What is a Compiler? (2) o

ooooooooooooooooo

Overview of Compilation

Readings: EAC2 Chapter 1 The idea about a compiler is extremely powerful:

You can turn anything to anything else,
as long as the following are clear about them:

o SYNTAX [specifiable as CFGs]
o SEMANTICS [programmable as mapping functions]
EECS4302 M: ¢ Construction of a compiler should conform to good
Compilers and Interpreters software engineering principles .
YO R K ' Winter 2020 o Modularity & Information Hiding [interacting components]
3 E : :// E 2 : : 1 5 CHEN-WEI WANG © Single Choice Principle

o Design Patterns (e.g., composite, visitor)
o Regression Testing at different levels: e.g., Unit & Acceptance

3 of 18

What is a Compiler? (1) LASSONDE Compiler: Typical Infrastructure (1) Mot

ooooooooooooooooo

ooooooooooooooooo

A software system that automatically translates/transforms
input/source programs (written in one language) to

output/target programs (written in another language). i FrontEnd R~ Back End Target
input output Program Program
semantic domain semantic domain

/ \ / \ Compiler
/ Input/Source /_. \‘ _.--4-_/ Output/Target \
Language T, gnoodsd encoded .- Language

o FRON END:
Input/Source passed to

\ Program i

\ /

\ /

e Encodes: knowledge of the source language
o Transforms: from the source to some IR (intermediate representation)

generates Output/Target e Principle: meaning of the source must be preserved in the IR.
\ | Program / o BACK END:

!
1
I
1
I
I
1
[}
1
1

N . N Y e Encodes knowledge of the target language
o Semantic Domain : context with its own vocabulary and meanings * Transforms: from the /7 to the ta.rge.'t .
e.g., 00, database, predicates Q. How many IRs needed for building a number of compilers:
o Source and target may be in different semantic domains. JAVA-TO-C, EIFFEL-TO-C, JAVA-TO-PYTHON, EIFFEL-TO-PYTHON?
e.g., Java programs to SQL relational database schemas/queries A. Two IRs suffice: One for OO; one for procedural.
e.g., C procedural programs to MISP assembly instructions = IR should be as language-independent as possible.

\wy

Compiler: Typical Infrastructure (2)

—

ASSONDE

ooooooooooooooooo

Source IR - IR Target
Front End ——| Optimizer ——| Back End
Program Program
Compiler
OPTIMIZER:

o An IR-fo-IR transformer that aims at “improving” the output of
front end, before passing it as input of the back end.
o Think of this transformer as attempting to discover an “optimal”
solution to some computational problem.
e.g., runtime performance, static design
Q. Behaviour of the target program predicated upon?
1. Meaning of the source preserved in IR?
2. IR-to-IR transformation of the optimizer semantics-preserving?
3. Meaning of IR preserved in the generated target?

(1) — (3) necessary & sufficient for the soundness of a compiler.
5 of 18]

Example Compiler One LASSONDE

ooooooooooooooooo

e Consider a conventional compiler which turns
a C-like program into executable machine instructions.
e The source (C-like program) and target (machine instructions)
are at different levels of abstraction :
o C-like program is like “high-level” specification.
o Macine instructions are the low-level, efficient implementation.

Front End Optimizer Back End

Elaboration
Optimization 1
Optimization 2
Optimization n
Inst Selection
Inst Scheduling
Reg Allocation

| !

Infrastructure

6 of 18

Example Compiler One: LASSONDE
Scanner vs. Parser vs. Optimizer

Lexlcal Analysis Syntactic Analysis Semantic Analysis

i P i !
! [
1| Source Program 1 ! pretty printed
| ommerman L V]t |of e o], ,P Tt roram
-
' \ Il . 1
\ .

,,

e The same input program may be treated differently:
1. As a character sequence [subject to lexical analysis]
2. As a token sequence [subject to syntactic analysis]

3. As a abstract syntax tree (AST) [subjectto semantic analysis]
e (1) & (2) are routine tasks of lexical/grammar rule specification.

(3) is where the is about writing a compiler:

A series of semantics-preserving AST-to-AST transformations.
7 of 18]

\wy

Example Compiler One: Scanner LASSONDE

ooooooooooooooooo

e The source program is treated as a sequence of characters.
¢ A scanner performs lexical analysis on the input character

sequence and produces a sequence of tokens.
e ANALOGY: Tokens are like individual words in an essay.
= Invalid tokens ~ Misspelt words

e.g., a token for a useless delimiter: e.g., space tab, new line
e.g., a token for a useful delimiter: e.g., (,), {, }, ,

e.g., a token for an identifier (for e.g., a varlable, a function)
e.g., a token for a keyword (e.g,. int, char, if, for, while)
e.g., a token for a number (fore.g., 1.23, 2.46)

Q. How to specify such pattern pattern of characters?

A. Regular Expressions (RES)

e.g., RE for keyword while [while]
e.g., RE for an identifier [[a—zA-7Z] [a—zA-Z0-9_] *]
e.g., RE for a white space [[\t\r]+]

8 of 18

Example Compiler One: Parser LASSONDE

ooooooooooooooooo

e A parser’s input is a sequence of fokens (by some scanner).
e A parser performs syntactic analysis on the input token
sequence and produces an absiract syntax tree (AST).
¢ ANALOGY: ASTs are like individual sentences in an essay.
= Tokens not parseable into a valid AST » Grammatical errors
Q. An essay with no speling and grammatical errors good enough?
A. No, it may talk about non-sense (sentences in wrong contexts).
= An input program with no lexical/syntactic errors should still be
subject to semantic analysis (e.g., type checking, code optimization).

Q.: How to specify such pattern pattern of tokens?
A.: Context-Free Grammars (CFGS)
e.g., CFG (with terminals and non-terminals) for a while-loop:

WhileLoop == WHILE LPAREN Boo/Expr RPAREN LCBRAC /mp/ RCBRAC
Impl =

| Instruction sEeMICOL Impl

9 of 18

Example Compiler One: Optimizer LASSONDE
e Consider an input AST which has the pretty printing:
b = ... ; C = ... ; a:= ...
across 1 |..| n is 1
loop
read d
a:=ax*x2x*bxcxd
end

Q. AST of above program optimized for performance?
A. No .- values of 2, b, c stay invariant within the loop.
e An optimizer may transform AST like above into:

b = ... ; c = ... ; a:= ...
temp := 2 * b x C
across 1 |..| nis 1
loop
read d
a = a * d
end

10 of 18]

Example Compiler Two

¢ Consider a compiler which turns a Domain-Specific Language
(DSL) of classes & predicates into a SQL database.
e The input/source contains 2 parts:
o DATA MoODEL: classes and associations (client-supplier relations)
e.g., data model of a Hotel Reservation System:

account _owner|
1

o1

Traveller

registered

cor
a
icensee
ent egli
i . Hotel - Allocation
reservations host host allocations
*seq 1 .

1
eeeeee tions. host allocations
o .

o BEHAVIOURAL MoODEL: update methods specified as predicates
[11 of 18]

Example Compiler Two: Mapping Data LASSONDE
class A { class B {
attributes attributes
s: string is: set (int)
as: set(A . b) [*] } b: B . as }

e Each class is turned into a class table:
o Column oid stores the object reference.
o Implementation strategy for attributes:
\ | SINGLE-VALUED | MULTI-VALUED |
PRIMITIVE-TYPED column in class table \ collection table
REFERENCE-TYPED association table

[PRIMARY KEY]

e Each collection table:

o Column o1id stores the context object.

o 1 column stores the corresponding primitive value or oid.
e Each association table:

o Column oid stores the association reference.

o 2 columns store oid’s of both association ends. [FOREIGN KEY]

LASSONDE

ooooooooooooooooo

Example Compiler Two: Input/Source

e Consider a valid input/source program:

class Traveller {

attributes

owner: Traveller . account name: string

balance: int reglist: set(Hotel . registered) [*]
} }

class Account {
attributes

class Hotel {
attributes

name: string

registered: set(Traveller . reglist) [*]
methods

register {

t? : extent (Traveller)
& t? /: registered

registered := registered \/ {t?}
|| t?.reglist := t?.reglist \/ {this}
}
}

¢ How do you specify the scanner and parser accordingly?

LASSONDE

ooooooooooooooooo

Example Compiler Two: Output/Target

¢ Class associations are compiled into database schemas.

CREATE TABLE ‘Account ' (
‘oid' INTEGER AUTO_INCREMENT, ‘balance' INTEGER,
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Traveller‘(
‘oid' INTEGER AUTO_INCREMENT, ‘name‘ CHAR(30),
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Hotel(
‘oid' INTEGER AUTO_INCREMENT, ‘name‘ CHAR(30),
PRIMARY KEY (‘oidY));
CREATE TABLE ‘Account_owner_Traveller_account ' (
‘oid' INTEGER AUTO_INCREMENT, ‘owner‘ INTEGER, ‘account‘ INTEGER,
PRIMARY KEY (‘oid‘));
CREATE TABLE ‘Traveller_reglist_Hotel_registered®(
‘oid' INTEGER AUTO_INCREMENT, ‘reglist‘ INTEGER, ‘registered‘' INTEGER,
PRIMARY KEY (‘oid‘));

¢ Predicate methods are compiled into stored procedures.

CREATE PROCEDURE ‘Hotel_register(IN ‘this?' INTEGER, IN ‘t?‘ INTEGER)
BEGIN

END

14 of 18]

Example Compiler Two: Mapping Behaviour .sson:

ooooooooooooooooo

¢ Challenge: Transform the OO dot notation into table queries.
e.g., The AST corresponding to the following dot notation
(in context of class Account, retrieving the owner’s list of registrations)

this.owner.reglist

may be transformed into the following (nested) table lookups:

SELECT (VAR ‘reglist?)
(TABLE ‘Hotel registered_Traveller_reglist?‘)
(VAR ‘registered‘ = (SELECT (VAR ‘owner‘)
(TABLE ‘Account_owner_Traveller_account‘)
(VAR ‘owner' = VAR ‘this‘)))

¢ At the database level:
o Maintaining a large amount of data is efficient
o Specifying data and updates is fedious & error-prone.
o RESOLUTIONS:
« Define a DsL supporting the right level of abstraction for specification
e Implement a DSL-TO-SQL compiler.

LASSONDE

ooooooooooooooooo

Beyond this lecture ...

* Read Chapter 1 of EAC2 to find out more about Example
Compiler One

¢ Read this paper to find out more about Example Compiler Two:
http://dx.doi.org/10.4204/EPTCS.105.8

16 of 18]

Index (1) :AssoNDE

|What is a Compiler? (1)|
(What is a Compiler? (2)]
[Compiler: Typical Infrastructure (1)|

[Compiler: Typical Infrastructure (2)]

[Example Compiler One|

[Example Compiler One:
[Scanner vs. Parser vs. Optimizer|

[Example Compiler One: Scanner|

|[Example Compiler One: Parser|

[Example Compiler One: Optimizer|

[Example Compiler Two|

17 of 18]

Index (2) Lassono
[Example Compiler Two: Mapping Data|

[Example Compiler Two: Input/Source|

[Example Compiler Two: Output/Target|

[Example Compiler Two: Mapping Behaviour|

[Beyond this lecture. . .|

18 of 18]

