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Treats the input programas as a a sequence of characters
Applies rules recognizing character sequences as fokens

¢

[ lexical analysis ]

o

Upon termination:

e Reports character sequences not recognizable as tokens
e Produces a a sequence of tokens

Only part of compiler touching every character in input program.
o Tokens recognizable by scanner constitute a regular language .

[e]
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Scanner: Formulation & Implementation
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Kleene’s Construction
Code for
a scanner
RE DFA Minimization DFA
Thompson'’s Subset
Construction Construction
NFA
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Alphabets LAssoNDE

e An alphabet is a finite, nonempty set of symbols.

o The convention is to write X , possibly with a informative
subscript, to denote the alphabet in question.
eg. Xeng=1{ab,...,z,AB,....Z} [ the English alphabet ]
e.g., Lpin={0,1} [ the binary alphabet ]
€.0., Tgec={d|0<d <9} [ the decimal alphabet ]
€.0., Lkey [ the keyboard alphabet ]

¢ Use either a set enumeration or a set comprehension to define
your own alphabet.
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e A string ora word is finite sequence of symbols chosen from
some alphabet.
e.g., Oxford is a string from the English alphabet > ¢ng
e.g., 01010 is a string from the binary alphabet ¥,
e.g., 01010.01 is not a string from X,
e.g., 57 is a string from the binary alphabet ¥ gyec
e |tis not correct to say, e.g., 01010 € X, [Why?]
e The length of a string w, denoted as |w|, is the number of
characters it contains.
o e.g., |Oxford| =6
o ¢ isthe empty string (Je| = 0) that may be from any alphabet.
¢ Given two strings x and y, their concatenation , denoted as xy,
is a new string formed by a copy of x followed by a copy of y.
o eg.,letx=07107and y = 110, then xy=01101110
o The empty string ¢ is the identity for concatenation :
e for any string w

Strings (2) Mot

ooooooooooooooooo

* Given an alphabet ¥, we write £X | where k ¢ N, to denote the
set of strings of length k from ©

SK—{w|w is from T A|w|=k}

o e.g., {0,1}2 = {00, 01, 10, 11}
o ¥0 is {¢} for any alphabet ¥
e Y " isthe set of nonempty strings from alphabet &

sr=yur?usiu.. = {w|wexkak>0} = K
k>0

e Y~ isthe set of strings of all possible lengths from alphabet &

T =T u{e)
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Review Exercises: Strings
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1. Whatis |{a,b,...,z}°|?
2. Enumerate, in a systematic manner, the set {a, b, c}*.
3. Explain the difference between ¥ and .

Y is a set of symbols; X' is a set of strings of length 1.
4. Prove or disprove: Y1 S Yo = X} C¥;
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Languages LASSONDE
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e Alanguage L over ¥ (where |Z| is finite) is a set of strings s.t.

Lcy*
¢ When useful, include an informative subscript to denote the
language L in question.
o e.g., The language of valid Java programs

Ljava = {prog | prog € i, A prog compiles in Eclipse}

o e.g., The language of strings with n 0’s followed by n 1’s (n > 0)
{¢,01,0011,000111,...} = {0"1" | n> 0}

o e.g., The language of strings with an equal number of 0’s and 1’s
{¢,01,10,0011,0101,0110,1100,1010,1001,...}
= {W|# of 0'’s in w = # of 1's in w}
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Review Exercises: Languages LASSONDE Regular Expressions (RE): Introduction LASSONDE

oooooooooooooooooooooooooooooooooo

1. Use set comprehensions to define the following languages. Be
as formal as possible.
o Alanguage over {0, 1} consisting of strings beginning with some o Atype of language-defining notation
0’s (possibly none) followed by at least as many 1s. « This is similar to the equally-expressive DFA, NFA, and ¢-NFA.
o A language over {a, b, c} consisting of strings beginning with
some a’s (possibly none), followed by some b’s and then some c’s,
s.t. the # of a’s is at least as many as the sum of #s of b’s and c’s.

e Regular expressions (RegExp’s) are:

o Textual and look just like a programming language
e e.g.,01* +10* denotes L= {Ox | x e {1}*}u{1x| x e {0}"}
e eg., (0*10*10%)*10* denotes L= {w | w has odd # of 1’s}

2. Explain the difference between the two languages {e} and &. « This is dissimilar to the diagrammatic DFA, NFA, and ¢-NFA.
3. Justify that X, @, and {¢} are all languages over . o RegExp’s can be considered as a “user-friendly” alternative to NFA for
4. Prove or disprove: If L is a language over ¥, and ¥, 2 ¥, then L describing software components. [e.g., text search]

o Writing a RegExp is like writing an algebraic expression, using the
defined operators, e.g., ((4 +3) *5) % 6

¢ Despite the programming convenience they provide, RegExp’s,
DFA, NFA, and e-NFA are all provably equivalent .
o They are capable of defining all and only regular languages.

is also a language over .
Hint: Provethat X c Yo AL cY* = Lc¥;

5. Prove or disprove: If L is a language over ¥, and ¥» c ¥, then L
is also a language over ¥,.

Hint: ProvethatXo c > ALcY* = Lc¥;
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Problems LASSONDE RE: Language Operations (1) LASSONDE
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« Given X of input alphabets, the simplest RegExp is s € X',

. . o e.g., Given X = {a, b, c}, expression a denotes the language
 Given a language L over some alphabet 3, a problem is the consisting of a single string a.

decision on whether or not a given string w is a member of L. « Given two languages L, M ¢ ¥*, there are 3 operators for

building a larger language out of them:

wel
1. Union
LuM={w|welLvweM}
Is this equivalent to deciding w e X*? [ No] | |
* e.g., The Java compiler solves the problem of deciding if the In the textual form, we write + for union.
trii f bols typed in the Ecli ditor i ber of 2. Concatenation
string of symbols typed in the Eclipse editor is a member o M- Oy | xeLnyet)

Lyay4 (i-€., set of Java programs with no syntax and type errors).

In the textual form, we write either . or nothing at all for
concatenation.
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RE: Language Operations (2)

—
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3. Kleene Closure (or Kleene Star)

L=y
>0
where
L = {e
L'o= L
L2 = {xixe|xelaxpel}
L = { xix2...xi | xelatl<j<i}

—————

i repetations

In the textual form, we write = for closure.
Question: What is |L/| (i € N)? [IL) ]
Question: Given that L = {0}*, whatis L*? [L]

LASSONDE

ooooooooooooooooo

RE: Construction (1)

We may build regular expressions recursively:

e Each (basic or recursive) form of regular expressions denotes a
language (i.e., a set of strings that it accepts).

» Base Case:
o Constants € and @ are regular expressions.
L(e) = {e
(o) = o

o Aninput symbol a € ¥ is a regular expression.

L(a)={a}

If we want a regular expression for the language consisting of only
the string w € ¥*, we write w as the regular expression.
o Variables such as L, M, etc., might also denote languages.

RE: Construction (2)

ooooooooooooooooo

¢ Recursive Case Given that E and F are regular expressions:
o The union E + F is a regular expression.

LCE+F)=L(E)uL(F)

o The concatenation EF is a regular expression.
L( EF)=L(E)L(F)

o Kleene closure of E is a regular expression.
LCE")=(L(E))”

o A parenthesized E is a regular expression.

L((E)) = L(E)

LASSONDE

ooooooooooooooooo

RE: Construction (3)

Exercises:
e gl [ol=3=Lz]
o
g = Oug'ugu...

= {ejugugu...

= {¢}
e oL [o*L=L=Lg"]
e g+L [o+L=L=2+L]
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RE: Construction (4) Mot
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Write a regular expression for the following language

{w|w has alternating 0’s and 1's}

e Would (01)* work?

e Would (01)* + (10)* work?

e 0(10)* +(01)* + (10)* +1(01)*
¢ |t seems that:

o 1st and 3rd terms have (10)* as the common factor.
o 2nd and 4th terms have (01)* as the common factor.

e Can we simplify the above regular expression?
e (e+0)(10)* + (e+1)(01)*

[alternating 10’s?]
[starting and ending with 17?]
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RE: Review Exercises

Write the regular expressions to describe the following languages:
e {w|w ends with 01}

e {w|w contains 01 as a substring }
e { w|w contains no more than three consecutive 1’s}

e {w|w ends with O01vw has an odd # of 0’'s }

se{+,—, ¢}

AN XeXlZ
SX. dec
Y1 A YeXi,

A a(X=eny=c¢)

[
xe{0,1}* Anye{0,1}*
Xy | A X has alternating 0’s and 1’s
A ¥ has an odd # 0’s and an odd # 1’s
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RE: Operator Precedence
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e In an order of decreasing precedence:
o Kleene star operator
o Concatenation operator
o Union operator

¢ When necessary, use parentheses to force the intended order
of evaluation.

° eg.,
o 10* vs. (10)*
o 01*+1vs. 0(1*+1)
o 0+1%vs. (0+1)*

[10* is equivalent to 1(0*)]
[01* + 1 is equivalent to (0(1%)) + (1)]
[0+ 1* is equivalent to (0) + (1*)]
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DFA: Deterministic Finite Automata (1.1) LASSONDE

ooooooooooooooooo

e A deterministic finite automata (DFA) is a finite state machine

(FSM) that accepts (or recognizes) a pattern of behaviour.

o For our purpose of this course, we study patterns of strings (i.e.,
how alphabet symbols are ordered).

o Unless otherwise specified, we consider strings in {0,1}*

o Each pattern contains the set of satisfying strings.

o We describe the patterns of strings using set comprehensions:
e {w|w has an odd number of 0’s}
e {w|w has an even number of 1’s}

. {w| w#e }
A W has equal # of alternating 0’s and 1’s
e {wW|w contains 01 as a substring }
. {W| W has an even number of 0’'s }
A W has an odd number of 1’s
e Given a pattern description, we design a DFA that accepts it.

o The resulting DFA can be transformed into an executable program.
20 of 68|
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DFA: Deterministic Finite Automata (1.2)

The transition diagram below defines a DFA which accepts
exactly the language

{w!lw has an odd number of 0’s}
1 1

o Each incoming or outgoing arc ( called a transition ) corresponds
to an input alphabet symbol.

o 5o with an unlabelled incoming transition is the start state .

o s3 drawn as a double circle is a final state .

o All states have outgoing transitions covering {0, 1}.
21 of 68|
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DFA: Deterministic Finite Automata (1.3)
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The transition diagram below defines a DFA which accepts
exactly the language

W #e
w .
{ | A W has equal # of alternating 0’s and 1’s }
1

s5:
not
alter-
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Review Exercises: Drawing DFAs

Draw the transition diagrams for DFAs which accept other
example string patterns:

e {w|w has an even number of 1’s}
e {w|w contains 01 as a substring}

. W| W has an even number of 0’s
A W has an odd number of 1’s
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DFA: Deterministic Finite Automata (2.1)

A deterministic finite automata (DFA) is a 5-tuple

M: (07 Z? 57 q07 F)

Q is afinite set of states.
¥ is a finite set of input symbols (i.e., the alphabet).
o §:(QxX)— Qis a transition function
o0 takes as arguments a state and an input symbol and returns a state.
Qo € Q is the start state.
F c Qs a set of final or accepting states.

(e

O

O

¢

24 of 68|



DFA: Deterministic Finite Automata (2.2)  |iasono:

ooooooooooooooooo

e GivenaDFAM=(Q, &, ¢, qu, F):
o We write L(M) to denote the language of M : the set of strings
that M accepts.

o A string is accepted if it results in a sequence of transitions:
beginning from the start state and ending in a final state.

B a1ds ...dan |
L(M)_{ 1§i§n/\a,eZ/\5(q,-_1,a,-):q,-/\q,,eF}
o M rejects any string w ¢ L(M).
¢ We may also consider L(M) as concatenations of labels from

the set of all valid paths of M’s transition diagram; each such
path starts with gy and ends in a state in F.
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DFA: Deterministic Finite Automata (2.3)  |assonoe
e Givena DFAM=(Q, ¥, ¢, qo, F), we may simplify the
definition of L(M) by extending ¢ (which takes an input symbol)
to  (which takes an input string).
5 (QxX)-Q
We may define  recursively, using 4!
0(g.€) q
o(g,xa) = 6(o(g.x),a)
where ge Q, xeX*,andacx
A neater definition of L(M) : the set of strings w € ¥* such that
5(qo, w) is an accepting state.
LIM)={w|weX*rd(qy,w)eF}
¢ Alanguage L is said to be a regular language , if there is some
DFA M such that L = L(M).
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DFA: Deterministic Finite Automata (2.4) LASSONDE
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We formalize the above DFA as M = (Q, X, §, qo, F), where

* Q={so,51}
e > ={0,1}
° (s={((S0,0),S]),((S(),1),30),((31,0),30),((31,1),31)}
state \ input || 0 | 1
So S1 | Sp
Sq So | §9
® Qo=5%0
o F={s1}
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DFA: Deterministic Finite Automata (2.5.1) |issono:

ooooooooooooooooo

We formalize the above DFA as M = (Q, X, 6, qo, F), where
* Q={s0,51,52,53,51,S5}

e > ={0,1}

® Qo =50

o F={s3 8}

28 of 68|
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DFA: Deterministic Finite Automata (2.5.2) |.assonce NFA: Nondeterministic Finite Automata (1.1)asono:
! Problem: Design a DFA that accepts the following language:
L={x01|xe{0,1}"}
That is, L is the set of strings of Os and 1s ending with 01.
Q

empty

string

[ ] (S = [}
state \ input || 0 | 1
So S1 | So . . . . .
s s | s Given an input string w, we may simplify the above DFA by:
! ° 3 o nondeterministically treating state qo as both:
So S4 | S5 .
¢ a state ready to read the last two input symbols from w

S3 S1 | S5 e astate not yet ready to read the last two input symbols from w

S4 S5 | S2 o substantially reducing the outgoing transitions from g; and g
P oTe S5 S5 | S5 . Compare the above DFA with the DFA in slide
Review Exercises: Formalizing DFAs LASSONDE NFA: Nondeterministic Finite Automata (1.2).assonoe

¢ A non-deterministic finite automata (NFA) that accepts the
same language:

Formalize DFAs (as 5-tuples) for the other example string patterns
mentioned:

e {w|w has an even number of 0’s}

e {w|w contains 01 as a substring}
. { | W has an even number of 07s } * How an NFA determines if an input 00707 should be processed:
% % %

9% 9% 9%
\ 4, \ q, \ q,
! (stuck) ! \ ! \

A W has an odd number of 1’s
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NFA: Nondeterministic Finite Automata (2)

LASSONDE
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¢ A nondeterministic finite automata (NFA) , like a DFA, is a
FSM that accepts (or recognizes) a pattern of behaviour.

An NFA being nondeterministic means that from a given state,

the same input label might corresponds to multiple transitions

that lead to distinct states.

o Each such transition offers an alternative path.

o Each alternative path is explored independently and in parallel.

o If there exists an alternative path that succeeds in processing the
input string, then we say the NFA accepts that input string.

o If all alternative paths get stuck at some point and fail to process
the input string, then we say the NFA rejects that input string.

NFAs are often more succinct (i.e., fewer states) and easier to
design than DFAs.
However, NFAs are just as expressive as are DFAs.

o We can always convert an NFA to a DFA.
33 of 68|

NFA: Nondeterministic Finite Automata (3.1) .assonoe
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e A nondeterministic finite automata (NFA) is a 5-tuple

M:(Qa Za 57 Qo F)

Q is a finite set of states.
> is a finite set of input symbols (i.e., the alphabet).
d:(@xX)—~P(Q)is a transition function
0 takes as arguments a state and an input symbol and returns a set of
states.

Qo € Q is the start state.
o Fc Qis asetof final or accepting states.
e What is the difference between a DFA and an NFA?

o The transition function § of a DFA returns a single state.
o The transition function ¢ of an NFA returns a set of states.

[e]

o O

o
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NFA: Nondeterministic Finite Automata (3.2)iasonc:

ooooooooooooooooo

e Givena NFAM = (Q, ¥, 9, qo, F), we may simplify the
definition of L(M) by extending ¢ (which takes an input symbol)
to o (which takes an input string).

5:(QxL*)->P(Q)
We may define § recursively, using ¢!
a0 = {q} )
o(g,xa) = U{0(q",a)[q" €i(a,x)}
where ge Q, xeX*,andacx
A neater definition of L(M) : the set of strings w € ¥* such that

4(qo, w) contains at least one accepting state.
LIM)={w |weX Ad(qo,w)nF %2}
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NFA: Nondeterministic Finite Automata (4)

Given an input string 00101:

* Read 0: 5( o ,0)=1{ qo,q1 }

* Read 0: 6( g0 ,0)ud(q1,0)={ qo.q1 }vo={qo.q }
* Read1: 6(qo,1)ui(gi,1)={qlu{g}={ .0}
* Read 0: 6( g0 ,0) Li(q2,0)={ q,q1 vz ={q, G }

* Read 1: 5(qo, 1) ud(qi,1)={q,¢ }u{a}={q.,q q }
{Q0,q1,92 }n{ Q2 } #@..00101 is accepted
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DFA = NFA (1)

ooooooooooooooooo

e For many languages, constructing an accepting NFA is easier
than a DFA.

¢ From each state of an NFA:

o Qutgoing transitions need not cover the entire 1.

o Aninput symbol may non-deterministically lead to multiple states.

In practice:

o An NFA has just as many states as its equivalent DFA does.

o An NFA often has fewer transitions than its equivalent DFA does.

In the worst case:

o While an NFA has n states, its equivalent DFA has 2" states.

Nonetheless, an NFA is still just as expressive as a DFA.

o Every language accepted by some NFA can also be accepted by

some DFA.
VN:NFA e (3D: DFA o L(D)=L(N))
DFA = NFA (2.2): Lazy Evaluation (1)
Given an NFA:

@ 1
Subset construction (with lazy evaluat/on) produces a DFA
transition table:

state \ input || 0 \ 1
9(qo,0) 5(qo, 1)
{0} = {q q} = {0}
9(q0,0) Ud(q,0) 5(qo, 1) ud(gr,1)
{qo, a1} = {Q.q1}uo = {q}u{a}
= {q.qi} = {Q, a2}
9(qo,0) u (g, 0) 0(qo, 1) v d(ge,1)
{Clo,CIZ} = {qo,Cﬁ}U@ = {qO}Ug
= {qa} = {q}
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DFA = NFA (2.2): Lazy Evaluation (2)

ooooooooooooooooo

Applying subset construction (with lazy evaluation), we arrive in
a DFA transition table:

state \input [ 0 | 1

{Qo} 190,91} | {qo}
{90, g1} {90, a1} | {Qo, a2}

{90, 92} {q0, a1} | {qo}

We then draw the DFA accordingly:
0

1
P\ |
{g0} {q@,ql

A
Compare the above DFA with the DFA in slide[31]
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DFA = NFA (2.2): Lazy Evaluation (3)

e Given an NFAN = (Qn, Zn, 0N, Qo, Fn), oOften only a small
portion of the | P(Qy)| subset states is reachable from {qo}.

LASSONDE

ooooooooooooooooo

ALGORITHM: ReachableSubsetStates

INPUT: qo: Qpn ; OUTPUT: Reachable < P(Qy)
PROCEDURE :

Reachable := { {q} }

ToDiscover := { {qo} }

while (ToDiscover + @) {
choose S:P(Qy) such that S e ToDiscover
remove S from ToDiscover
NotYetDiscovered :=
( {0n(5,0) | seStu{on(s,1) | s€ S} )\ Reachable
Reachable := ReachableU NotYetDiscovered
ToDiscover := ToDiscover u NotYetDiscovered
}
return Reachable

» RT of ReachableSubsetStates? [ 02N ]



e~-NFA: Examples (1)

ooooooooooooooooo

Draw the NFA for the following two languages:
1.
xe{0,1}*

A ye{0,1}7
A X has alternating 0’s and 1’s

A Y has an odd # 0’s and an odd # 1's

2.
w:{0,1}* W has alternating 0’s and 1’s
B V. W has an odd # 0’s and an odd # 1’s
3.
Se{+,—,¢}
A XeXlZ
dec
SX.y A yeZZ;ec
A =(Xx=eny=¢)

e~-NFA: Examples (2)

LASSONDE

ooooooooooooooooo

se{+,—,¢}
A XeX}
sx.y dec
AN YEX .
A (x=eny=¢)
0,1,..,9 0,1,..,9

From qo to gy, reading a sign is optional: a p/us or a minus, or

nothing at all (i.e., €).

e-NFA: Formalization (1) LASSONDE

ooooooooooooooooo

An e-NFA is a 5-tuple

M: (07 Z? 57 q07 F)

Q is afinite set of states.

Y is a finite set of input symbols (i.e., the alphabet).

o §:(Qx(Xud{e})) —P(Q) is a transition function
0 takes as arguments a state and an input symbol, or an empty string
¢, and returns a set of states.

Qo € Q is the start state.

F < Qis a set of final or accepting states.

o

[}

(o]

o
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e-NFA: Formalization (2) LASSONDE

ooooooooooooooooo

0,1,..,9 0,1,..,9

Draw a transition table for the above NFA’s ¢ function:

| e +- . 0..9
Q || {g1} {a1} %) %)
g % g {3} {91.94}
Q| 2 %) %) {a3}
& || {5} o %) {gs}
Q|| 2 2 {os} %)
gs %) @ @ %]
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e-NFA: Epsilon-Closures (1)

e Given e-NFA N
N: (Q7 z? 67 q07 F)

we define the epsilon closure (or e-closure) as a function

ECLOSE: Q- P(Q)

e For any state ge Q
ECLOSE(Q) ={q}u |J ECLOSE(p)
ped(q.e)

45 of 6

e-NFA: Epsilon-ClosureS (2) LASSONDE

ooooooooooooooooo

ECLOSE(qQp)

= {d(qo,€) ={q1,q2}}
{Qo} UECLOSE(Q1) UECLOSE(Q2)

= {ECLOoSE(q1), d(q1,€)={qs}, ECLOSE(Qz), 0(Qe,€) =0}
{@}u({gi}vECLOSE(gs) )u({q}uD)

= {ECLOSE(q3), 0(gs.€)={0gs}}
{@}u({g}u({gs}uEcLosE(gs)))u({qRtve)

= {ECLOSE(gs), 6(Qs,¢€) =0}
{@tu({gtu({gtu({gltuva)))u({give)
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e Givenae-NFAM = (Q, X, 6, qo, F), we may simplify the
definition of L(M) by extending ¢ (which takes an input symbol)
to 6 (which takes an input string).

5:(QxL*)->P(Q)
We may define § recursively, using ¢!
5(q,€) ECLOSE(Q)
0(q,xa) = U{ECLOSE(Q")|q"€i(q’,a)rq"€i(q,x) }

where ge Q, xeX*,and ae &
e Then we define L(M) as the set of strings w € ¥* such that

4(qo, w) contains at least one accepting state.
LIM)={w |weX Ad(qo,w)nF %2}
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e-NFA: Formalization (4) LASSONDE

ooooooooooooooooo

0,1,..,9 0,1,..,9

- Q . 0.1,-,9
—(@)=a (=)

O
()

Given an input string 5.6:
9(qo, €) = ECLOSE(Qo) = {Go. 1}
* Read 5: (q0,5)ui(q1,5) =2u{q,qu} ={q1,q }
0(qo,5) = ECLOSE(Qs) UECLOSE(Ga) = {q1} U{qa} = {q1, Gu}
* Read.: 0(q1,.)ui(qs,.) ={q2} u{as} ={ @, @ }
9(Qo,5.) = ECLOSE(Q2) UECLOSE(Gs) = {2} U {05, 95} = {02, 95,05}
* Read 6: 5(q2,6) L (gs,6) Ui(gs,6) = {g}u{gs}uo={0s}

5(qo,5.6) = ECLOSE(q3) = {gs,9s5} [5.6 is accepted]




DFA = «-NFA: Subset Construction (1) o

ooooooooooooooooo

Subset construction (with lazy evaluation and epsilon closures )
produces a DFA transition table.
| de0..9 | se{+-} | .

{q0, 91} {g1,qa} | {au} {92}
191,04} {g,q} | @ {Q2, 03,05}
{a} {g,qa} | @ e
{q} {3:3,05} | @ @
10, 03,65} || {a3,05} | @ @
{33,05} {5,095} | @ @

For example, 5({qo, g1}, d) is calculated as follows: [d€0..9]

U{ECLOSE(q) | g € 5(qo, d) ud(qr,d)}
U{ECLOSE(q) | ge @ U {q1,qa}}
U{ECLOSE(q) | g € {1, qa}}
ECLOSE(Q1) UECLOSE(Qs)

{gi}u{qs}

{q1,q4}

DFA = «-NFA: Subset Construction (2) o

ooooooooooooooooo

e Given an e=NFA N = (Qn, Xy, 0n, o, Fn), by applying the
extended subset construction to it, the resulting DFA
D= (OD, >p,op, ADgiart 5 FD) is such that:

p = Xy

Qp = {S1ScQuA(Bw:T"eS=0p(q,w)) }
ADstart = ECLOSE(qO)

Fp = {S|S§QNASOFN¢®}

op(S,a) = U{ECLOSE(S')|seSAs ediy(s,a)}
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Regular Expression to -NFA s

ooooooooooooooooo

¢ Just as we construct each complex regular expression
recursively, we define its equivalent e-NFA recursively .

e Given a regular expression A, we construct an e-NFA E, such
that L(R) = L(E), with
o Exactly one accept state.

o No incoming arc to the start state.
o No outgoing arc from the accept state.
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Regular Expression to -NFA s

ooooooooooooooooo

Base Cases:

® ¢

° a [aeX]
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LASSONDE

ooooooooooooooooo

[R and S are RE’s]

Regular Expression to <-NFA
Recursive Cases:

e R+S

—0 ©
* RS

FraE e
e R* E

ot e
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Regular Expression to «-NFA: Examples (1.1))xsono

oooooooooooooooo

e 0+1
O O
W
e (0+1)*

Regular Expression to -NFA: Examples (1.2)assono:

oooooooooooooooo

e (0+1)*1(0+1)

55

LASSONDE

ooooooooooooooooo

Minimizing DFA: Motivation

* Recall: | Regular Expresion | — | -NFA| — | DFA|

e DFA produced by the subset construction (with lazy
evaluation) may not be minimum on its size of state.

e When the required size of memory is sensitive
(e.g., processor’s cache memory),
the fewer number of DFA states, the better.
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Minimizing DFA: Algorithm

ALGORITHM: MinimizeDFAStates
INPUT: DFA M=(Q, X, 6, qo, F)

PROCEDURE :

for(p € P s.t. |pl > 1):
find the maximal S € p s.t. splittable(p, S)
if S #J then

T :=Tu{s, p-S}
else

T := T U {p}
end

OUTPUT: M’ s.t. minimum |Q| and equivalent behaviour as M

splittable(p, S) holds iff there is c € ¥ s.t.

o Transition c leads all s € S to states in the same partition p1.

¢ Transition ¢ leads some s € p— S to a different partition p2 (p2 + p1).
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Minimizing DFA: Examples

LASSONDE

ooooooooooooooooo
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Exercises: Minimize the DFA from[here} Q1 & Q2, p59, EAC2.

Regular Expression to Minimized DFA

Given regular expression r [0 . . 9] + which specifies the pattern of
a register name, derive the equivalent DFA with the minimum
number of states. Show all steps.

e

Implementing DFA as Scanner LASSONDE

ooooooooooooooooo

o The source language has a list of syntactic categories:

e.g., keyword while [while]
e.g., identifiers [ [a-zA-2] [a-zA-20-9_]~]
e.g., white spaces [ [ \t\r]+]

o A compiler's scanner must recognize words from all syntactic
categories of the source language.
e Each syntactic category is specified via a regular expression.

r + r + ...+ I'n
S~—— SN—— N—\—
syn. cat. 1 syn. cat. 2 syn. cat. n

e Overall, a scanner should be implemented based on the minimized
DFA accommodating all syntactic categories.
o Principles of a scanner:
e Returns one word at a time
o Each returned word is the longest possible that matches a pattern
o A priority may be specified among patterns
(e.g., new is a keyword, not identifier)

e



Implementing DFA: Table-Driven Scanner (1 ).ssono:

e Consider the syntactic category of register names.
e Specified as a regular expression : r[0. .91+
e Afer conversion to e-NFA, then to DFA, then to minimized DFA:

¢ The following tables encode knowledge about the above DFA:

Transition (0)
Classifier (Charcat) Register Digit Other |Token  Type  (Type)
r 0,1,2,...,9 EOF Other So S1 Se Se S0 s1 s2 Se

Register Digit Other  Other invalid invalid register invalid
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Implementing DFA: Table-Driven Scanner (2).assono:

Index (1) :AssoNDE

<

The scanner then is implemented via a 4-stage skeleton:

NextWord ()
-— Stage 1: Initialization
state := Sy ; word := €

initialize an empty stack S ; s.push (bad)
Stage 2: Scanning Loop
while (state # Se)
NextChar (char) ; word := word + char
if state € F then reset stack S end
s.push (state)
cat := CharCat([char]
state := §[state, cat]
-—- Stage 3: Rollback Loop
while (state ¢ F A state # bad)
state := s.pop()
truncate word
—-— Stage 4: Interpret and Report
if state € F then return Type[state]
else return invalid
end
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Strings (1
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Index (2) :AssoNDE
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