ CartesianPoint can be used as a dynamic type
● Point p = new CartesianPoint(3, 4) allowed!
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Interface (4)

public class PolarPoint implements Point {
private double phi;
private double r;
public PolarPoint(double r, double phi) {
this.r = r;
this.phi = phi;

}
public double getX() { return Math.cos(phi) * r; }
public double getY() { return Math.sin(phi) * r; }

}

● PolarPoint is a possible implementation of Point.
● Attributes phi and r declared according to the Polar system
● All method from the interface Point are implemented in the

sub-class PolarPoint.
● ∴ PolarPoint can be used as a dynamic type
● Point p = new PolarPoint(3, ⇡

6) allowed! [360○ = 2⇡]
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Interface (5)

1 public class PointTester {
2 public static void main(String[] args) {
3 double A = 5;
4 double X = A * Math.sqrt(3);
5 double Y = A;
6 Point p;
7 p = new CartisianPoint(X, Y); /* polymorphism */
8 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
9 p = new PolarPoint(2 * A, Math.toRadians(30)); /* polymorphism */

10 print("(" + p. getX() + ", " + p. getY() + ")"); /* dyn. bin. */
11 }
12 }

● Lines 7 and 9 illustrate polymorphism, how?
● Lines 8 and 10 illustrate dynamic binding, how?
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Interface (6)

● An interface :○ Has all its methods with no implementation bodies.○ Leaves complete freedom to its implementors.
● Recommended to use an interface as the static type of:○ A variable

e.g., Point p○ A method parameter
e.g., void moveUp(Point p)○ A method return value
e.g., Point getPoint(double v1, double v2, boolean
isCartesian)

● It is forbidden to use an interface as a dynamic type
e.g., Point p = new Point(. . .) is not allowed!

● Instead, create objects whose dynamic types are descendant
classes of the interface ⇒ Exploit dynamic binding !
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Abstract Classes vs. Interfaces:

When to Use Which?

● Use interfaces when:○ There is a common set of functionalities that can be implemented
via a variety of strategies.
e.g., Interface Point declares headers of getX() and getY().○ Each descendant class represents a different implementation
strategy for the same set of functionalities.○ CartesianPoint and PolarPoinnt represent different
strategies for supporting getX() and getY().● Use abstract classes when:○ Some (not all) implementations can be shared by descendants,
and some (not all) implementations cannot be shared .
e.g., Abstract class Polygon:● Defines implementation of getPerimeter, to be shared by

Rectangle and Triangle.● Declares header of getArea, to be implemented by Rectangle and
Triangle.
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Beyond this lecture. . .

Study the ExampleAbstractClasses and
ExampleInterfaces source code:○ Draw the inheritance hierarchy based on the class declarations○ Use the debugger to step into the various method calls (e.g.,

getArea() of Polygon, getX() of Point) to see which version of
the method gets executed (i.e., dynamic binding ).
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