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Treats the input programas as a a sequence of characters

Applies rules recognizing character sequences as fokens

Upon termination:

[ lexical analysis ]

e Reports character sequences not recognizable as tokens

e Produces a a sequence of tokens

Only part of compiler touching every character in input program.
Tokens recognizable by scanner constitute a regular language .



Scanner: Formulation & Implementation  Jou

Kleene’s Construction

Code for
a scanner
RE DFA Minimization DFA
Thompson’s Subset
Construction Construction

NFA
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Alphabets v

e An alphabet is a finite, nonempty set of symbols.

o The convention is to write ¥ , possibly with a informative
subscript, to denote the alphabet in question.

eg. Xeng=1{ab,...,z,AB,....Z} [ the English alphabet ]
e.g., Xpin=190,1} [ the binary alphabet ]
€.0., Xgec={d|0<d<9} [ the decimal alphabet ]
€.0-, Ykey [ the keyboard alphabet ]

e Use either a set enumeration or a set comprehension to define
your own alphabet.
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Strings (1) LassonDE
A string or a word is finite sequence of symbols chosen from
some alphabet.

e.g., Oxford is a string from the English alphabet 3¢,

e.g., 01010 is a string from the binary alphabet ¥,

e.g., 01010.01 is not a string from X,

e.g., 57 is a string from the binary alphabet X 4.
It is not correct to say, e.g., 01010 € X, [Why?]
The length of a string w, denoted as |w/|, is the number of
characters it contains.
o e.g., |Oxford| =6
o ¢ isthe empty string (|¢| = 0) that may be from any alphabet.
Given two strings x and y, their concatenation , denoted as xy,
is a new string formed by a copy of x followed by a copy of y.
o eg.,Letx=071707and y =110, then xy=01101110
o The empty string ¢ is the identity for concatenation :

ew = w = we for any string w

e




S
Strings (2) o

e Given an alphabet 3, we write Yk where k ¢ N, to denote the
set of strings of length k from ™

Y- {w|w is from T A|w|=k}
o e.g., {0,1}2 = {00, 01, 10, 11}

o ¥0 is {¢} for any alphabet &
e Y* isthe set of nonempty strings from alphabet ©

st=stur?usiu.. = {w|wexkak>01= | =X
k>0

e 3" isthe set of strings of all possible lengths from alphabet &

=3t u{e)

Bof 68



Review Exercises: Strings

LASSONDE
i

1. Whatis |{a,b,...,z}°|?
2. Enumerate, in a systematic manner, the set {a, b, ¢}*.
3. Explain the difference between ¥ and X'.

Y is a set of symbols; X' is a set of strings of length 1.
4. Prove or disprove: ¥ c¥p =¥ cX;
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Languages LASSONDE

e Alanguage L over ¥ (where |%|is finite) is a set of strings s.t.

Lcy”
e When useful, include an informative subscript to denote the
language L in question.
o e.g., The language of valid Java programs

Ljava = {prog | prog € i, Aprog compiles in Eclipse}

o e.g., The language of strings with n 0’s followed by n 1’s (n > 0)
{¢,01,0011,000111,...} ={0"1" | n> 0}

o e.g., The language of strings with an equal number of 0’s and 1’s
{¢,01,10,0011,0101,0110,1100,1010,1001,...}
= {w|# of 0’s in w = # of 1’s in w}
8.01.68
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Review Exercises: Languages LASSONDE

1.

w N

Use set comprehensions to define the following languages. Be

as formal as possible.

o A language over {0, 1} consisting of strings beginning with some
0’s (possibly none) followed by at least as many 1’s.

o A language over {a, b, c} consisting of strings beginning with
some a’s (possibly none), followed by some b’s and then some C’s,
s.t. the # of a’s is at least as many as the sum of #s of b’s and c’s.

Explain the difference between the two languages {¢} and @.

. Justify that ¥*, @, and {¢} are all languages over ¥.

Prove or disprove: If L is a language over ¥, and ¥, 2 ¥, then L

is also a language over ¥».

Hint: Provethat Y c Yo AL cYy* = Lc Y5

Prove or disprove: If L is a language over ¥, and ¥» c ¥, then L

is also a language over ¥».

Hint: Provethat S c Y ALcY* = Lc¥;

9.0168
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Pr0b|emS LASSONDE

e Given a language L over some alphabet >, a problem is the
decision on whether or not a given string w is a member of L.

wel

Is this equivalent to deciding w e ¥*? [ No]

* e.g., The Java compiler solves the problem of deciding if the
string of symbols typed in the Eclipse editor is a member of
L a4 (i.€., set of Java programs with no syntax and type errors).

10.0t 68
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Regular Expressions (RE): Introduction

SSONDE

|

* Regular expressions (RegExp’s) are:

o Atype of language-defining notation
o This is similar to the equally-expressive DFA, NFA, and e-NFA.

o Textual and look just like a programming language
e e.9.,01*+10*denotes L={0x | xe {1} }u{1x|xe{0}"}
e e.g.,(0*10*10*)*10* denotes L= {w | w has odd # of 1’s}
e This is dissimilar to the diagrammatic DFA, NFA, and e-NFA.
o RegExp’s can be considered as a “user-friendly” alternative to NFA for
describing software components. [e.g., text search]
o Writing a RegExp is like writing an algebraic expression, using the
defined operators, e.g., (4 + 3) *5) % 6
» Despite the programming convenience they provide, RegExp’s,
DFA, NFA, and ¢-NFA are all provably equivalent .

o They are capable of defining all and only regular languages.

B



RE: Language Operations (1) LassonDE

 Given X of input alphabets, the simplest RegExp is s ¢ X',
o e.g., Given X ={a, b, c}, expression a denotes the language
consisting of a single string a.

e Given two languages L, M € ©*, there are 3 operators for
building a larger language out of them:

1. Union
LuM={w|welLvweM}

In the textual form, we write + for union.
2. Concatenation
IM={xy|xeLAryeM}

In the textual form, we write either . or nothing at all for
concatenation.

e



RE: Language Operations (2) LassonDE
3. Kleene Closure (or Kleene Star)
L* = ULI
i>0
where
L = {&
L' =L
L2 = {X1X2|X1€L/\X2€L}
.L.". = { xix..x; |xelLal<j<i}

—_—
i repetations

In the textual form, we write = for closure. '
Question: What is |L'| (i ¢ N)? [IL']
Question: Given that L = {0}*, whatis L*? [L]

e
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RE: Construction (1) o

We may build regular expressions recursively:

e Each (basic or recursive) form of regular expressions denotes a
language (i.e., a set of strings that it accepts).

» Base Case:
o Constants ¢ and @ are regular expressions.
L(e) = A{e
L) = ©

o Aninput symbol a€ X is a regular expression.

L(a)={a}

If we want a regular expression for the language consisting of only
the string w € *, we write w as the regular expression.
o Variables such as L, M, etc., might also denote languages.
14.0£68
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RE: Construction (2) o

* Recursive Case Given that E and F are regular expressions:
o The union E + F is a regular expression.

L(CE+F)=L(E)uL(F)

o The concatenation EF is a regular expression.
L( EF)=L(E)L(F)

o Kleene closure of E is a regular expression.
LCE")=(L(E))”

o A parenthesized E is a regular expression.
L((E)) = L(E)
150168



RE: Construction (3) o
Exercises:
e oL [oL=o=Lz]
o ¥
g = ug'ugdiu...
{eyugugu...
= {e}
c oL [o*L=L=Lz"]
e g+L [o+L=L=g@+L]

16.0L68
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RE: Construction (4) o

Write a regular expression for the following language

{w]|w has alternating 0’s and 1’s}

Would (01)* work? [alternating 10’s7?]
Would (01)* + (10)* work? [starting and ending with 17]
0(10)* + (01)* + (10)* + 1(01)*

It seems that:

o 1st and 3rd terms have (10)* as the common factor.
o 2nd and 4th terms have (01)* as the common factor.

Can we simplify the above regular expression?
e (e+0)(10)* + (e+1)(01)*

170t 68
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RE: Review Exercises LAssONDE

Write the regular expressions to describe the following languages:
e {w|w ends with 01}

e {w|w contains 01 as a substring}

e {wW|w contains no more than three consecutive 1’s}

{w]|w ends with 01vw has an odd # of 0’s}

se{+,— €}

*
A XeEXH .

A YeXi.
A =(X=€eAny=¢€)

sx.y

xe{0,1}*Aye{0,1}*
A X has alternating 0’s and 1’'s
A ¥ has an odd # 0’s and an odd # 1’s

18.0t68
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RE: Operator Precedence Lassonpe

e In an order of decreasing precedence:
o Kleene star operator
o Concatenation operator
o Union operator
¢ When necessary, use parentheses to force the intended order
of evaluation.

° e.g.,
o 10* vs. (10)* [10* is equivalent to 1(0*)]
o 01" +1vs. 0(1*+1) [01* + 1 is equivalent to (0(1*)) + (1)]
o 0+1* vs. (0+1)* [0+ 1*is equivalent to (0) + (1*)]

e
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DFA: Deterministic Finite Automata (1.1)  Sssone:

e A deterministic finite automata (DFA) is a finite state machine

(FSM) that accepts (or recognizes) a pattern of behaviour.
o For our purpose of this course, we study patterns of strings (i.e.,
how alphabet symbols are ordered).
o Unless otherwise specified, we consider strings in {0, 1}*
o Each pattern contains the set of satisfying strings.
o We describe the patterns of strings using set comprehensions:
e {w|w has an odd number of 0’s}
e {w|w has an even number of 1’'s}
e w We }
A W has equal # of alternating 0’s and 1’s
e {w|w contains 01 as a substring}
. {W| W has an even number of 0’s }
A W has an odd number of 1’s

¢ Given a pattern description, we design a DFA that accepts it.

o The resulting DFA can be transformed into an executable program.
200168



DFA: Deterministic Finite Automata (1.2)  iissonee

The transition diagram below defines a DFA which accepts
exactly the language
{wlw has an odd number of 0’s}

o Each incoming or outgoing arc (called a transition ) corresponds
to an input alphabet symbol.

o §p with an unlabelled incoming transition is the start state .

o s3 drawn as a double circle is a final state .

o All states have outgoing transitions covering {0, 1}.
2L0t68
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DFA: Deterministic Finite Automata (1.3)

The transition diagram below defines a DFA which accepts
exactly the language

SSONDE

W +e
{W| A W has equal # of alternating 0’s and 1’'s }
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Review Exercises: Drawing DFAs LassoNDE

Draw the transition diagrams for DFAs which accept other
example string patterns:

e {w|w has an even number of 1’s}

e {w|w contains 01 as a substring }

A W has an odd number of 1’s

. {W| W has an even number of 0’s }
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DFA: Deterministic Finite Automata (2.1)  ssone

A deterministic finite automata (DFA) is a 5-tuple

M:(Qv Z? 67 Qo F)

Q is a finite set of states.
Y is a finite set of input symbols (i.e., the alphabet).
d:(QxX)— Qis a transition function
0 takes as arguments a state and an input symbol and returns a state.
Qo € Q is the start state.
F c Qis a set of final or accepting states.

[e]

(e]

[e]

[e]

[e]
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DFA: Deterministic Finite Automata (2.2)  iissonee

e GivenaDFAM=(Q, X, 6, qu, F):
o We write L(M) to denote the language of M : the set of strings

that M accepts.
o A string is accepted if it results in a sequence of transitions:
beginning from the start state and ending in a final state.

_ aids...an |
L(M)_{ 13/'3/7/\a,-eZA(S(qH,a,'):q,-/\q,,eF}
o M rejects any string w ¢ L(M).
e We may also consider L(M) as concatenations of labels from

the set of all valid paths of M’s transition diagram; each such
path starts with go and ends in a state in F.

e
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DFA: Deterministic Finite Automata (2.3)  ussone:
e Givena DFAM = (Q, ¥, 0, qo, F), we may simplify the
definition of L(M) by extending ¢ (which takes an input symbol)
to & (which takes an input string).
0:(QxT) - Q
We may define § recursively, using 4!
i(qe) = q
o(g,xa) = 0(0(g,x),a)
where ge Q, x e X*,and aec X
¢ A neater definition of L(M) : the set of strings w € ¥* such that

5(qo, w) is an accepting state.
LIM)={w|weX*Ad(qo,w)eF}
e Alanguage L is said to be a regular language , if there is some

DFA M such that L = L(M).
26.0L68



DFA: Deterministic Finite Automata (2.4)  ssono

We formalize the above DFA as M = (Q, X, 6, qo, F), where
* Q={so,s1}
e > ={0,1}
* 0={((50,0),51),((S0,1),%0), ((51,0), %), ((s1,1),81)}
state \ input || 0 | 1
So S1 | So
Sq So | S1

® o = So
e F={s1}
270168




DFA: Deterministic Finite Automata (2.5.1) oo

string

We formalize the above DFA as M = (Q, X, ¢, qo, F), where
* Q={s0,51,52,853,54, S5}

e > ={0,1}

® o =350

o F={s3,8}
280168



DFA: Deterministic Finite Automata (2.5.2) oo

state \ input || 0 | 1
So S1 | So
Sq S5 | S3
So S4 | S5
S3 S1 | S5
S4 S5 | So
S5 S5 | Ss




Review Exercises: Formalizing DFAs LassoNDE

Formalize DFAs (as 5-tuples) for the other example string patterns
mentioned:

e {wW|w has an even number of 0’s}

e {w|w contains 01 as a substring }

A W has an odd number of 1’s

R {W| W has an even number of 0’s }




NFA: Nondeterministic Finite Automata (1.1) oo
Problem: Design a DFA that accepts the following language:
L={x01|xe{0,1}"}

That is, L is the set of strings of 0Os and 1s ending with 01.
1 [4)

Given an input string w, we may simplify the above DFA by:
o nondeterministically treating state qp as both:

¢ a state ready to read the last two input symbols from w
o a state not yet ready to read the last two input symbols from w
o substantially reducing the outgoing transitions from ¢; and @

alotas Comiare the above DFA with the DFA in slide 39.



NFA: Nondeterministic Finite Automata (1.2) oo

e A non-deterministic finite automata (NFA) that accepts the
same language:

e How an NFA determines if an input 00707 should be processed:

KIO;—qO;—qO*—%;—qO;—qO

S,

q q q

! (stuck) \ \
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NFA: Nondeterministic Finite Automata (2) iissono:

e A nondeterministic finite automata (NFA) , like a DFA, is a
FSM that accepts (or recognizes) a pattern of behaviour.

e An NFA being nondeterministic means that from a given state,
the same input label might corresponds to multiple transitions
that lead to distinct states.

o Each such transition offers an alternative path.

o Each alternative path is explored independently and in parallel.

o If there exists an alternative path that succeeds in processing the
input string, then we say the NFA accepts that input string.

o If all alternative paths get stuck at some point and fail to process
the input string, then we say the NFA rejects that input string.

¢ NFAs are often more succinct (i.e., fewer states) and easier to
design than DFAs.
e However, NFAs are just as expressive as are DFAs.

o We can always convert an NFA to a DFA.
33.0£68
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NFA: Nondeterministic Finite Automata (3.1) ssono

* A nondeterministic finite automata (NFA) is a 5-tuple

M=(Q, %, 4, qo, F)

Q is afinite set of states.

Y is a finite set of input symbols (i.e., the alphabet).

o 0:(QxX)—P(Q)is a transition function

0 takes as arguments a state and an input symbol and returns a set of
states.

Qo € Q is the start state.
o Fc Qis aset of final or accepting states.

¢ What is the difference between a DFA and an NFA ?

o The transition function § of a DFA returns a single state.
o The transition function § of an NFA returns a set of states.

e

[e]

[e]

[e]
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NFA: Nondeterministic Finite Automata (3.2) issono

e Givena NFAM=(Q, X, §, qo, F), we may simplify the
definition of L(M) by extending § (which takes an input symbol)
to 4 (which takes an input string).

E (QAxTZ")->P(Q)
We may define 4 recursively, using ¢!
g = {q} )
o(g.xa) = U{0(qa)| g €i(q,x)}
where ge Q, xeX*,and aec X
A neater definition of L(M) : the set of strings w € ¥* such that

(qo, w) contains at least one accepting state.
LIM)={w|weX*Ai(qo,w)nF %2}

e



NFA: Nondeterministic Finite Automata (4) ssono:

Given an input string 00101:

* Read 0: 6( g0 ,0)={ Q.91 }

Read 0: 5( qo,0)ud(q1,0)={ qo.q1 }uvz={0q0, a1 }
Read 1: 6(qo,1)ui(gi,1)={q u{g}={ q,.q}
Read 0: 6( g0 .0)ud(92,0) ={ qo,¢1 }uo={q, g1 }

Read.':(S(qO"I)U(S( a1 ’1):{070#71 }U{Q2}={QOaQ1> ()] }

{ Qo, 41, Q2 }ﬁ{ Qo } #@..00101 is accepted
360068




S
DFA = NFA (1) o

¢ For many languages, constructing an accepting NFA is easier
than a DFA.

From each state of an NFA:

o Qutgoing transitions need not cover the entire .

o An input symbol may non-deterministically lead to multiple states.
In practice:

o An NFA has just as many states as its equivalent DFA does.

o An NFA often has fewer transitions than its equivalent DFA does.
In the worst case:

o While an NFA has n states, its equivalent DFA has 2" states.
Nonetheless, an NFA is still just as expressive as a DFA.

o Every language accepted by some NFA can also be accepted by
some DFA.

¥N:NFA o (3D: DFA o L(D) = L(N))

370t 68



DFA = NFA (2.2): Lazy Evaluation (1) ﬁ#

Given an NFA:

0, 1

ons

Subset construction (with /lazy evaluation) produces a DFA
transition table:

state \ input || 0 | 1
5(qo,0) 9(qo, 1)
{Go} = {qo,q1} = {q}
9(qo,0) ud(qr,0) 5(qo,1)ud(qs, 1)
{q, a1} = {Qq}uo = {q}tu{e}
= {q,q1} = {Qo, g}
9(qo,0) U (a2, 0) 0(Qo, 1) ui(qe, 1)
{qo, g2} = {Q.q}tvo = {Q}tuo
= {qo, a1} = {q}




DFA = NFA (2.2): Lazy Evaluation (2) s

Applying subset construction (with lazy evaluation), we arrive in
a DFA transition table:
state \ input H 0 ‘ 1
{Qo} {90, 91} | {q0}
{qo, a1} {90.91} | {90, %}
{Qo, g2} {Q.q1} | {qo}
We then draw the DFA accordingly:
1 0

Compare the above DFA with the DFA in slide 31.
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DFA = NFA (2.2): Lazy Evaluation (3)

|

SSONDE
e Givenan NFA N = (Qy, Zn, N, Qo, Fn), often only a small
portion of the |P(Qy)| subset states is reachable from {qy}.
ALGORITHM: ReachableSubsetStates
INPUT: qo:Qu ; OUTPUT: Reachable ¢ P(Qy)
PROCEDURE:
Reachable := { {qo} }
ToDiscover := { {qv} }
while (ToDiscover + @) {
choose S:P(Qy) such that S e ToDiscover
remove S from ToDiscover
NotYetDiscovered :=
( {on(s,0) | seS}u{dn(s,1) | s€S} )\ Reachable
Reachable := ReachableU NotYetDiscovered
ToDiscover := ToDiscover u NotYetDiscovered
}
return Reachable
o RT of ReachableSubsetStates? [ O(29)]

e
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E'NFA: Examples (1) _iI;ASSONDE
Draw the NFA for the following two languages:
1.
xe{0,1}*
X A ye{0,1}*
Y1 A x has alternating 0’s and 1’s
A ¥ has an odd # 0’s and an odd # 1’s
2.
w0 11 W has alternating 0’s and 1’'s
0.1 V. W has an odd # 0’s and an odd # 1’'s
3.
se{+,— ¢}
AN XeEXY
SX. dec
Y1 a Y eX

A =(X=€eny=¢€)

e



E'N FA: Exam p|eS (2) LASSONDE

se{+,—,¢}
*
sX.y A XEX.
M *
AN YEX .
A =(X=eny=¢)
0,1,.,9 0,1,..,9

From qg to g4, reading a sign is optional: a p/us or a minus, or

nothing at all (i.e., €).
42.0t68
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e-NFA: Formalization (1)

SSONDE

|

An e-NFA is a 5-tuple

M=(Q, z? 57 Qo F)

Q is a finite set of states.
Y is a finite set of input symbols (i.e., the alphabet).
d:(Qx(Xu{e}))—»P(Q) is a transition function
0 takes as arguments a state and an input symbol, or an empty string
¢, and returns a set of states.
Qo € Q is the start state.
F c Qis a set of final or accepting states.

o

o

[e]

[e]

o

43.0168



-NFA: Formalization (2) o

9,1,..,9 9,1,..,9

@ €k, - @ 0,1,..,9

Draw a transition table for the above NFA'’s § function:

H € +, - . 0..9
QP | {¢) {m} o %)
a1 %) %) (G2} 191,04}
®R| 2 % @ {gs}
& | {95} o %) {a3}
Qs | @ 2  {g} %)
gs %) %) %) %)




E'NFA: EpSith-ClOSUI‘eS (1) LASSONDE

e Given e-NFA N
N:(Qa zv 57 Qo, F)

we define the epsilon closure (or e-closure) as a function

ECLOSE : Q- P(Q)

e Forany state ge Q
ECLOSE(Q) ={q}u |J ECLOSE(p)

ped(q.e)

45.0168



E'NFA: EpSilon-C|OSUI‘eS (2) LASSONDE

ECLOSE(Qo)
= {6(qo,€) = {q1,2}}
{Qo} UECLOSE(Q1) UECLOSE(Qz)
= {ECLOSE(q1), 0(qi,€)={qs}, ECLOSE(Qz), d(qz,¢) =2}
{qo}u ({g:}vECLOSE(qs) U ({Q}u2)
= {ECLOSE(Q3), d(qs,¢)={0s}}
{ao} v ({agi}u({gs} vECLOSE(gs) ) YU ({ge}ud)
= {ECLOSE(gs), 9(Gs,¢) =2}

{gofu({gi}u({gtu({giva)))u({gluve)
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E'NFA: Formalizatlon (3) ;L\SSONDE

e Givenac¢-NFAM = (Q, =, §, qu, F), we may simplify the
definition of L(M) by extending § (which takes an input symbol)
to 4 (which takes an input string).

R (QAxTZ")->P(Q)
We may define 4 recursively, using ¢!
5(q,e) = ECLOSE(Q)
0(q,xa) = U{ECLOSE(q")|q"€d(q,a)rq €i(q,x) }
where ge Q, xeX*,and ae X
e Then we define L(M) as the set of strings w € ¥* such that

(qo, w) contains at least one accepting state.
LIM)={w|weX*Ai(qo,w)nF %2}

47068



-NFA: Formalization (4) o

0,1,..,9

Given an input string 5.6:
3(Qo, €) = ECLOSE(Qo) = {qo, 1}
* Read 5: 9(q0,5)vd(q1,5) =2u{qr,qat ={q1,qs }
3(qo,5) = ECLOSE(Q1) UECLOSE(Qs) = {1} U {qu} = {1, qa}
e Read .: 0(q1,.)ud(qs,.) ={q}u{gs} ={ g, }
0(Qo,5.) = ECLOSE(Qe) UECLOSE(qs) = {G2} U {33, G5} = {q2, Gs, G5}
* Read 6: 0(q2,6)u(qs,6)Ld(05,6) = {g}u{giuo={qg}

5(qo,5.6) = ECLOSE(qs) = {q3, G5} [5.6 is accepted]
48.ta




-
DFA = «-NFA: Subset Construction (1) o

Subset construction (with /lazy evaluation and epsilon closures )
produces a DFA transition table.
H de0..9 \ se{+,-} \ .

{qo, g1} {g1,qe) | {a1} {2}
{q1, 4} {9,q:} | @ {92,03,05}
{an} {g,qa} | @ {q}
{2} {05} | @ @
{92,03,G5} || {q3,05} | @ %)
{%,05} {gs5,05} | @ %)

For example, 6({qo, g1}, d) is calculated as follows: [d€0..9]

U{ECLOSE(Q) | g€ d(qo,d)ud(gi,d)}
U{ECLOSE(Q) | g€ @U{q1,qua}}
U{ECLOSE(Q) | g €{q1,Qa}}
ECLOSE(Qy) UECLOSE(Qs)
{gi}u{qs}

{q1 ) q4}
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DFA = «-NFA: Subset Construction (2) o

e Given an e=NFA N = (Qu, X n, N, Qo, Fn), by applying the
extended subset construction to it, the resulting DFA
D =(Qp,%p.dp.9p,.,.. Fp) is such that:

2D =
Qp =

qDS[af[
Fp -
op ( S, a)

WY
{S|ScQua(Iw:X*eS=ip(qo,w)) }
ECLOSE(Qp)

{S|ScQuASnFy=D}

U{ ECLOSE(S") | se SA S eip(s,a) }
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Regu‘ar EXpI‘eSSiOI‘I tO E'NFA LASSONDE

¢ Just as we construct each complex regular expression
recursively, we define its equivalent ¢-NFA recursively .

e Given a regular expression R, we construct an e-NFA E, such
that L(R) = L(E), with
o Exactly one accept state.
o No incoming arc to the start state.
o No outgoing arc from the accept state.




Regu‘ar EXpI‘eSSiOI‘I tO E'NFA LASSONDE

Base Cases:

® ¢

e 3 [aeX]




Regu‘ar EXpI‘eSSiOI‘I tO E'NFA _iI;ASSONDE
Recursive Cases: [Rand S are RE’s]
e R+S

—=) @

s |

* RS

£ o
e R*

T ¢
£
23.0£68



Regular Expression to «-NFA: Examples (1.1)ssono

e 0+1

e (0+1)"
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Regular Expression to «-NFA: Examples (1.2)ssono

e (0+1)*1(0+1)
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Minimizing DFA: Motivation LassoNDE

* Recall: ’ Regular Expresion ‘ — ] e-NFA \ — ] DFA\

e DFA produced by the subset construction (with lazy
evaluation) may not be minimum on its size of state.

* When the required size of memory is sensitive
(e.g., processor’s cache memory),
the fewer number of DFA states, the better.
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SSONDE

Minimizing DFA: Algorithm

and equivalent behaviour as M

ks

ALGORITHM: MinimizeDFAStates

INPUT: DFA M=(Q, ¥, 6, qo, F)

OUTPUT: M’ s.t. minimum |Q|

PROCEDURE :

P := @ /+ refi

T :={FQ-F },

while (P # T):

P :=T

T := g

for(p € P s.t. |pl > 1):
find the maximal S € p s.t. splittable(p,
if S #J then

Tu {Sv p,S}

S)

T :=
else
T U {p}

T :=
end

splittable(p, S) holds iff there is ce X s.t.
e Transition c leads all s € S to states in the same partition p1.
o Transition c leads some s € p — S to a different partition p2 (p2 + p1).
e
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Minimizing DFA: Examples

SSONDE

Exercises: Minimize the DFA from here; Q1 & Q2, p59, EAC2.

58.0L68




Exercise: LASSONDE
Regular Expression to Minimized DFA

Given regular expression r [0. . 9]+ which specifies the pattern of
a register name, derive the equivalent DFA with the minimum
number of states. Show all steps.
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Implementing DFA as Scanner

SSONDE
o The source language has a list of syntactic categories:
e.g., keyword while [while]
e.g., identifiers [ [a-zA-2] [a-zA-20-9_] ]
e.g., white spaces [ [ \t\rl1+]

o A compiler's scanner must recognize words from all syntactic
categories of the source language.
o Each syntactic category is specified via a regular expression.

r + r + ...+ I'n
~—— ~—— ~—~—
syn. cat. 1 syn. cat. 2 syn. cat. n

e Overall, a scanner should be implemented based on the minimized

DFA accommodating all syntactic categories.
o Principles of a scanner:

¢ Returns one word at a time

o Each returned word is the longest possible that matches a pattern

o A priority may be specified among patterns
(e.g., new is a keyword, not identifier)

60.01.68



Implementing DFA: Table-Driven Scanner (1)ssono

Classifier

(CharcCat)

r

Register

0,1,2,...,9
Digit

EOF

Other

Other

Other

B1ot 68

Transition

Consider the syntactic category of register names.
Specified as a regular expression : r [0.
Afer conversion to e-NFA, then to DFA, then to minimized DFA:

.91+

The following tables encode knowledge about the above DFA:

(%)

So
$1
s2
Se

Register Digit Other | Token Type (Type)

51
Se
Se
Se

Se
52
52
Se

Se
Se
Se
Se

So 51 S2 Se

invalid invalid register invalid




/|

Implementing DFA: Table-Driven Scanner (2).ssono:
The scanner then is implemented via a 4-stage skeleton:

NextWord()
-— Stage 1: Initialization
state := Sy ; word := €

initialize an empty stack S ; s.push (bad)
-—- Stage 2: Scanning Loop
while (state # Sg)
NextChar (char) ; word := word + char
if state € F then reset stack S end
s.push (state)
cat := CharCat|[char]
state := d[state, cat]
-— Stage 3: Rollback Loop
while (state ¢ F A state # bad)
state := s.pop ()
truncate word
—-— Stage 4: Interpret and Report
if state € F then return Type[state]
else return invalid
end

620168
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