Design-by-Contract (DbC)

Readings: OOSC2 Chapter 11

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

Motivation: Catching Defects — When? ‘i’éiésom

e To minimize development costs , minimize software defects.
e Software Development Cycle:

Requirements — Design — Implementation — Release

Q. Design or Implementation Phase?

Catch defects as early as possible .

Design and Integration Customer Postproduct
architecture Implementation testing beta test release
1X* 5X 10X 15X 30X

-~ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.

¢ Discovering defects after release costs up to 30 times more
than catching them in the design phase.

¢ Choice of design language for your project is therefore of

paramount importance.
Source: Minimizing code defects to improve software guality and lower development costs.

What This Course Is About | AssoNDE

e Focusis design

o Architecture: (many) inter-related modules
o Specification: precise (functional) interface of each module

¢ For this course, having a prototypical, working implementation
for your design suffices.

e Alater refinement into more efficient data structures and
algorithms is beyond the scope of this course.

[assumed from EECS2011, EECS3101]
.. Having a suitable language for design matters the most.
Q: Is Java also a “good” design language?
A: Let’s first understand what a “good” design is.

Terminology: Contract, Client, Supplier ‘i’éiésom

e A supplier implements/provides a service (e.g., microwave).

e A client uses a service provided by some supplier.
o The client is required to follow certain instructions to obtain the

service (e.g., supplier that client powers on, closes

door, and heats something that is not explosive).
o If instructions are followed, the client would that the

service does what is guaranteed (e.g., a lunch box is heated).
o The client does not care how the supplier implements it.

e What then are the benefits and obligations os the two parties?

benefits obligations
CLIENT obtain a service follow instructions
SUPPLIER || assume instructions followed | provide a service

e There is a contract between two parties, violated if:
o The instructions are not followed. [Client’s fault]
o Instructions followed, but service not satisfactory. [Supplier’s fault]

Client, Supplier, Contract in OOP (1) LASSONDE

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

T 1
‘class MicrowaveUser { ‘
| public static void main(...) { |
‘ Microwave m = new Microwave () ;‘
‘ Object obj = ; ‘
| m.power(); m.Iock();] \
| m. heat (obj) ; |
[|

Method call m.heat(obj) indicates a client-supplier relation.

o Client: resident class of the method call

o Supplier: type of context obj

[MicrowaveUser]
ect (orcalltarget) m [Microwave]

Client, Supplier, Contract in OOP (2) %

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock () {locked = true;}
void heat (Object stuff) {

/ * ST not explc

class MicrowaveUser ({
public static void main(...) {

1
Microwave m = new Microwave();
Object obj = [222]; \
m.power(); m.lock(); ‘
m. heat (obj); ‘
|

\
\
|
P}}

e The contract is honoured if:

’ Right before the method call ‘:

o State of m is as assumed: m.

on==true and m. locked==ture

e The input argument ob 7 is valid (i.e., not explosive).

’ Right after the method call ‘:

ob 7 is properly heated.

e If any of these fails, there is a contract violation.

e m.onOrm.lockedis false

e obj is an explosive

A fault from the client is identified
e Method executed but ob 5 not properly heated

= MicrowaveUser’s fault.
= MicrowaveUser’s fault.
= Method call will not start.
= Microwave'’s fault

LASSONDE

What is a Good Design?

¢ A “good” design should explicitly and unambiguously describe
the contract between clients (e.g., users of Java classes) and
suppliers (e.g., developers of Java classes).
We call such a contractual relation a specification .

¢ When you conduct software design, you should be guided by
the “appropriate” contracts between users and developers.
o Instructions to clients should not be unreasonable.
e.g., asking them to assemble internal parts of a microwave
o Working conditions for suppliers should not be unconditional.
e.g., expecting them to produce a microwave which can safely heat an
explosive with its door open!
o You as a designer should strike proper balance between
obligations and benefits of clients and suppliers.
e.g., What is the obligation of a binary-search user (also benefit of a
binary-search implementer)? [The input array is sorted.]
o Upon contract violation, there should be the fault of only one side.

o This design process is called Design by Contract (DbC) .

LASSONDE

A Simple Problem: Bank Accounts

Provide an object-oriented solution to the following problem:

: Each account is associated with the name of its owner
(e.g., "Jim") and an integer balance that is always positive.

[REQ2: We may withdraw an integer amount from an account.
|REQ3 |: Each bank stores a list of accounts.

: Given a bank, we may add a new account in it.

[REQ5 |: Given a bank, we may query about the associated
account of a owner (e.g., the account of "Jim").

[REQ6 |: Given a bank, we may withdraw from a specific
account, identified by its name, for an integer amount.

Let’s first try to work on | REQ1 | and | REQ2 | in Java.
This may not be as easy as you might think!

LASSONDE

Playing the Various Versions in Java

¢ Download the project archive (a zip file) here:
http://www.eecs.yorku.ca/~Jjackie/teaching/
lectures/2020/W/EECS3311/codes/DbCIntro.zip

¢ Follow this tutorial to learn how to import an project archive
into your workspace in Eclipse:
https://voutu.be/h-rgd0Zg2gY¥

e Follow this tutorial to learn how to enable assertions in Eclipse:
https://voutu.be/OEgqRV4abDzg

Version 1: An Account Class

LASSONDE

1 |public class AccountVl {

2 private String owner;

3 private int balance;

4 public String getOwner() { return owner; }

5 public int getBalance() { return balance; }

6 public AccountVI (String owner, int balance) {

7 this.owner = owner; this.balance = balance;

8 }

9 public void withdraw(int amount) {
10 this.balance = this.balance - amount;
11 }
12 public String toString() ({
13 return owner + "’s current balance is: " + balance;
14 }
15 |}

* Is this a good design? Recall : Each account is
associated with ... an integer balance that is always positive .

e This requirement is not reflected in the above Java code.
[|

Version 1: Why Not a Good Design? (1)

LASSONDE

ipublic class BankAppV1 {

‘ public static void main(String[] args) { ‘
System.out.println("Create an account for Alan with balance -10:V);

‘ AccountV1l alan = new AccountVl ("Alan", -10) ;

‘ System.out.println(alan);

Console Output:

Create an account for Alan with balance -10:
Alan’s current balance is: -10

e Executing AccountV1’s constructor results in an account
object whose state (i.e., values of attributes) is invalid (i.e.,
Alan’s balance is negative). = Violation of | REQ1 |

¢ Unfortunately, both client and supplier are to be blamed:
BankAppV1 passed an invalid balance, but the API of
AccountV1 does not require that! = A lack of defined contract

Version 1: Why Not a Good Design? (2)

LASSONDE

T 1

‘public class BankAppV1 { ‘

public static void main(String[] args) {

‘ System.out.println("Create an account for Mark with balance lOO:L);
AccountV1l mark = new AccountVI1 ("Mark", 100);
System.out.println(mark);

System.out.println("Withdraw -1000000 from Mark’s account:");

| mark. withdraw(-1000000) ; |

‘ System.out.println(mark) ;

Create an account for Mark with balance 100:
Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Mark’s current balance is: 1000100

¢ Mark’s account state is always valid (i.e., 100 and 1000100).
e Withdraw amount is never negative! = Violation of

e Again a lack of contract between Bank2AppVv1 and AccountVi.
(v

Version 1: Why Not a Good Design? (3)

LASSONDE

public class BankAppV1 {
System.out.println("Create an account for Tom with balance 100:"

System.out.println(tom);
System.out.println("Withdraw 150 from Tom’s account:");
tom. withdraw(150) ;

T
AccountV1l tom = new AccountVl("Tom", 100);
‘ System.out.println(tom);

1
public static void main(String[] args) { ‘
i

Create an account for Tom with balance 100:
Tom’s current balance is: 100

Withdraw 150 from Tom’s account:

Tom’s current balance is: -50

¢ Withdrawal was done via an “appropriate” reduction, but the
resulting balance of Tom is invalid. = Violation of | REQ1 |

e Again a lack of contract between BankAppVv1 and AccountVi.

LASSONDE

Version 1: How Should We Improve it? (1)

Preconditions of a method specify the precise circumstances
under which that method can be executed.

o Precond. of divide (int x, int y)? [y '= 0]
o Precond. of binSearch (int x, int[] xs)? [xsissorted]
o Precond. of topoSort (Graph g)? [gisa DAG]

LASSONDE

Version 1: How Should We Improve it? (2)

e The best we can do in Java is to encode the logical negations
of preconditions as exceptions:
o divide (int x, int vy)
throws DivisionByZeroException wheny ==
o binSearch (int x, int[] xs)
throws ArrayNotSortedException when xs is not sorted.
o topoSort (Graph qg)
throws NotDAGException when g is not directed and acyclic.
¢ Design your method by specifying the preconditions (i.e.,
service conditions for valid inputs) it requires, not the
exceptions (i.e., error conditions for invalid inputs) for it to fail.

 Create by adding exceptional conditions (an

approximation of preconditions) to the constructor and
withdraw method of the Account class.

LASSONDE

Version 2: Added Exceptions
to Approximate Method Preconditions

1 |public class AccountV2 {

2 public AccountV2(String owner, int balance) throws

3 BalanceNegativeException

4 {

5 if (balance < 0) { /* negated precondition x/

6 throw new BalanceNegativeException(); }

7 else { this.owner = owner; this.balance = balance; }
8 }

9 public void withdraw(int amount) throws

10 withdrawAmountNegativeException, WithdrawAmountTooLargeExceptign {
11 if (amount < 0) { /* negated ~ondition x*/

12 throw new WithdrawAmountNegativeException(); }

13 else if (balance < amount) { /* negated pre

14 throw new WithdrawAmountTooLargeException(); }

15 else { this.balance = this.balance - amount; }

16 }

Version 2: Why Better than Version 1? (1) |.ssonoe Version 2: Why Better than Version 1? (2.2) [.ssonoe
public class BankAppV2 { Console Outpu’[:
public static void main(String[] args) {
System.out.println("Create an account for Alan with balance -10:V); Create an account for Mark with balance 100:
try { Mark’s current balance is: 100

Withdraw -1000000 from Mark’s account:
Illegal negative withdraw amount.

AccountV2 alan = new AccountV2("Alan", -10) ;
System.out.println(alan);

}
catch (BalanceNegativeException bne) | * L8: When attempting to call method withdraw with a negative
System.out.println("Illegal negative account balance."); . .
} amount -1000000, a WithdrawAmountNegativeException
(i.e., precondition violation) occurs, preventing the withdrawal
Create an account for Alan with balance -10: from proceeding.
p g
Illegal negative account balance. We should observe that adding preconditions to the supplier

BankV2’s code forces the client BankAppVv2’s code to get

O W o N OO =

—_

L6: When attempting to call the constructor Accountv2 with a

negative balance -10, a BalanceNegativeException (i.e., complicated by the t ry-catch statements.
precondition violation) occurs, preventing further operations upon ¢ Adding clear contract (preconditions in this case) to the design
this invalid object. should not be at the cost of complicating the client’s code!!

LASSONDE Version 2: Why Better than Version 1? (3.1)

Version 2: Why Better than Version 1? (2.1)

LASSONDE
T 1 T 1
1 ‘public class BankAppV2 { ‘ 1 ‘public class BankAppV2 { ‘
2 public static void main(String[] args) { 2 public static void main(String[] args) {
3 System.out.println("Create an account for Mark with balance 100:V); 3 System.out.println("Create an account for Tom with balance 100:"};
4 try { 4 try {
5 AccountV2 mark = new AccountV2("Mark", 100); 5 AccountV2 tom = new AccountV2("Tom", 100);
6 System.out.println(mark) ; 6 System.out.println(tom);
7 System.out.println("Withdraw -1000000 from Mark’s account:"); 7 System.out.println("Withdraw 150 from Tom’s account:");
8 mark. withdraw (-1000000) ; 8 tom. withdraw (150) ;
9 System.out.println(mark) ; 9 System.out.println(tom);
10) 10 /
11 catch (BalanceNegativeException bne) { 11 catch (BalanceNegativeException bne) {
12 System.out.println("Illegal negative account balance."); 12 System.out.println("Illegal negative account balance.");
13) 13 /
14 ‘ catch (WithdrawAmountNegativeException wane) { 14 catch (WithdrawAmountNegativeException wane) {
15 System.out.println("Illegal negative withdraw amount."); 12 } System.out.println("Illegal negative withdraw amount.");
16 }
17 catch (WithdrawAmountTooLargeException wane) |{ 17 catch (WithdrawAmountTooLargeException wane) {
18 System.out.println("Illegal too large withdraw amount."); 18 System.out.println("Illegal too large withdraw amount.");
19) 19 /

[|

LASSONDE Version 2: Why Still Not a Good Design? (2.

Version 2: Why Better than Version 1? (3.2)

T
Console OUtpUt: 1 |public class BankAppV2 {
- B th bal 100 2 public static void main(String[] args) {
Create an account for Iom wit atance : 3 System.out.println("Create an account for Jim with balance 100:"};
Tom’s current balance is: 100 4 try |
Withdraw 150 from Tom’s account: 5 4 i - .
Illegal too large withdraw amount. ACCOUmEZ Jlx,n - nevvvaccountVZ(Jim", 100);
6 System.out.println(jim);
7 System.out.println("Withdraw 100 from Jim’s account:");
¢ L8: When attempting to call method withdraw with a positive 8 jim. withdraw(100) ;
but too large amount 150, a 18 : System.out.printin(jim);
WithdrawAmountTooLargeException (i.e., precondition 11 catch (BalanceNegativeException bne) {
violation) occurs, preventing the withdrawal from proceeding.]g } System.out.println("Illegal negative account balance.");
¢ We should observe that due to the added preconditions to the 14 catch (WithdrawAmountNegativeException wane) {
supplier Bankv2'’s code, the client BankAppv2’s code is forced]g : System.out.printin("Illegal negative withdraw amount.");
to repeat the long list of the t ry-catch statements. 17 catch (WithdrawAmountTooLargeException wane) {
* Indeed, adding clear contract (preconditions in this case) . | erem-out.printin(fiticost foo taree withdraw amount-1)s

should not be at the cost of complicating the client’s code!!

LASSONDE Version 2: Why Still Not a Good Design? (2.

Version 2: Why Still Not a Good Design? (1)

1 |public class AccountV2 {
2 public AccountV2(String owner, int balance) throws . .
3 BalanceNegativek ti Create an account for Jim with balance 100:
gativeException))
4 { Jim’s current balance is: 100
5 if (balance < 0) { /* negated precondition =/ ?}tl]}draw 100 from Jim s E.lCCOUDt:
i i im’s current balance is: 0
6 throw new BalanceNegativeException(); }
7 else { this.owner = owner; this.balance = balance; }
g } s L it hdran (int o) tn L9: When attempting to call method withdraw with an amount
public void wi raw(int amoun rows . Pt} .
10 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptign { 100 (I'e" equal to Jim’s current balance) that would result in a
11 if (amount < 0) { /* negated precondition =/ Zero balance (Clearly a V|0|at|0n Of)7 there ShOUId have
12 throw new WithdrawAmountNegativeException(); } been a precond/'ﬁon violation.
13 else if (balance < amount) { /« negated precondition «/ Supplier AccountVv2’s exception condition balance < amount
14 throw new WithdrawAmountTooLargeException(); } —
15 else { this.balance = this.balance - amount; } has a missing case :
16 ! e Calling withdraw with amount == balance will also result in an
. -, » . invalid account state (i.e., the resulting account balance is zero).
* Are all the exception conditions (-~ preconditions) appropriate? e - L13 of Accountv2 should be balance <= amount.
e What if amount == balance when calling withdraw?

Version 2: How Should We Improve it?

LASSONDE

Version 3: Added Assertions
to Approximate Class Invariants

¢ Even without fixing this insufficient precondition, we could

have avoided the above scenario by checking at the end of
each method that the resulting account is valid.

= We consider the condition this.balance > 0 as invariant
throughout the lifetime of all instances of Account.

e Invariants of a class specify the precise conditions which all

instances/objects of that class must satisfy.

o Inv. of CSMajoarStudent?
o Inv. of BinarySearchTree?

[gpa >= 4.5]
[in-order trav. — sorted key seq.]

e The best we can do in Java is encode invariants as assertions:

o CSMajorStudent: assert this.gpa >= 4.5
o BinarySearchTree: assert this.inOrder () is sorted
o Unlike exceptions, assertions are not in the class/method API.

* Create by adding assertions to the end of

constructor and withdraw method of the Account class.

LASSONDE

a4
O NOAPRPWN—-LO0O0O© O NOOPA»WN =

public class AccountV3 {
public AccountV3(String owner,

public void withdraw(int amount

int balance) throws
BalanceNegativeException

if (balance < 0) { /* negated precondition =+
throw new BalanceNegativeException(); }
else { this.owner = owner; this.balance = balance; }
assert this.getBalance() > 0 : "Invariant: positive balance"; ‘
throws
withdrawAmountNegativeException, WithdrawAmountTooLargeExceptign {
if (amount < 0) ondition */
throw new WithdrawAmountNegativeException(); }
else if (balance < amount) { /=*
throw new WithdrawAmountTooLargeException(); }
else { this.balance = this.balance - amount; }

{ /* negated pre

negated precondition */

assert this.getBalance() > 0 : "Invariant: positive balance";

Version 3: Why Better than Version 2?

LASSONDE

QWO NOOOA WN =

—_

[public class BankAppV3 {

public static void main(String[] args) {
System.out.println("Create an account for Jim with balance 100:"
try { AccountV3 jim = new AccountV3("Jim", 100);

System.out.println(jim);

System.out.println("Withdraw 100 from Jim’s account:");

jim. withdraw(100) ;

System.out.println(jim); }

/ *

Create an account for Jim with balance 100:
Jim’s current balance is: 100
Withdraw 100 from Jim’s account:
Exception in thread "main"
java.lang.AssertionError: Invariant: positive balance

L8: Upon completion of jim.withdraw (100), Jim has a zero
balance, an assertion failure (i.e., invariant violation) occurs,
moreventing further operations on this invalid account object.

Version 3: Why Still Not a Good Design?

LASSONDE

© oONO O WM =

Let’s recall what we have added to the method withdraw:

o From | Version 2 |: exceptions encoding negated preconditions
o From | Version 3 |: assertions encoding the class invariants

public class AccountV3 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException,
if (amount < 0) { /+«)
throw new WithdrawAmountNegativeException(); }
-

negated precondition

else if
throw new WithdrawAmountTooLargeException(); }
else { this.balance = this.balance - amount; }

(balance < amount) { /% negated pr

‘ assert this.getBalance() > 0 : "Invariant: positive balance";

WithdrawAmountTooLargeExceptidn {

I

1

However, there is no contract in withdraw which specifies:
o Obligations of supplier (AccountVv3) if preconditions are met.
o Benefits of client (BankAppV3) after meeting preconditions.
= We illustrate how problematic this can be by creating

Version 4 |, where deliberately mistakenly implement withdraw.

LASSONDE

Version 4: What If the
Implementation of withdraw is Wrong? (1)

public class AccountV4 {
public void withdraw(int amount) throws
WithdrawAmountNegativeException, WithdrawAmountTooLargeException
{ if (amount < 0) { /* negated prec on */
throw new WithdrawAmountNegativeException(); }
else if (balance < amount) { /=
throw new WithdrawAmountTooLargeException(); }
else { /+ WRONT IMPI ITATION */

neaated nrecondif
negated precc

this.balance = this.balance + amount; }
assert this.getBalance() > 0 :
owner + "Invariant: positive balance"; }

O © oONOOAWN =

—_

o Apparently the implementation at L11 is wrong.

o Adding a positive amount to a valid (positive) account balance
would not result in an invalid (negative) one.
= The class invariant will not catch this flaw.

o When something goes wrong, a good design (with an appropriate

contract) should report it via a contract violation .

LASSONDE

Version 4: What If the
Implementation of withdraw is Wrong? (2)

T
‘public class BankAppV4 |
public static void main(String[] args) {

try { AccountV4 jeremy = new AccountV4("Jeremy", 100);
System.out.println(jeremy);
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;

System.out.println(jeremy); }

QLW N~ WN =

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100

Withdraw 50 from Jeremy’s account:

Jeremy’s current balance is: 150

L7: Resulting balance of Jeremy is valid (150 > 0), but withdrawal
was done via an mistaken increase. = Violation of m

System.out.println("Create an account for Jeremy with balance 100:"),

LASSONDE

Version 4: How Should We Improve it?

e Postconditions of a method specify the precise conditions
which it will satisfy upon its completion.
This relies on the assumption that right before the method starts,
its preconditions are satisfied (i.e., inputs valid) and invariants are
satisfied (i.e,. object state valid).

o Postcondition of double divide (int x, int y)?
[Result x y == x]
o Postcondition of boolean binSearch(int x, int[] xs)?
[x e xs < Result]

e The best we can do in Java is, similar to the case of invariants,
encode postconditions as assertions.
But again, unlike exceptions, these assertions will not be part of
the class/method API.

* Create by adding assertions to the end of

withdraw method of the Account class.

LASSONDE

Version 5: Added Assertions
to Approximate Method Postconditions

1 |public class AccountV5 {

2 public void withdraw(int amount) throws

3 WithdrawAmountNegativeException, WithdrawAmountTooLargeExceptidn {
4 int oldBalance = this.balance;

5 if (amount < 0) { /* negated precondition */

6 throw new WithdrawAmountNegativeException(); }

7 else if (balance < amount) { /% negated precondition */

8 throw new WithdrawAmountTooLargeException(); }

9 else { this.balance = this.balance - amount; }

10 assert this.getBalance() > 0 :"Invariant: positive balance";

11 ‘ assert this.getBalance() == oldBalance - amount :

12 ‘ "Postcondition: balance deducted"; '} ‘

A postcondition typically relates the pre-execution value and
the post-execution value of each relevant attribute
(e.g.,palance in the case of withdraw).
= Extra code (L4) to capture the pre-execution value of balance for
the comparison at L11.

LASSONDE

Version 5: Why Better than Version 4?

[public class BankAppV5 {
public static void main(String[] args) {
System.out.println("Create an account for Jeremy with balance 100:"),
try { AccountV5 jeremy = new AccountV5("Jeremy", 100);
System.out.println(jeremy) ;
System.out.println("Withdraw 50 from Jeremy’s account:");
jeremy. withdraw (50) ;
System.out.println(jeremy); }

/ *

QWO NOOOTA WN =

—_

Create an account for Jeremy with balance 100:
Jeremy’s current balance is: 100
Withdraw 50 from Jeremy’s account:
Exception in thread "main"
java.lang.AssertionError: Postcondition: balance deducted

L8: Upon completion of jeremy.withdraw (50), Jeremy has a
wrong balance 150, an assertion failure (i.e., postcondition violation)
occurs, preventing further operations on this invalid account object.

LASSONDE

Evolving from Version 1 to Version 5

| Improvements Made || Design Flaws
Vi - [[Complete lack of Contract

Added exceptions as Preconditions not strong enough (i.e., with missing
method preconditions cases) may result in an invalid account state.

Added assertions as
V3 . . -
class invariants

Deliberately changed
V4 | withdraw’s implementa-
tion to be incorrect.

V5 Added assertions as _

method postconditions

® |n Versions 2, 3, 4, 5, preconditions approximated as exceptions.
® These are not preconditions, but their logical negation .

® Client BankApp’s code complicated by repeating the list of t ry-catch statements.
® |n Versions 3, 4, 5, class invariants and postconditions approximated as assertions.

® Unlike exceptions, these assertions will not appear in the API of withdraw.

Potential clients of this method cannot know: 1) what their benefits are; and 2) what

their suppliers’ obligations are.

® For postconditions, exira code needed to capture pre-execution values of attributes.

V2

Incorrect implementations do not necessarily result in
a state that violates the class invariants.

LASSONDE

Version 5:
Contract between Client and Supplier

benefits
balance deduction

obligations
amount non-negative

BankAppV5.main

(CLIENT) positive balance amount not too large
BankV5.withdraw || amount non-negative balance deduction
(SUPPLIER) amount not too large positive balance
benefits obligations
CLIENT postcondition & invariant precondition

SUPPLIER precondition postcondition & invariant

LASSONDE

DbC in Java

DbC is possible in Java, but not appropriate for your learning:

e Preconditions of a method:
Supplier
e Encode their logical negations as exceptions.
¢ In the beginning of that method, a list of i £-statements for throwing
the appropriate exceptions.
Client
o Alist of t ry-catch-statements for handling exceptions.

e Postconditions of a method:
Supplier
e Encoded as a list of assertions, placed at the end of that method.
Client
o All such assertions do not appear in the API of that method.

e Invariants of a class:
Supplier
e Encoded as a list of assertions, placed at the end of every method.
Client

o All such assertions do not appear in the API of that class.

™

Why Java Interfaces Unacceptable ADTs (1)

LASSONDE

DbC in Eiffel: Supplier

‘E - the type of elements in this list'

All Superinterfaces:
Collection<E>, Iterable<E>

All Known Implementing Classes:
AbstractList, AbstractSequentiallist, ArraylList, AttributelList, CopyOnWriteArraylList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

DbC is supported natively in Eiffel for supplier:

public interface List<E>
extends Collection<E>

‘An ordered collection (also known as a sequence].’ he user of this interface has precise control over where in the list each element is
nserted. The user can access elements by their integer index (position in the list), and search for elements in the list.

It is useful to have:

e A generic collection class where the homogeneous type of
elements are parameterized as E.

¢ A reasonably intuitive overview of the ADT.

lava 8 List AP

™

Why Java Interfaces Unacceptable ADTs (2)

LASSONDE

class ACCOUNT

create
make

feature Attributes
owner : STRING
balance INTEGER

feature - uctors
make(nn: STRING; nb: INTEGER)
require Je ondition
positive_balance: nb > 0
do
owner := nn
balance := nb
end
feature Commands
withdraw(amount: INTEGER)
require - precor ion
non_negative_amount: amount > 0
affordable_amount: amount <= balance P € >, 3
do
balance := balance - amount
ensure —— postc ion
balance_deducted: balance = old balance - amount
end
invariant cle é

positive _balance: balance > 0
end

e

™

DbC in Eiffel: Contract View of Supplier

Methods described in a natural language can be ambiguous:

Any potential client who is interested in learning about the kind of
services provided by a supplier can look through the
contract view (without showing any implementation details):

E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional
operation).

set

E set(int index,
E element)

(Replaces the element at the specified position in this list with the specified element (optional operation).)

Parameters:
index - index of the element to replace

element - element to be stored at the specified position

Returns:
the element previously at the specified position

Throws:
UnsupportedOperationException - if the set operation is not supported by this list

ClassCastException - if the class of the specified element prevents it from being added to this list
NullPointerException - if the specified element is null and this list does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added to this list

(IndexOutOfBuundsException - if the index is out of range (index < @ || index >= slze[)))

class ACCOUNT
create
make
feature Attributes
owner : STRING
balance : INTEGER

feature - ucto
make (nn: STRING INTEGER)
require l ondition
positive_balance: nb > 0
end
feature - E s
withdraw(amount: INTEGER)
require preconditic
non_negative_amount: amount > 0
affordable _amount: amount <= balance prok ,
ensure —- postcondition
balance_deducted: balance = old balance - amount
end
invariant class t

positive_balance: balance > 0
end

LASSONDE

DbC in Eiffel: Anatomy of a Class

LASSONDE

class SOME_CLASS
create

—— Explicit e commands used as const ctors
feature

-— De her
feature

—-— Decla (m ors) ere
feature

—— Declare € Ors) ere
invariant

—— List of gged boole expressions for class s
end

e Use feature clauses to group attributes, commands, queries.
¢ Explicitly declare list of commands under create clause, so
that they can be used as class constructors.
[See the groups panel in Eiffel Studio.]
e The class invariant invariant clause may be omitted:
o There’s no class invariant: any resulting object state is acceptable.
IEEEIThe class invariant is equivalent to writing] invariant true\

LASSONDE

DbC in Eiffel: Anatomy of a Feature

ensure

L1S

end

e The precondition require clause may be omitted:
o There’s no precondition: any starting state is acceptable.

o The precondition is equivalent to writing

e The postcondition ensure clause may be omitted:
o There’s no postcondition: any resulting state is acceptable.

SN Posteondition is equivalent to writing

LASSONDE

Runtime Monitoring of Contracts (1)

In the specific case of ACCOUNT class with creation procedure
make and command withdraw:

postcond_withdraw:
acc.balance = old acc.balance - a and acc.owner ~ old acc.owner

precond_withdraw: execute

balance > 0 acc.withdraw(a) --.0<aanda<balance .-, acc.withdraw(a)
---------- »‘—»: POl ST A

STATE:
balance
owner

not (postcond_withdraw)

not (account_inv) not (precond_withdraw) .

v A
." Precondition Postcondition
| Violation Violation
A
D . not nd_make) :
not (precond_make) ! ot (postcond_make) :
call . precond_make: execute .
create {ACCOUNT} acc.make(a, n) -~ a>0 - -, create {ACCOUNT} acc.make(a, n) --.
Bl s B T T >

postcond_make:
acc.balance = a and acc.owner = n

LASSONDE

Runtime Monitoring of Contracts (2)

In general, class C with creation procedure cp and any feature f:

postcond._f:
Qf

) execute .
STATE: af(..) i
attributes of }----c P’ el Eeeiaceaceacaaaaaan >
class A -
bl
not/
; v y
:‘ Precondition diti
: Violation Violation
B A A
not Pm : not gm '
call : precond_make: execute :
create {A} a.make(...) -~. Pm --. create {A} a.make(...) -~
—ep | beeceseeeees L I >
postcond_make:
BZaTEn am

LASSONDE

Runtime Monitoring of Contracts (3)

e All contracts are specified as Boolean expressions.

* Right a feature call (e.g., acc.withdraw(10)):

o The current state of acc is called the pre-state.
o Evaluate feature withdraw's pre-condition using current values

of attributes and queries.
o Cache values (implicitly) of all expressions involving the old

keyword in the post-condition .
e.g., cache the value of old balance via] old_balance = balance

* Right the feature call:
o The current state of acc is called the post-state.
o Evaluate class ACCOUNT’s invariant using current values of
attributes and queries.
o Evaluate feature withdraw's post-condition using both current
and “cached” values of attributes and queries.

LASSONDE

DbC in Eiffel: Precondition Violation (1.1)
The client need not handle all possible contract violations:

class BANK_APP

inherit
ARGUMENTS

create
make

feature - Initialization
make

—-— Run application
local

alan: ACCOUNT
do

-— A precondition violation with tag "p
create {ACCOUNT} alan.make ("Alan", -10)
end
end

ation with tag "positive_balance"

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"positive balance™").

DbC in Eiffel: Precondition Violation (1.2) |.assonoe

[E] |O APPLICATION 32| @ ACCOUNT 20 ELOdew

Status = Implicit exception pending

[posmve balance: PRECONDITION_VIOLATION rawsed)
F e iz ¢ el 2l & ‘AR

36 i AV A B InFeature |InClass | FromClass | @

Iat view of feature * make' of class ACCOUNT rm et aCCoUNT

make 4 APPLICATION APPLICATION 1

bank ACCOUNT make < % 0%

Feature

make (nn: STRING_8; nb: INTEGER_32)

| require
q positive_balance: nb >= 0
d

o

2 owner := nn
2 balance := nb
B end

LASSONDE

DbC in Eiffel: Precondition Violation (2.1)

The client need not handle all possible contract violations:

class BANK _APP

inherit
ARGUMENTS

create
make

feature —— Initialization
make

Run application.

local
mark: ACCOUNT
do

create {ACCOUNT} mark.make ("Mark", 100)

tag "non

—-— A preconditi at

mark.withdraw(-1000000)
end

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"non_negative_amount").

LASSONDE

DbC in Eiffel: Precondition Violation (2.2)

[E| |0APpLxcnnom:e @ ACCOUNT ERRN Coii stack Faowewa x!

bank ACCOUNT withdraw < » # O i St@tus = Implicit exception pending

Feature (non_negative_amount: PRECONDITION_VIOLATION raised)
v 32 3082 =2 o

P[H[2 2= 2 stiel AN A 8 InFeature |InClass | From Class | @

Flat view of feature withdraw' of class ACCOUNT > withdraw oACCOUNT |ACCOUNT |1

make 5 APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)

uire
E‘rﬁinegat\'veiamount: amount >=0)
affordable_amount: amount <= balance
do
2 balance := balance - amount
ensure
g balance = old balance - amount
B end

Ve

LASSONDE

DbC in Eiffel: Precondition Violation (3.1)

The client need not handle all possible contract violations:

class BANK _APP

inherit
ARGUMENTS

create
make

feature —— Initialization
make

tom: ACCOUNT

do
create {ACCOUNT} tom.make ("Tom", 100)
-— A precondition violation with tag "affordable_ am
tom.withdraw(150)
end
end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (precondition violation with tag
"affordable_amount").

_

DbC in Eiffel: Precondition Violation (3.2) |iassonoe

I |® APPLICATION 31| @ ACCOUNT =0 call stack EEEESEE
bank ACCOUNT withdraw <5 5 5| Status = Implicit exception pending
‘afr‘ordeb\e amount: PRECONDITION_VIOLATION raised
¢ #| InFeature |InClass | FromClass | @
mofckssI GEa UNTS —| b withdraw ¢ ACCOUNT ACCOUN
make s APPLICATION APPLICATION 2
withdraw (amount: INTEGER_32)
require
© non_negative_amount: amount >= 0
© (affordable_amount: amount <= balance)
do
© balance := balance - amount |
ensure
balance = old balance - amount :
© end =

LASSONDE

DbC in Eiffel: Class Invariant Violation (4.1)
The client need not handle all possible contract violations:

class BANK_APP
inherit
ARGUMENTS
create
make
feature —— In
make

Run app
local
jim: ACCOUNT
do
create {ACCOUNT} tom.make ("Jim", 100)
jim.withdraw(100)

— A] n
A class n

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (class invariant violation with tag
"positive balance").

_

LASSONDE

DbC in Eiffel: Class Invariant Violation (4.2)

30 ECEECEERER

(B |O APPLICATION zz‘o ACCOUNT |

Feature bank ACCOUNT _invariant < b & O 53 2ilts = it exception pendin .
positive_balance: INVARIANT_VIOLATION raised &
e AT AR " : f
‘il’”? "f’f R :‘ I"‘ e Z NnFesture [T Class [From Class | @ |
Flat view of feature *_invariant' of class ACCOUNT b veriant S|ACCOUNT .

5

withdraw s ACCOUNT ACC
positive_balance: balance > 0 make o APPLICATION APPLICATION 2

LASSONDE

DbC in Eiffel: Postcondition Violation (5.1)
The client need not handle all possible contract violations:

class BANK_APP
inherit ARGUMENTS
create make

feature Initialization
make
—-— Run
local
jeremy: ACCOUNT
do

ance := +

create {ACCOUNT} jeremy.make ("Jeremy", 100)
jeremy.withdraw(150)

h tag "bal

end

By executing the above code, the runtime monitor of Eiffel Studio
will report a contract violation (postcondition violation with tag
\"balance_deducted").

_

LASSONDE

DbC in Eiffel: Postcondition Violation (5.2)

(| |o APPLICATION @ ACCOUNT 3 LRl Call Stack FEroseva
p— bank ACCOUNT withdraw < » % O 5 ,Stetus = Implicit exception pendi
balance_deducted: POSTCONDITION_VIOLATION raised
@32 3¢ el # 0

= = HY A B 2 nFeawre |InCass |FromClass | @
Flat view of feature *withdraw’ of class ACCOUNT > withdraw. | 6|AGCOUNT COUN
| affordable_amount: amount <= balance 2l make 4 APPLICATION APPLICATION 2

do
© balance := balance + amount

ensure
& (ba\anceﬁdeducted: balance = old balance - amount)
B end

LASSONDE

Beyond this lecture...

e Study this tutorial series on DbC and TDD:

https://www.yvoutube.com/playlist?1list=PL5dxAmCmiv
oro>VizCOSbTznoDDgh KS

_

Index (1)

[Motivation: Catching Defects — When?|
MWhat This Course Is Aboutl
[lerminology: Contract, Client, Supplier
IClient, Supplier, Contract in OOP (1)
ient, Supplier, Contract in
[What is a Good Design?|
IA Simple Problem: Bank Accounts]
Playing with the Various Versions in Javaj
Mersion 1: An Account Classl
[Version 1: Why Not a Good Design? (1)
[Version 1: Why Not a Good Design’? (2)]
[Version 1: Why Not a Good Design? (3)
[Version 1: How Should We Improve it? (1)
ersion 1: How Should We Improve it? (2)|

Index (2)

[Version 2: Added Exceptions
ko Approximate Method Preconditions|

[Version 2: Why Better than Version 1? (1)
[Version 2: Why Better than Version 17 (2.1)
[Version 2: Why Better than Version 17 (2.2)|
[Version 2: Why Better than Version 1? (3.1)]
[Version 2: Why Better than Version 17 (3.2)|
[Version 2: Why Still Not a Good Design? (1)
ersion 2: y Still Not a Good Design? (2.
[Version 2: Why Still Not a Good Design? (2.2)]
[Version 2: How Should We Improve it?|
Nersion 3: Added Assertions]

ko Approximate Class Invariants]
|¥er5|on 3: Why Better than Version 2%

Index (3)

ersion s: ti ot a Goo esign

Version 4: What If the]

mplementation of withdraw IS Wrong? (1)
Version 4: What If the]

fmplementation of withdraw Is Wrong? (2)]

ersion 4: How Should We Improve it?

rtions
ko Approximate Method Postconditions|
[Version 5: Why Better than Version 47
volving from Version 1 to Version 9|
Version 5:]
[Contract between Client and Supplied
DObC in Javal

Why Java Interfaces Unacceptable ADTs (1)|

!gh¥ Java Interfaces Unacceptable ADTs (2)|

Index (4)

DD PP

in Eiffel: Contract View of Supplie
PDbC In Eiffel: Anatomy of a Class|
DbC in Eiffel: Anatomy of a Feature]
Buntime Monitoring of Contracts (1)
Buntime Monitoring of Contracts (2))
Buntime Monitoring of Contracts (3)
PbC in Eitfel: Precondition Violation (1.1)|
PbC in Eitfel: Precondition Violation (1.2)|
PbC in Eitfel: Precondition Violation (2.1)|
PbC in Eiffel: Precondition Violation (2.2)|

in Eiffel: Precondition Violation (3.

in Eiffel: Precondition Violation (3.
%m Eitfel: Class Invariant Violation (4.1)

‘LASSONDE

Index (5)

In Elffel:

ass Invariant Violation (4.

in Eiffel: Postcondition Violation (5.

in Eiffel: Postcondition Violation (5.

Beyond this lecture...|

Syntax of Eiffel: a Brief Overview

EECS3311 A: Software Design
' Winter 2020

CHEN-WFEI WANG

‘LASSONDE

Escape Sequences

Escape sequences are special characters to be placed in your
program text.
o In Java, an escape sequence starts with a backward slash \
e.g., \n for a new line character.
o In Eiffel, an escape sequence starts with a percentage sign %
e.g., 3N for a new line characgter.
See here for more escape sequences in Eiffel: https://www.
eiffel.org/doc/eiffel/Eiffels20programmings
20lanquages20syntax#Special characters

Commands, and Queries, and Features ‘issom

¢ In a Java class:

o Attributes: Data

o Mutators: Methods that change attributes without returning

o Accessors: Methods that access attribute values and returning
e In an Eiffel class:

o Everything can be called a feature.
o But if you want to be specific:

o Use attributes for data

e Use commands for mutators

o Use queries for accessors

_

LASSONDE

Naming Conventions

¢ Cluster names: all lower-cases separated by underscores
e.g., root, model, tests, cluster_number_one

¢ Classes/Type names: all upper-cases separated by
underscores

€.g., ACCOUNT, BANK_.ACCOUNT_APPLICATION

¢ Feature names (attributes, commands, and queries): all
lower-cases separated by underscores

e.d., account_balance, deposit_into, withdraw_from

LASSONDE

Class Declarations

e In Java:

class BankAccount {

}

e In Eiffel:

class BANK_ACCOUNT
/* attributes, commands, and queries */
end

b.ot 39

LASSONDE

Class Constructor Declarations (1)

¢ In Eiffel, constructors are just commands that have been
explicitly declared as creation features:

class BANK_ACCOUNT
—— List names conr nd C C e ed tr tor
create
make
feature Commands
make (b: INTEGER)
do balance := b end
make2
do balance := 10 end
end

e Only the command make can be used as a constructor.

e Command make?2 is not declared explicitly, so it cannot be used
as a constructor.

LASSONDE

Creations of Objects (1)

¢ In Java, we use a constructor Accont (int b) by:
o Writing Account acc = new Account (10) to create a named
object acc
o Writing new Account (10) to create an anonymous object
* In Eiffel, we use a creation feature (i.e., a command explicitly
declared under create) make (int b) inclass ACCOUNT by:

o Writing create {ACCOUNT} acc.make (10) tocreate a
named object acc

o Writing create {ACCOUNT}.make (10) to create an
anonymous object

o Writing’create {ACCOUNT} acc.make (10)‘

is really equivalent to writing

lacc := create {ACCOUNT}.make (10) |

iLot 39

‘LASSONDE

Attribute Declarations

¢ In Java, you write: int i, Account acc
e In Eiffel, you write: i: INTEGER, acc: ACCOUNT
Think of : as the set membership operator ¢:

e.g., The declaration acc: ACCOUNT means object accis a
member of all possible instances of ACCOUNT.

Method Declaration

‘LASSONDE

e Command
deposit (amount: INTEGER)
do
balance := balance + amount
end

Notice that you don’t use the return type void

e Query
sum_of (x: INTEGER; y: INTEGER): INTEGER
do
Result := x + y
end

o Input parameters are separated by semicolons ;
o Notice that you don’t use return; instead assign the return value
to the pre-defined variable Result.

H ot 39

Operators: Assignment vs. Equality

‘:ASSONDE
¢ |In Java:

o Equal sign = is for assigning a value expression to some variable.
eg.,x = 5 » ychanges xsvalueto5 » y
This is actually controversial, since when we first learned about =,
it means the mathematical equality between numbers.

o Equal-equal == and bang-equal ! = are used to denote the equality
and inequality.

e.g.,x == 5 = y evaluates to frueif x’s value is equal to the
value of 5 = v, or otherwise it evaluates to false.
* In Eiffel:

o Equal = and slash equal /= denote equality and inequality.
e.g.,x = 5 » y evaluates to frue if x’s value is equal to the value
of 5 * vy, or otherwise it evaluates to false.
o We use : = to denote variable assignment.
e.g.,x := 5 x ychanges x’svalueto5 x y
o Also, you are not allowed to write shorthands like x++,
mm:ﬂ”St write x 1= x + 1.

‘LASSONDE

Operators: Division and Modulo

| Division | Modulo (Remainder)
Java 20 / 3is6 20 % 3is2
Eiffel || 20 // 3is6 20 \\ 3is2

LASSONDE

Operators: Logical Operators (1)

¢ Logical operators (what you learned from EECS1090) are for
combining Boolean expressions.
e In Eiffel, we have operators that EXACTLY correspond to
these logical operators:
| Logic | EIFFEL

Conjunction A and
Disjunction v or
Implication = implies
Equivalence = =

LASSONDE

Operators: Logical Operators (2)

e How about Java?
o Java does not have an operator for logical implication.
o The == operator can be used for logical equivalence.
o The «& and | | operators only approximate conjunction and
disjunction, due to the short-circuit effect (SCE):
e When evaluating el s&& e2,if el already evaluates to false, then el
will not be evaluated.
eg.,In(y !'=0) «& (x / y > 10),the SCE guards the division
against division-by-zero error.

e When evaluatingel || e2,if el already evaluates to true, then el
will not be evaluated.
eg.,In(y ==0) || (x / y > 10),the SCE guards the division

against division-by-zero error.
o However, in math, the order of the two sides should not matter.
¢ In Eiffel, we also have the version of operators with SCE:
|| short-circuit conjunction | short-circuit disjunction

Java

Eiffel and then or else

‘ &6 ‘ I

LASSONDE

Selections (1)

if By then

— B
elseif B, then .

= Ba A (=By)

—— Qo sometning els
else

= (=B1) A (-B2)

(0]

e

Selections (2)

5 g
| o
]
o
:

LASSONDE

An if-statement is considered as:
o An instruction if its branches contain instructions.
o An expression if its branches contain Boolean expressions.

class
FOO
feature
x, y: INTEGER
feature - Commands
command

Attri

require

if x \\ 2 /= 0 then True else False end —— Or: x \\
do

if x > 0 then y := 1 elseif x < 0 then y := -1 else y :
ensure

y = if old x > 0 then 1 elseif old x < 0 then -1 else 0 end

Oz

0

C

X
] x < 0

A command with 1r—-statements 1n 1mplementation and contracts

0 end

Loops (1)

LASSONDE

¢ In Java, the Boolean conditions in for and while loops are
stay conditions.

void printStuffs() {
int i = 0;
while(i < 10 /* stay co
System.out.println(1i);
i=1+1;
}
}

¢ In the above Java loop, we stay in the loop
aslongasi < 10 istrue.

¢ In Eiffel, we think the opposite: we exit the loop
assoonasi >= 10 istrue.

Loops (2)

LASSONDE

In Eiffel, the Boolean conditions you need to specify for loops
are exit conditions (logical negations of the stay conditions).

print_stuffs
local
i: INTEGER
do
from
i =0
until
i >= 10 exit condition
loop
print (1)
i =1+ 1
end
end —— e

Library Data Structures

LASSONDE

Enter a DS name.

Explore supported features.

File Edit View Favorites Project E:
EMEC 9t ¥

5 {3 | Ge Searct

Features

= % Inherit

& RESIZABLE [G]

@ INDEXABLE [G, INTEGER]
@ TO_SPECIAL [G]

= [Initialization

& a4 g

= 4 Access

&
&
4

|+l Groups || 4 Features| > AutoTest |»'

0 =081

make_empty
make_filled

make
make_from_array
make_from_specia
make_from_cil

item
at
entry

Data Structures: Arrays

LASSONDE

e Creating an empty array:

local a: ARRAY[INTEGER]
do create {ARRAY[INTEGER]} a.make_empty

o Don’tput () after a command or query with no input parameters.
o Local variables must all be declared in the beginning.

o This creates an array of 1ower and upper indices 1 and 0.
o Size of array a: ’ a.upper — a.lower + 1 ‘

¢ Typical loop structure to iterate through an array:

local
a: ARRAY[INTEGER]
i, j: INTEGER
do
from
j := a.lower
until
j > a.upper
do
L = a []]
o= 3+ 1
[|

Data Structures: Linked Lists (1)

LASSONDE

before after
AT — AE———— A A A
:G
1 4 count
Cursor
forth
—_—
item
index: INTEGER
Data Structures: Linked Lists (2) o

e Creating an empty linked list:

local
list: LINKED_LIST|[INTEGER]
do
create {LINKED_LIST[INTEGER]} list.make

e Typical loop structure to iterate through a linked list:

local
list: LINKED_LIST[INTEGER]
i: INTEGER

list.start

list.after

i := list.item
list.forth

1ot 39

Iterable Structures

LASSONDE

o Eiffel collection types (like in Java) are iterable .
e If indices are irrelevant for your application, use:

across ... as ... |loop| ... end
e.g.
local

a: ARRAY[INTEGER]
1: LINKED_LIST|[INTEGER]
suml, sumZ2: INTEGER

do

suml + cursor.item end
sum2 + cursor.item end

across a as cursor loop suml :
across 1 as cursor loop sum2 :

end

LASSONDE

Using across for Quantifications (1.1)

® across ... as ... |all| ... end
A Boolean expression acting as a universal quantification (V)

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..| a.upper as i
all
a [i.item] > 0
end

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.

o L8: as i declares a list cursor for this list.

o L10: i.item denotes the value pointed to by cursor i.
¢ L9: Changing the keyword all to some makes it act like an
ﬁﬁ'stential quantification 3.

LASSONDE

Using across for Quantifications (1.2)

e Alternatively: across ... is . all end
A Boolean expression acting as a unlversal quantlflcatlon (v)

local
allPositive: BOOLEAN
a: ARRAY [INTEGER]

do

Result :=
across
a.lower |..
all
a [i] > 0
end

| a.upper is 1

0O OVWoONOUA~WN =

_

o L8:a.lower |..| a.upper denotes a list of integers.
o L8: is i declares a variable for storing a member of the list.
o L10: i denotes the value itself.

¢ L9: Changing the keyword all to some makes it act like an
mﬁg’stential quantification 3.

LASSONDE

Using across for Quantifications (2)

class

CHECKER
feature Att

collection , LIST,
feature -— 0

Are all items in collection positiver
do
ensure
across
collection as cursor
all
cursor.item > 0

end
end

¢ Using all corresponds to a universal quantification (i.e., V).
e Using some corresponds to an existential quantification (i.e., 3).

LASSONDE

Using across for Quantifications (3)

class BANK
accounts: LIST [ACCOUNT]
binary_search (acc_id: INTEGER): ACCOUNT
- S cn o unts sorted in ’NJF*(E?CE"”““"Q’ order
require
Vi: INTEGER | 1< i< accounts.count e accounts[i].id < accounts[i+ 1].id
across
1 |..| (accounts.count - 1) as cursor
all
accounts [cursor.item].id <= accounts [cursor.item + 1].id
end
do
ensure
Result.id = acc_id
end

LASSONDE

Using across for Quantifications (4)

class BANK

accounts: LIST [ACCOUNT]
contains_duplicate:

Noes +Fhe Ace
Does the a

do

ensure
Vi,j: INTEGER |
\ 1 < i< accounts.count A 1< j< accounts.count e \
accounts[i] ~ accounts[j] = i =j
’ end

¢ Exercise: Convert this mathematical predicate for
postcondition into Eiffel.

¢ Hint: Each across construct can only introduce one dummy
variable, but you may nest as many across constructs as
necessary.

Eq uality :ASSONDE

e To compare references between two objects, use =.

¢ To compare “contents” between two objects of the same type,
use the redefined version of is_equal feature.

¢ You may also use the binary operator ~

ol ~ o2 evaluates to:

o true
o false
o ol.is_equal (02)

if both o1 and o2 are void
if one is void but not the other
if both are not void

2w |
Use of ~: Caution LASSONDE

1 |class

2 BANK

3 | feature Attribute

4 accounts: ARRAY[ACCOUNT]

5 | feature - Queries

6 get_account (id: STRING) : detachable ACCOUNT

7 Account object with ’7id’.

8 do

9 across

10 accounts as cursor

11 loop

12 if cursor.item ~ id then

13 Result := cursor.item

14 end

15 end

16 end

17 | end

L15 should be: cursor.item.id ~ id

Review of Propositional Logic (1) LASSONDE

e A proposition is a statement of claim that must be of either
true or false, but not both.
¢ Basic logical operands are of type Boolean: true and false.
¢ We use logical operators to construct compound statements.
o Binary logical operators: conjunction (A), disjunction (v),
implication (=), and equivalence (a.k.a if-and-only-if <)

| p | g [[prg]pvg]p=qg]p = q]
true true true true true true
true | false || false | true false false
false | true false | true true false
false | false || false | false true true

o Unary logical operator: negation (-)

true || false
false true

Review of Propositional Logic: Implication ‘issom

Written as p = q
Pronounced as “p implies g”
We call p the antecedent, assumption, or premise.
We call g the consequence or conclusion.
Compare the fruth of p = q to whether a contract is honoured: p ~
promised terms; and g »~ obligations.
o When the promised terms are met, then:
e The contract is honoured if the obligations are fulfilled.
e The contract is breached if the obligations are not fulfilled.
o When the promised terms are not met, then:
o Fulfilling the obligation (g) or not (-~q) does not breach the contract.

. p | g [p=q]
true | true true
true | false || false
false | true true
false | false true

O O O O O

Review of Propositional Logic (2) ‘jégsésoms

e Axiom: Definition of =

, p=qg=-pvq
e Theorem: Identity of =

frue=p=p

Theorem: Zero of =

false = p = true

Axiom: De Morgan

-(brq) = -pPv-q
-(pvq) = -pr-q
¢ Axiom: Double Negation
p=-(=p)

Theorem: Contrapositive

p=q=-q=-p

Review of Predicate Logic (1) ‘AL

e A predicate is a universal or existential statement about
objects in some universe of disclosure.

¢ Unlike propositions, predicates are typically specified using
variables, each of which declared with some range of values.
¢ We use the following symbols for common numerical ranges:
o Z: the set of integers
o N: the set of natural numbers
e Variable(s) in a predicate may be quantified:
o Universal quantification :
All values that a variable may take satisfy certain property.
e.g., Given that / is a natural number, i is always non-negative.
o Existential quantification :
Some value that a variable may take satisfies certain property.
e.g., Given that j is an integer, i can be negative.

Review of Predicate Logic (2.1) ‘jégsésoms

» A universal quantification has the form (VX | R ¢ P)
o X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (VX|R e P)=(VX o R=P)
e.g., (VX | True ¢ P)=(VX o True= P)=(VX e P)
eg., (VX | False ¢« P)= (VX e False = P)= (VX e True) = True
e for all (combinations of) values of variables declared in X that
satisfies R, it is the case that P is satisfied.

o Vi|ieNei>0 [true]
o Vi|ieZ o i>0 [false]
o VijlieZNjeZ o i<jvi>] [false]

e The range constraint of a variable may be moved to where the
variable is declared.
o Vi:N e >0
o Vi:Z e i>0
o Vijj:7Z e i<jvi>j

Review of Predicate Logic (2.2) ‘issom

* An existential quantification has the form (3X | R ¢ P)
X is a list of variable declarations
o Ris a constraint on ranges of declared variables
o Pis a property
o (3IX|R e P)=(3X e RAP)
e.g., (3X | True ¢ P)=(3X o TruenP)= (VX o P)
e.g., (3X | False ¢« P)=(3X e Falsen P)=(3X e False) = False
e There exists a combination of values of variables declared in X
that satisfies R and P.

o

o Jj|ieN e j>0 [true]
o Jji|ieZ o i>0 [true]
o i jlieZnjeZ o i<jvi>j [true]

e The range constraint of a variable may be moved to where the
variable is declared.
o 3i:Neij>0
o 3j:7Z e >0
o Ji,j:7Z e i<jvi>]j

Predicate Logic (3) LassonDE

e Conversion between vV and 3

(VX|ReP) «<— —(3X ¢ R=-P)
(3IX|ReP) < (VX ¢eR=-P)

¢ Range Elimination

(VX|ROP) <~ (VX .R:>P)
(IX|ReP) «<— (IX ¢« RAP)

Index (1) :ASSONDE

Escape Sequences|
[Commands, Queries, and Features|

Naming Conventiong

Klass Declarations|

[Class Constructor Declarations (1)
[Creations of Objects (1)

Atiribute Declarations]

IMethod Declaration

Operators: Assighment vs. Equality|
Operators: Division and Modulo|
POperators: Logical Operators (1)
POperators: Logical Operators (2)

:
pelections (1)
)
(\I
pelections (2)
LMo KL

Index (2) :ASSONDE

Loops (2)

Library Data Structures|

Pata Structures: Arrays|

Pata Structures: Linked Lists (1)

Pata Structures: Linked Lists (2)]
lierable Data Structuresl

Using across for Quantifications (1.1)
[Using across for Quantifications (1.2)
lUsing across for Quantifications (2)]
Using across for Quantifications (3)
Using across for Quantifications (4)

Imm_cautmnl

Index (3) :ASSONDE

Review of Propositional Logic (1)

Review of Propositional Logic: Implication|

Review of Propositional Logic (2)]

Review of Predicate Logic (1)

Heview of Predicate Logic (2.1)

Review of Predicate Logic (2.2)|

Predicate Logic (3)

39 ot 39

Common Eiffel Errors:
Contracts vs. Implementations

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

Contracts vs. Implementations: Definitions ‘issom

In Eiffel, there are two categories of constructs:
o Implementations
o are step-by-step instructions that have side-effects

e.g.,,’across ... as ... loop ... end

e change attribute values
e do not return values
e ~ commands
o Contracts
e are Boolean expressions that have no side-effects

eg.,|... = ... ,’across ... as ... all ... end

o use attribute and parameter values to specify a condition
e return a Boolean value (i.e., True or False)
e ~ queries

B3

Contracts vs. Implementations: Where? ‘issom

e Instructions for Implementations: insty, insts
¢ Boolean expressions for Contracts: expi, expo, exps, €xps, €Xps

feature Comi
class withdraw
ACCOUNT require
feature —— Queries u ex
balance: INTEGER do Ps
require .
qu insty
exp;
ensure
do exp
. 4
n.
st end
ensure . .
invariant
expo ex
end Ps , , A AT
end - end of class ACCOUNI
Eor23
Implementations: LASSONDE

Instructions with No Return Values

e Assignments

’ balance := balance + a ‘

¢ Selections with branching instructions:

’if a > 0 then acc.deposit (a) else acc.withdraw (-a) end ‘

e Loops
from
i := a.lower from
unti.l : list.start across
i > a.upper until list as cursor
100 -upp list.after loop
Repsult i loop sum :=
Result' v oalil list.item.wdw(10) sum + cursor.item
. . list. forth end
i =1+ 1
end
end

Contracts:
Expressions with Boolean Return Values

LASSONDE

¢ Relational Expressions (using =, /=, ~, /~, >, <, >=, <=)

’ a>a»0

e Binary Logical Expressions (using and, and then, or, or else,

implies)

’ (a.lower <= index) and (index <= a.upper)

¢ Logical Quantification Expressions (using all, some)

across

a.lower |..| a.upper as cursor
all

a [
end

cursor.item] >= 0

¢ old keyword can only appear in postconditions (i.e., ensure).

balance = old balance + a

Contracts: Common Mistake (1)

‘LASSONDE

class
ACCOUNT
feature
withdraw (a:
do

INTEGER)

ensure
balance
end

:= old balance - a

Colon-Equal sign (: =) is used to write assignment instructions.

Contracts: Common Mistake (1) Fixed

‘LASSONDE

class
ACCOUNT
feature
withdraw (a:
do

INTEGER)

ensure
balance = old balance - a
end

Contracts: Common Mistake (2)

‘LASSONDE

class
ACCOUNT
feature
withdraw (a:
do

INTEGER)

ensure
across
a as cursor
loop

end

across...loop...end is used to create loop instructions.

Contracts: Common Mistake (2) Fixed ‘issom

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
across

a as cursor
all —— if

end

Contracts: Common Mistake (3) ‘issom

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
old balance - a
end

Contracts can only be specified as Boolean expressions.

‘LASSONDE

Contracts: Common Mistake (3) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
ensure
postcond_1: balance = old balance - a

postcond_2: old balance > 0
end

Contracts: Common Mistake (4) ‘iésésoms

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
old balance > 0
do

ensure

end

e Only postconditions may use the old keyword to specify the
relationship between pre-state values (before the execution of
withdraw) and post-state values (after the execution of
withdraw).

* Pre-state values (right before the feature is executed) are

LASSONDE

Contracts: Common Mistake (4) Fixed

class
ACCOUNT
feature
withdraw (a: INTEGER)
require
balance > 0
do

ensure

end

LASSONDE

Contracts: Common Mistake (5)

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature - Commands

make do create a.make_empty end
update (i: INTEGER; v: STRING)

do ...
ensure Others nchanged
across
1 |..| count as j
all
j.item /= i implies old get (j.item) ~ get(j.item)
end
end
end

Compilation Error:
o Expression value to be cached before executing update?
[Current.get (j.item)]
o But, in the pre-state, integer cursor § does not exist!
| resax]

LASSONDE

Contracts: Common Mistake (5) Fixed

class LINEAR_CONTAINER
create make

feature - Attributes

a: ARRAY[STRING]
feature Queries

count: INTEGER do Result := a.count end

get (i: INTEGER): STRING do Result := a[i] end
feature —- Comn 5

make do create a.make_empty end
update (i: INTEGER; v: STRING)
do ...
ensure Others Unchanged
across
1 |..| count as j
all
j.item /= i implies (old Current) .get (j.item) ~ get(j.item)
end
end
end

o The idea is that the old expression should not involve the local
cursor variable 5 that is introduced in the postcondition.

o Whether to put (old Current.twin) or (old
Current.deep twin) is up to your need.

LASSONDE

Implementations: Common Mistake (1)

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance = balance + 1
end

e Equal sign (=) is used to write Boolean expressions.

¢ In the context of implementations, Boolean expression values
must appear:
o on the RHS of an assignment;
o as one of the branching conditions of an if-then-else statement; or
o as the exit condition of a loop instruction.

Implementations: Common Mistake (1) Fixe

class
ACCOUNT
feature
withdraw (a: INTEGER)
do
balance := balance + 1
end

LASSONDE

Implementations: Common Mistake (2)

class
BANK

feature
min_credit: REAL
accounts: LIST[ACCOUNT]

no_warning_accounts: BOOLEAN
do
across
accounts as cursor
all
cursor.item.balance > min_credit
end
end

Again, in implementations, Boolean expressions cannot appear
alone without their values being “captured”.
B

Implementations: Common Mistake (2) Fixe

1 |class
2 BANK
3 | feature
4 min_credit: REAL
5 accounts: LIST[ACCOUNT]
6
7 no_warning_accounts: BOOLEAN
8 do
9 Result :=
10 across
11 accounts as cursor
12 all
13 cursor.item.balance > min_credit
14 end
15 end
16
Rewrite L10 — L14 using across ... as ... some ... end.

Hint: Vx e P(x) = ~(3x ¢ -P(x))

Implementations: Common Mistake (3)

LASSONDE

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
Result :=

across
accounts as cursor

loop
Result := Result + cursor.item.balance

end

end

In implementations, since instructions do not return values, they

cannot be used on the RHS of assignments.

Implementations: Common Mistake (3) FixeL::\jéésésomE

class
BANK
feature
accounts: LIST[ACCOUNT]

total_balance: REAL
do
across
accounts as cursor
loop
Result := Result + cursor.item.balance
end
end

Index (1) :ASSONDE
[Contracts vs. Implementations: Definitions]

Contracts vs. Implementations: Where]
mplementations:
gns.with No Beturn Valuesl
TS 1
Expressions with Boolean Return Values|
[Contracts: Common Mistake (1)
[Contracts: Common Mistake (1) Fixed]
[Contracts: Common Mistake (2)
[Contracts: Common Mistake (2) Fixed|
[Contracts: Common Mistake (3)
[Contracts: Common Mistake (3) Fixed|
[Contracts: Common Mistake (4)
IContracts: Common Mistake (4) Fixed|
ontracts: Common Mistake (5)

Index (2) :ASSONDE

[Contracts: Common Mistake (5) Fixed|

Implementations: Common Mistake (1)

Implementations: Common Mistake (1) Fixed|

Implementations: Common Mistake (2)]

Implementations: Common Mistake (2) Fixed|

Implementations: Common Mistake (3)

Implementations: Common Mistake (3) Fixed|

Drawing a Design Diagram
using the Business Object Notation (BON)

EECS3311 A: Software Design
' Winter 2020

3 CHEN-WFEI WANG
Y

Why a Design Diagram? LASSONDE
e SOURCE CODE is not an appropriate form for communication.
e Use a DESIGN DIAGRAM showing selective sets of important:

o clusters (i.e., packages)

o classes

[deferred vs. effective]
[generic vs. non-generic]
o architectural relations
[client-supplier vs. inheritance]
o features (queries and commands)
[deferred vs. effective vs. redefined]
o contracts
[precondition vs. postcondition vs. class invariant]

¢ Your design diagram is called an abstraction of your system:

o Being selective on what to show, filtering out irrelevant details
o Presenting contractual specification in a mathematical form
(e.g., Vinstead of across ... all ... end).

LASSONDE

Classes:
Detailed View vs. Compact View (1)

e | Detailed view | shows a selection of:

o features (queries and/or commands)

o contracts (class invariant and feature pre-post-conditions)

o Use the detailed view if readers of your design diagram should
know such details of a class.
e.g., Classes critical to your design or implementation

e | Compact view | shows only the class name.

o Use the compact view if readers should not be bothered with
such details of a class.
e.g., Minor “helper” classes of your design or implementation
e.g., Library classes (e.g., ARRAY, LINKED_LIST, HASH_TABLE)

LASSONDE

Classes:
Detailed View vs. Compact View (2)

Detailed View | Compact View

()
FOO

feature -- { A,B,C }
-- features exported to classes A, B, and C
feature -- { NONE }
-- private features
invariant
inv_I: 0 <balance < 1,000,000
_ ,

4ot 25

LASSONDE

Contracts: Mathematical vs. Programming
o When presenting the detailed view of a class, you should include

contracts of features which you judge as important.
o Consider an array-based linear container:

ARRAYED_CONTAINER+

feature -- Querics
count+: INTEGER
— Number of items stored in the container

feature -- Commands
assign_at+ (i: INTEGER; s: STRING)

-- Change the value at position 'i' to 's’.

require
valid_index: 1 <1< count

ensure
size_unchanged: imp.count = (old imp.twin).count
item_assigned: imp[i] ~ s
others_unchanged: ¥j : 1 <j < imp.count : j # i =imp[j] ~ (old imp.twin) [j]

feature -- { NONE }
imp+: ARRAY[STRING]
- Implementation of an arrayed-container

invariant
L consistency: imp.count = count J

e A fag should be included for each contract.
o Use mathematical symbols (e.g., V, 3, <) instead of programming
symbols (e.g., across ... all ..., across ... some ..., <=).

LASSONDE

Classes: Generic vs. Non-Generic

e Aclassis generic if it declares at least one type parameters.

o Collection classes are generic: ARRAY [G], HASH-TABLE [G, H], elcC.
o Type parameter(s) of a class may or may not be instantiated:

o If necessary, present a generic class in the detailed form:

[DATABASE[G] |

feature
- some public features here
feature - { NONE }

(DATABASE[PERSON] \

feature

- some public features here
feature -- { NONE }

-- imp: ARRAY[PERSON]
invariant
-- some class invariant here

(DATABASE[STRING] \

feature
-- some public features here
feature - { NONE }
- imp: ARRAY[STRING]
invariant
- some class invariant here

-- imp: ARRAY[G]
invariant
-- some class invariant here

e Aclassis non-generic if it declares no type parameters.

LASSONDE

Deferred vs. Effective

means unimplemented (~ abstract in Java)
Effective | means implemented

LASSONDE

Classes: Deferred vs. Effective

e A deferred class has at least one feature unimplemented.

o A deferred class may only be used as a static type (for

declaration), but cannot be used as a dynamic type.
o e.g., By declaring 1ist: LIST[INTEGER] (where LIST is a

deferred class), it is invalid to write:
e create list.make
e create {LIST[INTEGER]} list.make
¢ An effective class has all features implemented.

o An effective class may be used as both static and dynamic types.
o e.g., By declaring 1ist: LIST[INTEGER],itis valid to write:

e create {LINKED_LIST[INTEGER]} list.make
e create {ARRAYED LIST[INTEGER]} list.make

where LINKED_LIST and ARRAYED_LIST are both effective
descendants of LIST.

B.of 25

Features: Deferred, Effective, Redefined (1) [issonc:

A deferred feature is declared with its header only

(i.e., name, parameters, return type).
o The word “deferred” means a descendant class would later

implement this feature.
o The resident class of the deferred feature must also be deferred.

deferred class
DATABASE[G]
feature - Queries
search (g: G): BOOLEAN
Does item ‘g' exist in
deferred end
end

database?

Hot 25

Features: Deferred, Effective, Redefined (2)

LASSONDE

e An effective feature implements some inherited deferred
feature.

Classes: Deferred vs. Effective (2.1) LASSONDE

class
DATABASE_V1|[G]

inherit
DATABASE

feature —— O
search (g: G)

rerrorm

deferred end
end

¢ A descendant class may still later re-implement this feature.

Features: Deferred, Effective, Redefined (3)

LASSONDE

¢ A redefined feature re-implements some inherited effective
feature.

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

e Deferred or effective classes may be in the compact form:

ARRAYED_LIST[G]+

ARRAYED LIST[G]+

DATABASE[G]* DATABASE_V1[G]+ DATABASE_V2[G]+

Classes: Deferred vs. Effective (2.2)

class
DATABASE_V2[G]
inherit
DATABASE_VI1[G]
redefine search end
feature - Queries
search (g: G): BOOLEAN
deferred end
end

—— Perforr

Append a star * to the name of a deferred class or feature.
Append a plus + to the name of an effective class or feature.
Append two pluses ++ to the name of a redefined feature.

e Deferred or effective classes may be in the detailed form:

N (N ()

~

DATABASE[G]*

LASSONDE

¢ A descendant class may still later re-implement this feature.

DATABASE_VI1[G]+

DATABASE V2[G]+

feature {NONE} -- Implementation
data: ARRAY[G]

feature -- Commands
add_item* (g: G)

-~ Add new item "¢’ into database

require
non_existing_item: = exists (g)

ensure
size_incremented: count = old count + 1
item_added: exists (g)

feature - Queries
count+: INTEGER
- Number of items stored in database
ensure
correct_result: Result = data.count

exists* (g: G): BOOLEAN
-- Does item g’ exist in database?
ensure

feature {NONE} -- Implementation
data: ARRAY[G]

feature - Commands
add_item+ (g: G)
- Append new item g’ into end of *data’.

feature - Queries
count+: INTEGER
-- Number of items stored in database

correct_result: Result = (3i : 1 <i < count : data[i] ~ g)

s

exists+ (g: G): BOOLEAN
_ - Perform a linear scarch on ‘data’ array.)

feature {NONE} -- Implementation
data: ARRAY[G]

feature -- Commands
add_item++ (g: G)
- Insert new item g’ into the right slot of "data’.
feature — Queries
count+: INTEGER

-- Number of items stored in database

exists++ (g: G): BOOLEAN
-- Perform a binary search on “data” array.

invariant

sorted_data: Vi: 1< < count : data[i] < datali + 1]

_J

LASSONDE

Class Relations: Inheritance (1)

e An inheritance hierarchy is formed using red arrows.

o Arrow’s origin indicates the child/descendant class.
o Arrow’s destination indicates the parent/ancestor class.

¢ You may choose to present each class in an inheritance
hierarchy in either the detailed form or the compact form:

A

(MY_LIST INTERFACE[G]*)

feature

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

N V.

14 ot 25

LASSONDE

Class Relations: Inheritance (2)
More examples (emphasizing different aspects of DATABASE):

Inheritance Hierarchy || Features being (Re-)implemented

E[G]*
DATABASE[G]*
DATABASE_V1[G]+

DATABASE_V2[G]+

LASSONDE

Class Relations: Client-Supplier (1)

e A ’ client-supplier (CS) relation ‘ exists between two classes:

one (the client) uses the service of another (the supplier).

e Programmatically, there is CS relation if in class CLIENT there
is a variable declaration|s1: SUPPLIER].
o A variable may be an attribute, a parameter, or a local variable.

e A green arrow is drawn between the two classes.
o Arrow’s origin indicates the client class.
o Arrow’s destination indicates the supplier class.
o Above the label there should be a /abel indicating the supplier
name (i.e., variable name).
o In the case where supplier is an attribute, indicate after the label
name if it is deferred (), effective (+), or redefined (++).

LASSONDE

Class Relations: Client-Supplier (2.1)

class DATABASE

feature {NONE} mplementatio
data: ARRAY [STRING]

feature —- Commands
add_name (nn: STRING)

. class UTILITIES
feature Queries
search (a: ARRAY[STRING]; n: STRING): BOOLEAN

require ... do ... ensure ... end

name_exists (n: STRING): BOOLEAN
. e crte “ bas require ... do ... ensure ... end

require ...
I end

local
u: UTILITIES
do ... ensure ... end
invariant

end

o Attribute] data: ARRAY[STRING] |indicates two suppliers:
STRING and ARRAY.

o Parameters nn and n may have an arrow with label ,
pointing to the STRING class.

o Local variable u may have an arrow with label , pointing to the

om0 L LLITIES class.

LASSONDE

Class Relations: Client-Supplier (2.2.1)

If STRING is to be emphasized, label is |data: ARRAY[...]|
where ... denotes the supplier class STRING being pointed to.

"
DATABASES data+: ARRAY]...]

feature
add_name+ (nn: STRING)
-- Add name “nn’ into database.

require @

ensure

n,nn
name_exists+ (n: STRING): BOOLEAN
-- Does name 'n’ exist?
require
sure
satar (UTILITIES+)
invariant u feature
search+ (a: ARRAY[STRING]: n: STRING): BOOLEAN
_) -~ Does name "n” exist in array a*?
require
ensure

LASSONDE

Class Relations: Client-Supplier (2.2.2)

If ARRAY is to be emphasized, label is[data |
The supplier's name should be complete: ARRAY [STRING]

DATABASE+

feature

add_name+ (nn: STRING) data+

-- Add name “nn" into datab
require

ensure

n, nn

name_exists+ (n: STRING): BOOLEAN
-- Does name 'n" exist?
require

ensure u

0

invariant

_ J

LASSONDE

Class Relations: Client-Supplier (3.1)

Known: The deferred class LIST has two effective
descendants ARRAY LIST and LINKED_LIST).
e DESIGN ONE:

class DATABASE V1

feature {NONE} - implementation
imp: ARRAYED LIST[PERSON]
end

e DESIGN TwO:

class DATABASE V2

feature {NONE} implementation
imp: LIST[PERSON]
—-— more features and cc t

end

Question: Which design is better? [DESIGN TwO]

Rationale: Program to the interface, not the implementation.

LASSONDE

Class Relations: Client-Supplier (3.2.1)

We may focus on the PERSON supplier class, which may not
help judge which design is better.

BB

DATABASE V1+
feature imp+: ARRAYED_LIST[]

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

(DATABASE va+
feature imp+: LIST[]

-- some public features here
feature -- { NONE }
-- some implementation features here

invariant
-- some class invariant here

J

LASSONDE

Class Relations: Client-Supplier (3.2.2)

Alternatively, we may focus on the L.1ST supplier class, which in
this case helps us judge which design is better.

(DATABASE vi+
feature imp+

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

*
ARRAYED_LIST[PERSON]

r DATABASE V2+
feature imp+

-- some public features here
feature -- { NONE }

-- some implementation features here
invariant

-- some class invariant here

J

ARRAYED_LIST[PERSON]

wn L20

Index (1) :ASSONDE

[Why a Design Diagram?|

Chsses. |
Petailed View vs. Compact View (1)

Casses. |
Petailed View vs. Compact View (2)

Contracts: Mathematical vs. Programming|

o Ae : NonG i

Leferred vs, Effectivel

Classes: Deferred vs, Effectivel

Features: Deferred, Effective, Redefined (1)

fFeatures: Deferred, Etffective, Redefined (2)|

Features: Deferred, Effective, Redefined (3)

IClasses: Deferred vs. Effective (2.1)|

%géses Deferred vs. Effective (2.2)|

Clusters: Groupi

ng Classes

LASSONDE

Use clusters to group classes into logical units.

DATABASE[G]+

DATABASE_TESTS+

feature -- Commands
add_ite n\++1g G)
hyt

]
]
'
1
1
1
1
1
'
1
1
1
'
'
v
1
1
1
1
'
1
1
1
1
1
'
1
1
i

1
1
1
1
item 'g" into the right slot of *data’ ' imp ' - f
L L .
feature -- Querics 1 1 LIST(G] .
count+: INTEGER ' 1 '
~ Nurmber of items stored in database ' ' '
1 1 1
1) 1
Tay. ' ' '
1 1 n '
'"‘“"'"; Viile ot < datai 1 ! ! ARRAYED_LIST[G] 1
v L o Vi 1< <comt doali < doal + 111 ' A
\\ ’ N ’l
___________________ - N e e e e mmcmmmmccmma——

Index (2)

LASSONDE

IClass Relations:

Inheritance (1)|

IClass Relations:

Inheritance (2)|

IClass Relations:

Client-Supplier (1)

IClass Relations:

Client-Supplier (2.1)

IClass Relations:

Client-Supplier (2.2.1)

IClass Relations:

Client-Supplier (2.2.2)

IClass Relations:

Client-Supplier (3.1)

ass Relations:

ient-Supplier

ass Relations:

lent-Supplier

Clusters: Grouping Classes|

Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

LASSONDE

Copying Objects
Say variables c1 and c¢2 are both declared of type C. [c1, c2: ¢]
e There is only one attribute a declared in class C.

e cl.aand c2.a are references to objects.

C
=
cl
(o)
=
c2

.ot 39

‘LASSONDE

cl = c2

Copying Objects: Reference Copy

Reference Copy

o Copy the address stored in variable c2 and store itin c1.
= Both c1 and c2 point to the same object.
= Updates performed via c1 also visible to c2.

—

[aliasing]

k

cl

\

c2

Copying Objects: Shallow Copy ‘LQS%E

Shallow COpy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
a

ANATAS

LASSONDE

Copying Objects: Deep Copy
Deep Copy
o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin

o Make a reference copy of c3: cl := ¢3
= c1 and c2 are not pointing to the same object.
= cl.aand c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

53

”
c2
b.ot 39

’ cl := c2.deep_twin ‘

Copying Objects LASSONDE
@ v 1 1 o1
= Initial situation: name | “Almaviva’
landlord —:l
loved_one i, _1 03
02 Fl— garo” “Susanna”
= Result of:
bi=a e
04 “Almaviva”
c .= a.twin @_,

(:) name “Almaviva” :|05

landlord i
loved_one i, _1 o7
06 M . ,
Figaro Susanna

b.of 39

LASSONDE

Example: Collection Objects (1)

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).
o Assume the following variables of the same type:

local
imp : ARRAY [STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Ton", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.
o After the change is completed, we compare imp vs. old_imp.
e Can a change always be visible between “old” and “new” imp?

LASSONDE

Example: Collection Objects (2)

¢ Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

imp

imp[1] imp[2] imp[3]

STRING STRING STRING
value value value

22

old imp

B.0f 39

LASSONDE

Reference Copy of Collection Object

T 1

Shallow Copy of Collection Object (2)

LASSONDE

1 ‘ old-imp := imp ‘
2 |Result := old _imp = imp - Res = true
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end Result = true
Before Executing L3 After Executing L3
-y
old_imp
o1d_inp NN i
STRING STRING STRING
[vatue [N | [vatue [EEEE [vatue JECTA
imp
STRING STRING STRING
[vatue [RAEAN [value NERE [vaive [RETE [vaiue I
8 ot 39
Shallow Copy of Collection Object (1) LASSONDE
T 1
1 ‘ old-imp := imp.twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end R 1t = false

Before Executing L3 After Executing L3

T

ARRAYISTRING]
LT LT

STRING STRING STRING STRING STRING STRING

value a value 0

ARRAY[STRING] ARRAY[STRING]

1 ‘ old-imp := imp.twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2].append ("xx*")
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [7j]
7 end R t = true
Before Executing L3 After Executing L3
ARRAY[STRING]
P van Pgvae
imp imp / \ \
STRING STRING STRING STRING STRING STRING
9 [m “Mark” m “Tom” value pWVAE] value m “Tom”
praE——
old_imp ‘ /‘ / old_imp ‘ / /
ARRAY[STRING] \ ARRAY[STRING]
1ot 39
Deep Copy of Collection Object (1) LASSONDE

T 1
1 ‘ old-imp := imp.deep-twin ‘
2 |Result := old imp = imp -- Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j] end —- Result = false

Before Executing L3

After Executing L3

imp

/ ARRAY[STRING]

(

STRING STRING STRING

STRING

STRING STRING
- ver I rom”

ARRAY[STRING]

ARRAY| m STRING
/ “Jim”
imp

STRING STRING STRING

ARRAY[STRING]

Deep Copy of Collection Object (2)

LASSONDE
T 1
1 ‘ old-imp := imp.deep_twin ‘
2 |Result := old imp = imp Result = false
3 | imp[2].append ("x*x")
4 |Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ~ old_imp [j] end Result = false

Before Executing L3 After Executing L3

ARRAY[STRING]

/
ARRAY[STRING]

/! ! ~ STRING STRING STRING
“Alan” “izrk”
STRING STRING STRING
“Mark*

STRING STRING STRING STRING SIRING

STRING

ARRAY[STRING]

LASSONDE

How are contracts checked at runtime?

o All contracts are specified as Boolean expressions.
o Right before a feature call (e.g., acc.withdraw(10)):
e The current state of acc is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.

e Cache values, via[: =], of old expressions in the post-condition .

e.g.,| (old accounts|i]).id
e.g.,| (old accounts]i].twin).id
e.g.,| (old accounts)[i].id

e.g.,’ (old accounts.twin)[i].id ‘

[old_accounts_i_id := accountsi].id]
[old_accounts._i := accounts|i]]
[old_accounts_i_twin := accounts|i].twin]

[old_accounts := accounts]

[old_accounts_twin := accounts.twin |

e.g.,| (old Current).accounts[i].id ‘ [old_current := Current]

e.g.,| (old Current.twin).accounts[i].id ‘

o Right after the feature call:
e The current state of acc is called its post-state.
o Evaluate invariant using current values of attributes and queries.

o Evaluate post-condition using both current values and “cached”
values of attributes and queries.

[old_current_twin := Current.twin]

LASSONDE

When are contracts complete?

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
o Eiffel supports this purpose using the old keyword.
This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.

e.g., INTEGER, BOOLEAN are simple-structured.
Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

The second contract is much harder to specify:
o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |

Account LASSONDE
class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
create balance = old balance + a
make end
feature - Attributes is_equal (other: ACCOUNT): BOOLEAN
owner: STRING do
balance: INTEGER Result :=
owner ~ other.owner
feature —— Commands and balance = other.balance
make (n: STRING) end
do end
owner := n
balance := 0
end

LASSONDE Object Structure for lllustration LASSONDE

Bank

class BANK
create make

feature ' ' : : : '
ccounts: ARRAY [ACCOUNT] We will test each version by starting with the same runtime object
make do create accounts.make_empty end structure:
account_of (n: STRING): ACCOUNT
require the input name exists
, , . BANK 0 1
existing: across accounts is acc some acc.owner ~ n end b.accounts
—— not (across accounts 1s acc all acc.owner /~ n end) accounts
do ... ensure Result.owner ~ n end b
add (n: STRING)
require —- the does not exist

non_existing: across accounts is acc all acc.owner /~ n end

ACCOUNT ACCOUNT

not (a 0ss account

~ n end)

acc some acc.c

local new_account: ACCOUNT
do
create new_account.make (n)
accounts. force (new_account, accounts.upper + 1)
end
end

“Bill” “Steve”

balance

Lot 39 19 ot 39

LASSONDE VerSion 1 : LASSONDE
Incomplete Contracts, Correct Implementation

Roadmap of lllustrations

class BANK
We examine 5 different versions of a command deposit_on_vl (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
deposit_on (n: STRING; a: INTEGER) do
from i := accounts.lower
until i > accounts.upper
VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY? loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
1 Correct Incomplete No i oim 141
2 Wrong Incomplete No end
3 Wrong Complete (reference copy) No ensure
4 Wrong Complete (shallow copy) No num_of_accounts_unchanged:
5 Wrong Comp/ete (deep copy) Yes accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a
end
end
[Ror30

™

Test of Version 1

LASSONDE

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t1l: correct imp and incomplete contract")
create b.make

b.add ("Bill")

b.add ("Steve")

C

b.deposit_on-vl ("Steve", 100)

Result :=
b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end

end

_

™

Test of Version 1: Result LASSONDE

APPLICATION

Note: * indicates a violation test case

PASSED (1 out of 1)
CoseTypl Passed | Toa
[} 0

Violation

Boolean 1 1
All Cases

1 1
[State |contract Violation] TestName |
TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract

Version 2: LASSONDE
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n _increased:
Current.account_of (n) .balance =
old Current.account_of(n).balance + a
end
end

Current postconditions lack a check that accounts other than n
are unchanged.

™

Test of Version 2

LASSONDE

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN

local
b: BANK
do

comment ("t2: wrong imp and incomplete contract")
create b.make

b.add ("Bill")

b.add ("Steve")

—— depos 100 c s to S

b.deposit_on.v2 ("Steve", 100)
Result :=
b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance = 100
check Result end
end
end

™

Test of Version 2: Result

A soNo: Test of Version 3

LASSONDE
class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_ copy: BOOLEAN
APPLICATION local
b: BANK
Note: * indicates a violation test case do
- comment (*t3: wrong imp and complete contract with ref copy")
[FAILED (1 failed & 1 passed out of 2> | create b.make
b.add ("Bill")
Violation 0 e b.add ("steve")
Boolean 1 2
All Cases 1 2 - d 100
State Test Nawe b.deposit_on.v3
Result :-
PASSED NONE [t1: test deposit_on with correct imp and incomplete contract| b.account_of ("Bill") .balance = 0
FAILED [Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract and b.account_of ("Steve") .balance = 100
check Result end
end
end

__

™

™

Version 3:
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)

LASSONDE Test of Version 3: Result

LASSONDE

require across accounts is acc some acc.owner ~ n end APPLICATION
local i: INTEGER Note: * indicates a violation test case
do ...
of versi ved b) |
accounts [accounts.lower].deposi 2) FAILED (2 failed & 1 passed out of 3)
ccounts[accounts. 1 or] .deposit (&
oo e JomeEeE e CoseTypel Passed | ___ Tota |
ensure Violation 4] [
num_of_accounts_unchanged: accounts.count = old accounts.count Boolean 1 3
balance_of_n_increased: All Cases 1 3
Current.account_of (n) .balance = Contract Violotion
old Current.account_of(n).balance + a Test [IESTRE AN
P ———] . ‘ PASSED NONE tl: test deposit_on with correct imp and incomplete contract
- g : FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
across old accounts is acc

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
all

acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end

e i

™

Version 4:
Complete Contracts with Shallow Object Copy

LASSONDE

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end

local i: INTEGER
do
of 1
of 1, f
accounts[accounts.lower].deposit (a)
ensure

num_of_accounts_unchanged:
balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a

accounts.count = old accounts.count

Test of Version 4: Result

LASSONDE

APPLICATION

Note: * indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Violation

)

Total

)

Boolean

1

4

ALl Cases

1

Contract Violation

TEST_BANK

4
Test Name

PASSED NONE tl: test deposit_on with correct imp and incomplete contract
others,unchanged . ‘ FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract
. . FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
across old accounts.twin is acc FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
31 0ot 39

™
™

Test of Version 4 Version 5:

Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5

LASSONDE

LASSONDE

class TEST_BANK

test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEJN

(n: STRING; a: INTEGER)

local . .
3:3 BANK require across accounts is acc some acc.owner ~ n end
’ local i: INTEGER
do
do

comment ("t4:
create b.make
b.add ("Bill")
b.add ("Steve")

wrong imp and complete contract with shallow copy"|)

a d
a)

accounts/|
ensure
num_of_accounts_unchanged:
balance_of_n_increased:
Current.account_of (n) .balance =
old Current.account_of(n) .balance + a

pOSit

accounts.count = old accounts.count

b.deposit_on-v4

Result :=
b.account_of ("Bill") .balance = 0 others.unchanged :
and b.account_of("Steve") .balance = 100 across old accounts.deep_-twin is acc
check Result end all
end acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end end
end
end
Bor30 v |

LASSONDE

Test of Version 5

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK
do
comment ("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

—— deposit 100 dollars to Steve’s account
b.deposit_on.v5 ("Steve", 100)
Result :=

b.account_of ("Bill") .balance = 0
and b.account_of("Steve") .balance =
check Result end
end
end

100

_

LASSONDE

Test of Version 5: Result

APPLICATION
Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

\Violation])
Boolean 1 5
ALl Cases 1 5

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated.|t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated.|t4: test deposit_on with wrong imp, complete contract with shallow object copy
FAILED Postcondition V"Lolated] t5: test deposit_on with wrong imp, complete contract with deep object copy

34 ot 39

Exercise LASSONDE

e Consider the query account_of (n: STRING) of BANK.

¢ How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts = old accounts‘ [X
o laccounts = old accounts.twin‘ X
o |accounts = old accounts.deep_twin‘ [x]
O | accounts ~ old accounts‘ X
o laccounts ” old accounts.twin‘ [X
o ’accounts ~ old accounts.deepﬁtwin‘ [

¢ Which equality of the above is appropriate for the
postcondition?

¢ Why is each one of the other equalities not appropriate?

LASSONDE

Index (1)

[Copying Objects|
[Copying Objects: Refterence Copy

Copying Objects: Shallow Copy|
Copying Objects: Deep Copy|
Example: Copying Objects|

Example: Collection Objects (1)
Example: Collection Objects (2)|
Reference Copy of Collection Objectl
Bhallow Copy of Collection Object (1)
[Shallow Copy of Collection Object (2)]

Peep Copy of Collection Object (1)

Index (2) :ASSONDE

Peep Copy of Collection Object (2)|
How are contracts checked at runtime?|
[When are contracts complete™?

Bccouni

Bank

Roadmap of lllustrations

[Object Structure for lllustration|
Version 1: |
Incomplete Contracts, Correct Implementation|

llest of Version 1l
Lest of Version 1: Besulil

Index (3) :ASSONDE

Nersion 2:]
fncomplete Contracts, Wrong Implementation|
llest of Version 2

llest of Version 2: Besultf

Nersion 3:]
IComplete Contracts with Reference Copy|

llest of Version 3

llest of Version 3: Besultf

Mersion 4:]
IComplete Contracts with Shallow Object Copy]

Mesi of Version 4]

llest of Version 4: Besultl

Index (4) :ASSONDE

Version »: |
IComplete Contracts with Deep Object Copy|

llest of Version dl
llest of Version 5: Besult
Exercisel

Abstractions via Mathematical Models

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

LASSONDE

Motivating Problem: Complete Contracts

¢ Recall what we learned in the Complete Contracts lecture:

o In post-condition , for each attribute , specify the relationship
between its pre-state value and its posi-state value.
o Use the old keyword to refer to posi-state values of expressions.
o For a composite-structured attribute (e.g., arrays, linked-lists,
hash-tables, etc.), we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

¢ Let’s now revisit this technique by specifying a L/IFO stack.

LASSONDE

Motivating Problem: LIFO Stack (1)

¢ Let’s consider three different implementation strategies:

Arra Linked List
Stack Feature v
Strategy 1 Strategy 2 ‘ Strategy 3
count imp.count
top imp[imp.count] imp.first imp.last
push(g) imp.force(g, imp.count + 1) | imp.put_front(g) | imp.extend(g)
imp.list.remove_tail (1) list.start imp.finish
pop . .
list.remove imp.remove

¢ Given that all strategies are meant for implementing the same
ADT, will they have identical contracts?

Motivating Problem: LIFO Stack (2.1) LASSONDE
class LIFO STACK[G] create make
feature {NONE} Strategy 1: array
imp: ARRAY[G]
feature —— Initialization
make do create imp.make_empty ensure imp.count = 0 end
feature Commands
push(g: G)
do imp.force(g, imp.count + 1)
ensure
changed: imp[count] ~ g
unchanged: across 1 |..| count - 1 as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.remove_tail(l)
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end

Motivating Problem: LIFO Stack (2.2)

LASSONDE
class LIFO STACK[G] create make
feature {NONE} Strategy 2: linked-list first item as top
imp: LINKED_LIST[G]
feature —— Initialization
make do create imp.make ensure imp.count = 0 end
feature Co nds
push(g: G)
do imp.put_front (g)
ensure
changed: imp.first ~ g
unchanged: across 2 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item - 1] end
end
pop
do imp.start ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item + 1] end
end

Motivating Problem: LIFO Stack (2.3)

LASSONDE
class LIFO STACK[G] create make
feature {NONE} Strategy 3: linked-list last item as top
imp: LINKED_LIST[G]
feature —— Initialization
make do create imp.make ensure imp.count = 0 end
feature Con ds
push(g: G)
do imp.extend(qg)
ensure
changed: imp.last ~ g
unchanged: across 1 |..| count - 1 as i all
impl[i.item] ~ (old imp.deep_twin) [i.item] end
end
pop
do imp.finish ; imp.remove
ensure
changed: count = old count - 1
unchanged: across 1 |..| count as i all
imp[i.item] ~ (old imp.deep_twin) [i.item] end
end

LASSONDE

Design Principles:
Information Hiding & Single Choice

e Information Hiding (IH):

o Hide supplier’s design decisions that are likely to change.

o Violation of IH means that your design’s public APl is unstable.

o Change of supplier’s secrets should not affect clients relying upon
the existing API.

e Single Choice Principle (SCP):

o When a change is needed, there should be a single place (or a
minimal number of places) where you need to make that change.
o Violation of SCP means that your design contains redundancies.

Motivating Problem: LIFO Stack (3) LASSONDE
e Postconditions of all 3 versions of stack are complete .
i.e., Not only the new item is pushed/popped, but also the
remaining part of the stack is unchanged.
¢ But they violate the principle of information hiding :
Changing the secret, internal workings of data structures

should not affect any existing clients.
e How so?
The private attribute imp is referenced in the postconditions ,

exposing the implementation strategy not relevant to clients:
o Top of stack may be’ imp [count] ‘ ’ imp.first ‘ or’ imp.last ‘

e Remaining part of stack may be’across 1 |..| count - 1‘or

’across 2 |..| count ‘
= Changing the implementation strategy from one to another will
also change the contracts for all features .

= This also violates the Single Choice Principle .

LASSONDE

g
=

Math Models: Command vs Query

o Use MATHMODELS library to create math objects (SET, REL, SEQ).
o State-changing commands: Implement an Abstraction Function

class LIFO STACK[G —-> attached ANY] create make
feature {NONE} - Implementation
imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
model: SEQ[G]

do create Result.make_empty

across Imp as cursor loop Result.append(cursor.item) end
end

o Side-effect-free queries: Write Complete Contracts

class LIFO_STACK[G -> attached ANY] create make

feature - Abstraction function of the stack ADT
model: SEQ/[G]

feature Commands
push (g: G)

ensure model ~ (old model.deep_twin) .appended(g) end

Implementing an Abstraction Function (1)

class LIFO_STACK[G —> attached ANY] create make
feature {NONE} - Implem t
imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
model: SEQ[G]
do create Result.make_from.array (imp)

ategy

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Co ds
make do create imp.make_empty ensure model.count = 0 end

push (g: G) do imp.force(g, imp.count + 1)

ensure pushed: model ~ (old model.deep_-twin) .appended(g) end

‘ pop do imp.remove_tail (1)
‘ ensure popped: model ~ (old model.deep_-twin).front end

Abstracting ADTs as Math Models (1)

‘push(g: G)’ feature of LIFO_STACK ADT

[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current array
into a math sequence

abstraction
Sfunction

abstraction
JSunction

old imp: ARRAY[G] imp: ARRAY[G]
imp.force(g, imp.count + 1)

private/hidden (implementor’s view)

convert the current array
into a math sequence

J

e | Strategy 1| Abstraction function : Convert the implementation

array to its corresponding model sequence.

e Contract forthe|put (g: G) |feature remains the same:

’ model ~ (old model.deep_twin) .appended(qg)

|

Implementing an Abstraction Function (2)

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Impl! ategy 2 2s top)
imp: LINKED LIST[G]
feature Abstraction tion of the stack

model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.prepend(cursor.item) end

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result([i.item] ~ imp[count - i.item + 1]
end
feature - C S
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.put_front (g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.start ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘

Abstracting ADTs as Math Models (2)

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction
into a math sequence Sfunction

abstraction | convert the current liked list
Sfunction into a math sequence

old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
imp.put_front(g)

prlvate/hldden (implementor’s view)

Strategy 2| Abstraction function : Convert the /mp/ementat/on

list (first item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

’ model ~ (old model.deep_twin) .appended(qg) ‘
| kEaxsi]

LASSONDE

Implementing an Abstraction Function (3)

class LIFO_STACK[G —-> attached ANY] create make

feature {NONE} - Implementation Strategy 3 (last as top)
imp: LINKED LIST[G]
feature Abstraction »f the

model: SEQ[G]
do create Result.make_empty
across imp as cursor loop Result.append(cursor.item) end

ensure
counts: imp.count = Result.count
contents: across 1 |..| Result.count as i all
Result[i.item] ~ imp[i.item]
end
feature - Com ds
make do create imp.make ensure model.count = 0 end

push (g: G) do imp.extend(g)
ensure pushed: model ~ (old model.deep-twin) .appended(g) end

pop do imp.finish ; imp.remove
‘ ensure popped: model ~ (old model.deep-twin).front end ‘
’ end ‘

LASSONDE

Abstracting ADTs as Math Models (3)

‘push(g: G)’ feature of LIFO_STACK ADT
[public (client’s view)

model ~ (old model.deep_twin).appended(g)
old model: SEQ[G] model: SEQ[G]

convert the current linked list | abstraction

into a math sequence function
old imp: LINKED_LIST[G] imp: LINKED_LIST[G]
private/hidden (implementor’s view)
L

o | Strategy 3| Abstraction function : Convert the implementation
list (last item is top) to its corresponding model sequence.
e Contract forthe|put (g: G) |feature remains the same:

abstraction | convert the current liked list
Sfunction into a math sequence

imp.extend(g)

’ model ~ (old model.deep_twin) .appended(qg) ‘
| x|

Solution: Abstracting ADTs as Math Models|soxo:

e Writing contracts in terms of implementation attributes (arrays,
LLs, hash tables, efc.) violates information hiding principle.

¢ Instead:
o For each ADT, create an abstraction via a mathematical model.
e.g., Abstract a LIFO_STACK as a mathematical .
o For each ADT, define an abstraction function (i.e., a query
whose return type is a kind of mathematical model.
e.g., Convert implementation array to mathematical sequence
o Write contracts in terms of the abstract math model.
e.g., When pushing an item g onto the stack, specify it as
appending g into its model sequence.
o Upon changing the implementation:
¢ No change on what the abstraction is, hence no change on contracts.
e Only change how the abstraction is constructed, hence changes on
the body of the abstraction function.
e.g., Convert implementation linked-list to mathematical sequence
= The Single Choice Principle is obeyed.

Math Review: Set Definitions and Members

A set is a collection of objects.
o Objects in a set are called its elements or members.
o Order in which elements are arranged does not matter.
o An element can appear at most once in the set.
We may define a set using:
o Set Enumeration: Explicitly list all members in a set.
e.g., {1,3,5,7,9}

o Set Comprehension: Implicitly specify the condition that all
members satisfy.
eg., {x|1<x<10Ax is an odd number}

An empty set (denoted as {} or @) has no members.

We may check if an element is a member of a set:
e.g.,5¢{1,3,5,7,9} [true]
eg.,4¢{x|x<1<10,x is an odd number} [true]

e The number of elements in a set is called its cardinality.

e.9.,12]=0,[{x|x<1<10,x is an odd number}|=5

LASSONDE

Math Review: Set Relations

Given two sets Sy and S:
e S, is a subset of S, if every member of S; is a member of S,.

S1€8S = (Vx e xeSy=>x€8p)

e S; and S, are equal iff they are the subset of each other.

S1=Sg <~ 51932/\82981

e S, is a proper subset of S, if it is a strictly smaller subset.

SicS, « S cSn|S1<|S2

LASSONDE

Math Review: Set Operations

Given two sets Sy and S:
e Union of Sy and S, is a set whose members are in either.

S1U82={X|XES1VX€SQ}

¢ Intersection of S; and S, is a set whose members are in both.

S1ﬁSg={X|XES1/\X€SQ}

e Difference of S; and S, is a set whose members are in S; but

not So.
S1\82={X|XES1/\X¢82}

LASSONDE

Math Review: Power Sets

The power set of a set Sis a set of all S’ subsets.

P(S)={s|sc S}

The power set contains subsets of cardinalities 0, 1, 2, ..., |S|.

e.g., P({1,2,3}) is a set of sets, where each member set s has
cardinality 0, 1, 2, or 3:

z,

{1}, {2}, {3},
{1.2}, {2,3}, {3,1},
{1,2,3}

LASSONDE

Math Review: Set of Tuples

Given nsets Sy, Sy, ..., Sp, @ cross product of theses sets is
a set of n-tuples.
Each n-tuple (eq, e, ..., €en) contains n elements, each of

which a member of the corresponding set.

SixSox--xSp={(e1,6€2,...,en) | €eSian1<i<n}

e.g., {a b} x{2,4} x {$,&} is a set of triples:

{a,b} x {2,4} x {$,&}
{(e1,e2,€3) | ere{abfrerec{2,4f nese{$,&} }
{(a,2,%),(a,2,&),(a,4,9%),(a,4,&),
(b,2,%$),(b,2,&),(b,4,%),(b,4,&)}

Math Models: Relations (1) LASSONDE

e A relation is a collection of mappings, each being an ordered
pair that maps a member of set S to a member of set T.
e.g.,,Say S={1,2,3}and T = {a, b}

o @ is an empty relation.

o Sx T is arelation (say r1) that maps from each member of S to
each memberin T: {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

o {(x,y):SxT|x=+1}isarelation (say r.) that maps only some
members in S to every member in T: {(2,a),(2,b),(3,a),(3,b)}.

¢ Given a relation r:

o Domain of r is the set of S members that r maps from.

dom(r)={s:S|(3te(s,t)er)}
e.g., dom(ry) = {1,2,3}, dom(rz) = {2,3}
o Range of ris the set of T members that r maps to.
ran(r)={t: T | (3se(s,t)er)}

e.g., ran(ry) = {a, b} =ran(rz)

Math Models: Relations (2) LASSONDE

¢ We use the power set operator to express the set of all possible
relations on Sand T:
P(SxT)

¢ To declare a relation variable r, we use the colon (:) symbol to
mean set membership:

r:P(SxT)

¢ Or alternatively, we write:
r:S< T

where the set S <> T is synonymous to the set P(Sx T)

Math Models: Relations (3.1) LASSONDE

Say r={(a,1),(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e2),(f,3)}

o [r.domain|: set of first-elements from r
o rdomain={d|(d,r)er}
o e.g., r.domain = {a,b,c,d,e,f}

[] - -
. set of second-elements from r

orrange={r|(d,r)er}
o eg., rrange={1,2,3,4,5,6}

« [rinversel: a relation like r except elements are in reverse order
o rinverse = { (r,d)|(d,r)er}
o e.g., rinverse = {(1,a),(2,b), (3,c), (4,), (5,b), (6,c), (1,d), (2, €), (3,)}

Math Models: Relations (3.2) LASSONDE

Say r={(a,1).(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
r.domain_restricted(ds) ‘: sub-relation of r with domain ds.

o r.domain_restricted(ds) = { (d,r) | (d,r)erndeds}

o e.g., r.domain_restricted({a, b}) = {(a, 1), (b,2),(a,4), (b,5)}
r.domain_subtracted(ds) ‘: sub-relation of r with domain not ds.
o r.domain_subtracted(ds) = { (d,r) | (d,r)ernd¢ds}

o e.g., r.domain_subtracted({a, b}) = {(c,6),(d,1),(e,2),(f,3)}
r.range_restricted(rs) ‘: sub-relation of r with range rs.

o rrrange_restricted(rs) = { (d,r) | (d,r)erarers}

o e.g., r.range restricted({1, 2}) = {(a,1),(b,2),(d,1),(e,2)}
r.range_subtracted(ds) \: sub-relation of r with range not ds.

o rrrange_subtracted(rs) = { (d,r) | (d,r)eranr¢rs}
o e.g., r.range_subtracted({1, 2}) = {(c,3),(a.4),(b,5),(c,6)}

Math Models: Relations (3.3) LASSONDE

Say r={(a,1).(b,2),(c,3).(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)}
e |r.overridden(t) . a relation which agrees on r outside domain of

t.domain, and agrees on t within domain of t.domain

o r.overridden(t) = { u r.domain_subtracted(t.domain)

[e]

r.overridden({(a,3),(c,4)})

{(a,3), (074)}U{(b72t)7 (b,5),(d,1),(e,2),(f,3)}

t r.domain_subtracted(f.domain)
[—
{a,c}

{(a,3),(c,4),(b,2),(b,5),(d,1),(e;2),(f,3)}

LASSONDE

Math Review: Functions (1)

A function fon sets Sand T is a specialized form of relation:
it is forbidden for a member of S to map to more than one
members of T.

VSis;t12T;t21TO(S,t1)€f/\(S,t2)Ef=>t1=t2

e.g., Say S={1,2,3} and T = {a, b}, which of the following
relations are also functions?

o SxT [No]
o (SxT)-{(x,y) | (x,¥)eSxTArx=1} [No]
° {(1,a),(2,b),(3,a)} [Yes]
° {(1,a),(2,0)} [Yes]

Math Review: Functions (2)

LASSONDE

e We use sef comprehension to express the set of all possible
functions on S and T as those relations that satisfy the
functional property :

(r:SeT|
(VSIS;HIT;tg:TO(S,t1)EI‘/\(S,t2)EI’=>t1 =t2)}

e This set (of possible functions) is a subset of the set (of
possible relations): P(Sx T) and S« T.

¢ We abbreviate this set of possible functions as S — T and use it
to declare a function variable f:

f:S-T

LASSONDE

Math Review: Functions (3.1)

Given a function f: S— T:
e fis injective (or an injection) if f does not map a member of S
to more than one members of T.
f is injective «—
(VS1 :8;8:5;t: TO(S1,t)EI’/\(32,t)€I’:>S1 232)

e.g., Considering an array as a function from integers to
objects, being injective means that the array does not contain
any duplicates.

e fis surjective (or a surjection) if f maps to all members of T.

f is surjective <= ran(f)=T

e fis bijective (or a bijection) if f is both injective and surjective.

LASSONDE Math Models: Example Test LASSONDE

Math Review: Functions (3.2)

test_rel: BOOLEAN

local
r, t: REL[STRING, INTEGER]
ds: SET[STRING]

<

X Y X

D
B do
create r.make from tuple_array (
Cc <<["a", 11, ["b", 2], ["c", 31,
[("a", 4], ["b", 51, ["c", 6],
A [lldll, 1]’ [lleH’ 2], ["fll, 3]>>)

create ds.make from array (<<"a">>)

. YA A~y 1
domain__

r 1s not ct ne

t := r.domain _subtracted (ds)

Y

X Y X Result :=

1 D t /~ r and not t.domain.has ("a") and r.domain.has ("a")
check Result end

2 B -» -— r 1s changed by the co dc . _subtract’
r.domain_subtract (ds)

3 +C Result :=

t ~ r and not t.domain.has ("a") and not r.domain.has ("a")
4 end

Math Models: Command-Query Separation |.ssono: Case Study: A Birthday Book LASSONDE
Command I Query
domain_restrict domain_restricted A birthday book stores a collection of entries, where each entry
domain_restrict_ by domain_restricted by : : ; . H
domain subtract domain subtracted is a pair of a person’s name and their birthday.
domain-subtract.by || domain.subtractedby ¢ No two entries stored in the book are allowed to have the same
range_restrict range_restricted name
range_restrict by range_restricted by '
range_subtract range_subtracted e Each birthday is characterized by a month and a day.
range_subtract by range_subtracted._by i
e Sverridden * A birthday book is first created to contain an empty collection of
override_by overridden_by entireS.

Given a birthday book, we may:
Say r={(a,1).(b,2),(c,3),(a,4),(b,5),(c,6),(d,1),(e,2),(f,3)} Inquire about the number of entries currently stored in the book

* Commands modify the context relation objects. o Add a new entry by supplying its name and the associated birthday
] r.domain_restrict ({a}) ‘ changes rto {(a,1),(a,4)} o Remove the entry associated with a particular person

* Queries return new relations without modifying context objects. Find the b?”hdaIY of ? particu'afr perscl’” e on birthd
[domain restricted({a}) | returns {(a,1),(a,4)} with r untouched Get a reminder list of names of people who share a given birthday

LASSONDE Birthday Book: Implementation ¥

Birthday Book: Decisions

LASSONDE

1 BIRTHDAY BOOK h BIRTHDAY

model: FUN[NAME, BIRTHDAY | day: INTEGER
- .. -- abstraction function
¢ Design Decision

model: FUN[NAME, ..]

do 2| month: INTEGER
-- promote hashtable to function o invariant
o Classes e“,«z‘:;cmmu:Resun.ccum—unplcmcnmnoncoum I <month <12
. . . same_contents: ¥ [name, date] € Result: [name, date] € implementation 1<day<31
o Client Supplier vs. Inheritance end
o Mathematical Model? [e.0., REL Or FUN] P NAMES & BITHRAY)
- implement using hashtable
o Contracts i) 5 0
« Implementation Decision Csine D
p remind(d: BIRTHDAY): ARRAY[NAME]
. . do
o Two linear structures (e.g., arrays, lists) [O(n) " implementusing hashable o

same_counts: Result.count = (model @> d).count
same_contents: ¥ name € (model @> d).domain: name € Result

]
o A balanced search tree (e.g., AVL tree) [O(log-n)] woling_changed: model ~ (old modeldecp_win)
o A hash table [O(1)]

end
. . count: INTEGER -- number of names NAME
e Implement an abstract function that maps implementation to B

feature {NONE} remin [-] | item: STRING

impl tation: HASH_TABLE[BIRTHDAY, NAME] Ll
the math model.

invariant: item[1] € A.Z
consistent_book_and_model_counts: count = model.count
consistent_book_and_imp_counts: count = implementation.count

J

LASSONDE Beyond this lecture ...
BIRTHDAY BOOK)

model: FUN[NAME, BIRTHDAY]

day: INTEGER e Familiarize yourself with the features of classes SEQ, REL, FUN,
-- abstraction function L LR month: INTEGER and SET fOi‘ the Iab teSt

LASSONDE

Birthday Book: Design

Vs

count: INTLG}ER invariant
-- number of entries

| <month <12 ¢ Play with the source code of the Birthday Book example:
put(n: NAME; d: BIRTHDAY) 1 <day <31 . . .
ensure https://www.eecs.yorku.ca/~jackie/teaching/lectures/
model_operation: model ~ (old model.deep_twin).overriden_by ([n,d])

- infix symbol for override operator: @<+

2020/W/EECS3311/codes/birthday-book.zip.
o Exercise:

remind(d: BIRTHDAY): ARRAY[NAME]
ensure
nothing_changed: model ~ (old model.deep_twin)
same_counts: Result.count = (model.range_restricted_by(d)).count

. o Consider an alternative implementation using two linear structures
same_contents: ¥ name € (model.range_restricted_by(d)).domain: name € Result remind: ARRAYT..] item: STRING
—- infix symbol for range restriction: model @> (d) (e_g_’ here in Java)_
invariant
invariant:

consistent_book_and_model_counts: count = model.count feml1]€A-2 © Implement the deSign of blrthday book covered in lectures.
- ~ o Create another LINEAR_BIRTHDAY_BOOK class and modify the
implementation of abstraction function accordingly.

Do all contracts still pass? What should change? What remain
unchanged?

Index (1)

[Motivaiing Problem: Complete Contracis|

otivating Problem: tac
[Motivating Problem: LIFO Stack (2.1)
I\Ilotlvatlng Problem: LIFO Stack (2.2)|

IVIotlvatlng Problem: LIFO Stack (2.3)

Pesign Principles: |
fnformation Hiding & Single Choice

[Motivaiing Problem: LIFO Stack (3)
[Math Models: Command vs Query]
fmplementing an Abstraction Function (1)

IKBstractlng ADTs as Math Models (1)

Index (2)

fmplementing an Abstraction Function (2)
[Abstracting ADTs as Math Models (2}
fmplementing an Abstraction Function (3)
[Abstracting ADTs as Math Models (3)
polution: Abstracting ADTs as Math Models
[Math Review: Set Definitions and Membership]
[Math Review: Set Operationg

IMaih Beview: Power Seid

[Math Review: Set of Tupleg

[Math Models: Relations (1)

Index (3)

[Math Models: Relations (2)
ath Models: Relations (3.

Viath Models: Relations (3.2)
ath Models: Relations (3.

[Math Review: Functions (1)

[Math Review: Functions (2)
[Mlath Review: Functions (3.1}
[Math Review: Functions (3.2)
Math Models: Command-Query Separation|
[Math Models: Example Test]
ase Study: irthday Boo

Index (4)

Birthday Book: Decisions|
EBirthday Book: Design|

Birthday Book: Implementation|

Beyond this lecture .. .|

YORK

Use of Generic Parameters
Iterator and Singleton Patterns

EECS3311 A: Software Design
' Winter 2020

CHEN-WFEI WANG

c|c
Z|Z

mim
D |
wlwn
==
<Im

LASSONDE

Generic Collection Class: Motivation (1)

class STRING _STACK
feature {NONE} - Impleme

feature

end

AC10n

INTEGER

imp: ARRAY[STRING] ;1
feature —— Queriec

count: INTEGER do Result := i end

—— Number of items on st

top: STRING do Result

push (v: STRING) do imp[i] := v; 1 := 1 + 1 end

add v’ to too of s
Add % to top of stack.

pop do i

o Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type STRING
(e.g., at, append)? [NO!]

o How would you implement another class ACCOUNT_STACK?

Generic Collection Class: Motivation (2)

LASSONDE

class ACCOUNT _STACK

feature {NONE} - Imy ation
imp: ARRAY[ACCOUNT] ; i: INTEGER
feature —— Queries

count: INTEGER do Result := i end

—— Number of items

top: ACCOUNT do Result := imp [i] end

—— Ret

tack.

feature —— s
push (v: ACCOUNT) do imp[i] := v; 1 := 1 + 1 end
—-— Add v’ to top of stack.
pop do 1 i - 1 end
Remove top of stack.

end

o Does how we implement integer stack operations (e.g., top,
push, pop) depends on features specific to element type
ACCOUNT (e.g., deposit, withdraw)?

retrieval of elements, not how those elements are manipulated.

Generic Collection Class: Supplier

[NO!]
o A collection (e.g., table, tree, graph) is meant for the storage and

LASSONDE

¢ Your design “smells” if you have to create an almost identical

new class (hence code duplicates) for every stack element
type you need (e.g., INTEGER, CHARACTER, PERSON, efc.).
¢ Instead, as supplier, use G to parameterize element type:

class STACK [G]
feature {NONE} - Impl

~mentation

piler C
imp: ARRAY[G] ; : INTEGER
feature - Queries

count: INTEGER do Result := i end

A1CK .

imp [i] end

top:
-— Ret - stack.
feature -
push (v: do imp[i] = = 1 + 1 end
—— Add v’ to top of s
pop do i := i - 1 end
Remove top of stack.
end
4 ot 49

LASSONDE

Generic Collection Class: Client (1.1)

As client, declaring ss: STACK[STRING] instantiates every
occurrence of G as STRING.

T 1
class STACK [f STRING]

feature {NONE} - Implementation
imp: ARRAY[ﬁ STRING] ; i: INTEGER
feature Queries

count: INTEGER do Result :

Remove top of stack.

end
.ot 49

LASSONDE

Generic Collection Class: Client (1.2)

As client, declaring ss: STACK[ACCOUNT] instantiates every
occurrence of G as ACCOUNT.

| 1
class STACK [f ACCOUNT]
feature {NONE} - Imp

imp: ARRAY[ﬁ ACCOUNT] ; 1i: INTEGER
feature Queries

count: INTEGER do Result := i end

—— Number of items on st

LASSONDE

Generic Collection Class: Client (2)
As client, instantiate the type of G to be the one needed.

test_stacks: BOOLEAN

local
ss: STACK[STRING] ; sa: STACK[ACCOUNT]
s: STRING ; a: ACCOUNT

ss.push("A")
ss.push (create {ACCOUNT}.make ("Mark", 200)

O©CoONOOH~WN =
o
o

S := ss.top
a := ss.top
10 sa.push(create {ACCOUNT}.make ("Alan", 100)
11 sa.push("B")
12 a := sa.top
13 s := sa.top
14 end

e L3 commits that ss stores STRING objects only.
o L8 and L10 valid; L9 and L11 invalid.

e L4 commits that sa stores ACCOUNT objects only.
o L12 and L14 valid; L13 and L15 invalid.

LASSONDE

What are design patterns?

e Solutions to recurring problems that arise when software is
being developed within a particular confext.
o Heuristics for structuring your code so that it can be systematically
maintained and extended.
o Caveat : A pattern is only suitable for a particular problem.
o Therefore, always understand problems before solutions!

50149

LASSONDE

Iterator Pattern: Motivation (1)

Client:
iaer: class
Supplier: pod
class feature
CART cart: CART
feature checkout: INTEGER
orders: ARRAY[ORDER] do
end from
i := cart.orders.lower
class until
ORDER i > cart.orders.upper
feature do
price: INTEGER Result := Result +
quantity: INTEGER cart.orders[i] .price
end *
cart.orders[i].quantity
i:=4i+1
end
Problems? end
end

LASSONDE

Iterator Pattern: Motivation (2)

_ Client:
Supplier:
class
class SHOP
CART feature
feature cart: CART

orders: LINKED LIST[ORDER]
end

class
ORDER
feature
price: INTEGER
quantity: INTEGER
end

Client’s code must be modi-
fied to adapt to the supplier’s
change on implementation.

checkout: INTEGER

do
from
cart.orders.start
until
cart.orders.after
do
Result := Result +

cart.orders.item.price
*
cart.orders.item.quantity
end
end
end

LASSONDE

lterator Pattern: Architecture

ITERATION_CURSOR[G]*

LASSONDE

Iterator Pattern: Supplier’s Side

e Information Hiding Principle :

o Hide design decisions that are likely to change (i.e., stable API).

o Change of secrets does not affect clients using the existing API.
e.g., changing from ARRAY to LINKED_LIST in the CART class

e Steps:

1. Let the supplier class inherit from the deferred class
ITERABLE[G].

2. This forces the supplier class to implement the inherited feature:
new_cursor: ITERATION_-CURSOR [G], where the type parameter
G may be instantiated (e.g., ITERATION_CURSOR[ORDER)).

2.1 If the internal, library data structure is already iterable
e.g., imp: ARRAY[ORDER), then simply return imp.new_cursor.

2.2 Otherwise, say imp: MY_TREE[ORDER]J, then create a new class
MY _TREE_ITERATION_CURSOR that inherits from
ITERATION_CURSOR|[ORDER)], then implement the 3 inherited
features after, item, and forth accordingly.

Iterator Pattern: Supplier’s Implementation

Iterator Pattern: Supplier’s Imp. (2.2) LassonDE

class
CART
inherit
ITERABLE [ORDER]

feature {NONE} - Infc
orders: ARRAY[ORDER]

feature - Iteration
new_cursor: ITERATION_CURSOR [ORDER]
do
Result := orders.new_cursor
end

When the secrete implementation is already iterable, reuse it!

Iterator Pattern: Supplier’s Imp. (2.1)

class
MY ITERATION_CURSOR[G]
inherit
ITERATION_CURSOR|[TUPLE [STRING, G]]
feature - Co ru r
make (ns: ARRAY[STRING], rs: ARRAY[G])
do ... end

feature {NONE} - Inf
cursor_position: INTEGER
names: ARRAY [STRING]
records: ARRAY|[G]

feature - ¢ r Operat
item: TUPLE[STRING G]
do ... end
after: Boolean
do ... end
forth
do ... end

LASSONDE

You need to implement the three inherited features:

item, after, and forth.

Iterator Pattern: Supplier’s Imp. (2.3)

class
GENERIC_BOOK|[G]
inherit
ITERABLE|[TUPLE [STRING, G]]

feature {NONE } Information Hi
names: ARRAY [STRING]
records: ARRAY [G]

feature - Iteration
new_cursor: ITERATION_CURSOR|[TUPLE[STRING, G]]

local
cursor: MY_ITERATION_-CURSOR[G]

do
create cursor.make (names, records)
Result := cursor

end

No Eiffel library support for iterable arrays = Implement it yourself!

Visualizing iterator pattern at runtime:

ArrayedMap
inherit ITERABLE[TUPLE[STRING, G]] names . upper

names - ----_

records.upper

new_cursor

ITERATION_CURSOR[TUPLE[STRING, G]]
values_1
values_2
cursor_position
item
after, forth

LASSONDE

Exercises LASSONDE

Resources LASSONDE

. Draw the BON diagram showing how the iterator pattern is
applied to the CART (supplier) and SHOP (client) classes.

. Draw the BON diagram showing how the iterator pattern is

applied to the supplier classes:

o GENERIC_BOOK (a descendant of ITERABLE) and

o MY_ITERATION_CURSOR (a descendant of
ITERATION_CURSOR).

e Tutorial Videos on Generic Parameters and the lterator Pattern

o Tutorial Videos on Information Hiding and the lterator Pattern

lterator Pattern: Client’s Side | AssoNDE

Information hiding : the clients do not at all depend on how the

supplier implements the collection of data; they are only interested

in iterating through the collection in a linear manner.

Steps:

1. Obey the code to interface, not to implementation principle.

2. Let the client declare an attribute of interface type
ITERABLE[G] (rather than implementation type ARRAY,
LINKED_LIST, or MY_TREE).

e.g., cart: CART, where CART inherits ITERATBLE [ORDER]

3. Eiffel supports, in both implementation and coniracts, the
across syntax for iterating through anything that’s iterable.

lterator Pattern: LASSONDE
Clients using across for Contracts (1)

class
CHECKER
feature - Attributes
collection: RABLE [INTEGER]
feature Queries
is_all_positive: BOOLEAN

—-— Are all items in collection positive?
do

ensure
across
collection is item
all
item > 0O
end
end

¢ Using all corresponds to a universal quantification (i.e., V).
¢ Using some corresponds to an existential quantification (i.e., 3).

_

Iterator Pattern: LASSONDE Iterator Pattern: LASSONDE
Clients using across for Contracts (2) Clients using Iterable in Imp. (1)
class BANK class BANK
accounts: ITERABLE [ACCOUNT]
;accounts: LIST [ACCOUNT] max_balance: ACCOUNT
binary_search (acc_id: INTEGER): ACCOUNT —— Acc t with the maxi ance value
-— Search on accounts sorted in non-descending order require ??
require local
across cursor: ITERATION_CURSOR|[ACCOUNT]; max: ACCOUNT
1 |..| (accounts.count - 1) is 1 do
all \ from cursor := accounts. new-cursor ; max := cursor. item \
accounts [1i].1id <= accounts [1 + 1].id until cursor. after
end do
do ‘ if cursor. item .balance > max.balance then ‘
en;;nre max := cursor. item
Result.id = acc_id end
end cursor. forth
end
This precondition corresponds to: ensure ??
vi: INTEGER |1 < i < accounts.count e accounts[i].id < accounts[i+1].id end

e

LASSONDE Iterator Pattern:

lterator Pattern: LASSONDE
Clients using across for Contracts (3) Clients using Iterable in Imp. (2)
class BANK
o 1 class SHOP
accounts: LIST [ACCOUNT] 2 cart: CART
contains_duplicate: BOOLEAN 3 checkout: ;Nfrgcng
L e ot e o : conire 5
. 7 across
ensure g N cart is order
Virj: INTEGER ‘ i 10 Repsult := Result + order.price x order.quantity
1 < i< accounts.count A 1< j< accounts.count e 11 end
accounts[i] ~ accounts[j] = i =j 12 ensure 2?7
’ end ‘ 13 end
e Exercise: Convert this mathematical predicate for e Class CART should inherit from ITERABLE[ORDER].
pc_)stcondltlon into Eiffel. . e L10 implicitly declares cursor: ITERATION_CURSOR[ORDER]
¢ Hint: Each across construct can only introduce one dummy and does cursor :— cart.new cursor
variable, but you may nest as many across constructs as
necessary.

2.0t 49 24 ot 49

Iterator Pattern:
Clients using Iterable in Imp. (3)

LASSONDE

class BANK
accounts: LIST[ACCOUNT] —-- Q: Can ITERABLE[ACCC
max_balance: ACCOUNT

nt with the m

require ??
local
max: ACCOUNT
do
max := accounts [1]
across
accounts is acc

Expanded Class: Programming (2)

LASSONDE

class KEYBOARD ...
class MONITOR ...
class WORKSTATION
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK

end class CPU ... end
end class NETWORK ... end

Alternatively:

expanded class KEYBOARD ...
expanded class CPU ... end
expanded class MONITOR ...

end

end

loop
if acc.balance > max.balance then
max := acc
end
end

ensure ??
end

e

LASSONDE

Expanded Class: Modelling

¢ We may want to have objects which are:
o Integral parts of some other objects
o Not shared among objects

e.g., Each workstation has its own CPU, monitor, and keyword.
All workstations share the same network.

class NETWORK ...

k: KEYBOARD
c: CPU

m: MONITOR

n: NETWORK

class WORKSTATION

end

Expanded Class: Programming (3)

LASSONDE

1 | test_expanded
2 local
expanded class 2 d:%J’ eb2: B
f;iture g c:ect eié.i =bg an: eb2.i = 0 end
. , check e = e en
cﬁifge_l (ni: INTEGER) 7 eb2.change_i (15)
PR 8 check ebl.i = 0 and eb2.i = 15 end
end 9 check ebl /= eb2 end
feature 10 ebl := eb2
) 11 check ebl.i = 15 and eb2.i = 15 end
i: INTEGER .
end 12 ebl.change_1i (10)
13 check ebl.i = 10 and eb2.i = 15 end
14 check ebl /= eb2 end
15 end

¢ L5: object of expanded type is automatically initialized.
e L10,L12,L13: no sharing among objects of expanded type.

e L6,L9,L14: = compares contents between expanded objects.

LASSONDE

Reference vs. Expanded (1)

Every entity must be declared to be of a certain type (based on
a class).

e Every type is either referenced or expanded.

In reference types:

o y denotes a reference to some object
o x := y attaches x to same object as does y
o x = ycompares references

In expanded types:
o y denotes some object (of expanded type)

o x := y copies contents of y into x
o x = ycompares contents [x ~ ¥]

LASSONDE

Reference vs. Expanded (2)

Problem: Every published book has an author. Every author may
publish more than one books. Should the author field of a book
reference-typed or expanded-typed?

reference-typed author || expanded-typed author
“The Red and the Black™ “Life of Rossini”
1830 1823 “The Red and the Black” “Life of Rossini”
341 307 1830 1823
referance reference 341 307
“Stendhall” “Stendhall”
“Henri Beyle” “Henri Beyle”
“Stendhall” 1783 1783
“Henri Beyle” 1842 1842
1783
1842
Hyperlinked author page || Physical printed copies

Singleton Pattern: Motivation LASSONDE

Consider two problems:

1. Bank accounts share a set of data.

e.g., interest and exchange rates, minimum and maximum
balance, etc.

2. Processes are regulated to access some shared, limited
resources.

e.g., printers

Shared Data via Inheritance

LASSONDE

Descendant:
class DEPOSIT inherit SHARED_DATA

—— ‘maximum_balance relevant AI’]CGStOI‘
end

class

class WITHDRAW inherit SHARED DATA SHARED_DATA

—-— 'minimum balance’ relevant feature

end interest_rate: REAL

exchange_rate: REAL

class INT_TRANSFER inherit SHARED DATA minimum balance: INTEGER

—-— ‘exchange_rate’ rel It maximum _balance: INTEGER
end
end
class ACCOUNT inherit SHARED DATA
feature
‘interest_rate’ relevant
deposits: DEPOSIT_LIST Problems?

withdraws: WITHDRAW _LIST
end

LASSONDE

Sharing Data via Inheritance: Architecture

TBANK

< WITHDRAWAL_LIST |

o [rreverent features are inherited.
= Descendants’ cohesion is broken.
o Same set of data is duplicated as instances are created.

= Updates on these data may result in inconsistency .

LASSONDE

Sharing Data via Inheritance: Limitation

e Each descendant instance at runtime owns a separate copy of
the shared data.
¢ This makes inheritance not an appropriate solution for both
problems:
o What if the interest rate changes? Apply the change to all
instantiated account objects?
o An update to the global lock must be observable by all regulated
processes.
Solution:
o Separate notions of data and its shared access in two separate
classes.
o Encapsulate the shared access itself in a separate class.

34 ot 49

Introducing the Once Routine in Eiffel (1.1) |ussonoe

1 |class A

2 | create make

3 | feature - Constructor

4 make do end

5 | feature —- Query

6 new_once_array (s: STRING): ARRAY[STRING]

7 —-— A once query that returns an array.

8 once

9 create {ARRAY[STRING]} Result.make_empty
10 Result. force (s, Result.count + 1)

11 end

12 new_array (s: STRING): ARRAY[STRING]

13 -— An ordi q ry that ret

14 do

15 create {ARRAY[STRING]} Result.make_empty
16 Result. force (s, Result.count + 1)

17 end

18 | end

L9 & L10 executed only once for initialization.
L15 & L16 executed whenever the feature is called.

Introducing the Once Routine in Eiffel (1.2)

LASSONDE

1 | test_qguery: BOOLEAN
2 local
3 a: A
4 arrl, arr2: ARRAY [STRING]
5 do
6 create a.make
7
8 arrl := a.new_array ("Alan")
9 Result := arrl.count = 1 and arrl[l] ~ "Alan"
10 check Result end
11
12 arr2 := a.new_array ("Mark")
13 Result := arr2.count = 1 and arr2[l] ~ "Mark"
14 check Result end
15
16 Result := not (arrl = arr2)
17 check Result end
18 end

o |

Introducing the Once Routine in Eiffel (1.3)

O©CoONOOHA~WN =

LASSONDE
test_once_query: BOOLEAN
local
a: A
arrl, arr2: ARRAY|[STRING]
do
create a.make
arrl := a.new_once_array ("Alan")
Result := arrl.count = 1 and arrl[l] ~ "Alan"
check Result end
arr2 := a.new_once_array ("Mark")
Result := arr2.count = 1 and arr2[1l] ~ "Alan"
check Result end
Result := arrl = arr2
check Result end
end

Introducing the Once Routine in Eiffel (2)

LASSONDE

end

The ordinary do ... end is replaced by once ... end.

The first time the once routine r is called by some client, it
executes the body of computations and returns the computed
result.

From then on, the computed result is “cached”.

In every subsequent call to r, possibly by different clients, the
body of r is not executed at all; instead, it just returns the
“cached” result, which was computed in the very first call.
How does this help us?

Cache the reference to the same shared object !

Approximating Once Routine in Java (1)

LASSONDE

We may encode Eiffel once routines in Java:

class BankData {
BankData () { }
double interestRate;
void setIR(double r);

class Account {
BankData data;
Account () {
data = BankDataAccess.getData() ;
}
}

class BankDataAccess {
static boolean initOnce;
static BankData data;
static BankData getData/()
if(!initOnce) |
data = new BankDatal();
initOnce = true;
}
return data;
}
}

{

Approximating Once Routine in Java (2)

Problem?

Multiple BankData objects may
be created in Account,
breaking the singleton!

Account () |
data = new BankData() ;

}

LASSONDE

We may encode Eiffel once routines in Java:

class BankData ({
private BankData() { }
double interestRate;
void setIR(double r);
static boolean initOnce;
static BankData data;
static BankData getData/()
if(!initOnce) {
data = new BankDatal();
initOnce = true;
}
return data;
}
}

{

Problem?

Loss of Cohesion: Data
and Access to Data are
two separate concerns,
so should be decoupled
into two different classes!

Singleton Pattern in Eiffel (1)

LASSONDE

Supplier: Client:
class DATA test: BOOLEAN
create {DATA ACCESS} make local
feature {DATA ACCESS} access: DATA ACCESS

make do v 10 end dl, d2: DATA
feature Data Attributes do

v: INTEGER dl := access.data

change_v (nv: INTEGER) d2 := access.data

do v := nv end Result := dl1 = d2

end and dlI.v = 10 and d2.v = 10

check Result end
dl.change_v (15)

expanded class Result := dI = d2
DATA ACCESS and dl.v = 15 and d2.v = 15
feature end
data: DATA end
—— The one and only a

once create Result.make en

invariant data — data Writing]create d1.make\in test
feature does not compile. Why?

41 0t 49

Singleton Pattern in Eiffel (2)

LASSONDE

Supplier: Client:
class BANK DATA class
create {BANK_ DATA ACCESS} make ACCOUNT
feature {BANK DATA ACCESS} feature

make do ... end data: BANK DATA
feature D A ibt s make (...)

interest_rate: REAL -— Ini access to bank data.

set_interest_rate (r: REAL) local

s data_access: BANK.DATA ACCESS
end do

data := data_access.data

expanded class eﬁd

BANK_DATA_ACCESS

end

feature

data: BANK DATA . .,

-— The one and only access ertlng ’Cl‘eate data.make‘ n
__once create Result.make end| clignt's make feature does not
invariant data = data .
compile. Why?

Testing Singleton Pattern in Eiffel

LASSONDE

that

local accl,
do

comment ("t1:

Result :=

end

a

acc2:

s

test_bank_shared_data: BOOLEAN

ngle data ob

ACCOUNT

test that a single data object is shared")

create accl.make
create acc2.make
Result := accl.data = acc2.data
check Result end

Result := accl.data ~ acc2.data
check Result end
accl.data.set_interest_rate (3.11)

check Result end
acc2.data.set_interest_rate (2.98)

("Bill"™)
("Steve")

Result :=
accl.data.interest_rate = acc2.data.interest_rate
and accl.data.interest_rate = 3.11

accl.data.interest_rate = accZ.data.interest_rate
and accl.data.interest_rate = 2.98

e

Singleton Pattern: Architecture

LASSONDE

supplier_of shared_data

DATA+

H DATA_ACCESS+

create {DATA_ACCESS} -- Creation Restriction
feature — Data 4
data+: DATA

nce 1o a shared data object

once
ereate Result.make data+
end

feature - D;

invariant

v: SOME_
shared_instance: :

ata
_DATA_CLASS
v

! '
! + o
' APPLICATION 3 T data_aceess

data = data

Important Exercises: Instantiate this architecture to both
problems of shared bank data and shared lock. Draw them in

draw.io.

Index (1)

IGeneric Collection Class: Motivation (1)

IGeneric Collection Class: Motivation (2)

IGeneric Collection Class: Supplied

IGeneric Collection Class: Client (1.1)f

IGeneric Collection Class: Client (1.2)

IGeneric Collection Class: Client (2)

[What are design patterns?]

fterator Pattern: Motivation (1)

fterator Pattern: Motivation (2)
Lierator Pattern: Architecturel

terator Pattern: Supplier’s Sid

Index (2)

fterator Pattern: Supplier’'s Implementation (1)|

fterator Pattern: Supplier’'s Imp. (2.1)

fterator Pattern: Supplier’'s Imp. (2.2)

terator Pattern: Supplier’s Imp. (2.3

|IEfaTor Paffern- |
Clients using across for Contracts (1)

lieraior Pattern. |
Clients using across for Contracts (2)f

Index (3)

lierator Pattern: |
Clients using across for Contracts (3)

lieraior Pattern. |
Clients using lterable in Imp. (1)

Lieraior Paiiern: |
Clients using lterable in Imp. (2)|

|IEfaTor Paffern: |
Clients using Iterable in Imp. (3)f

EXxpanded Class: Modelling|
Expanded Class: Programming (2)
EXxpanded Class: Programming (3)
Relference vs. Expanded (1)

Index (4)

Reference vs. Expanded (2)|

pBingleton Pattern: Notivation

Bl D A InRer l

pharing Data via Inheritance: Architecture|

pharing Data via Inheritance: Limitation|

Introducing the Once Routine in Eiftel (1.1)

Introducing the Once Routine in Eiffel (1.2)

Introducing the Once Routine Iin Eiifel (1.3)

Introducing the Once Routine in Eiftel (2)|

Approximating Once Routines in Java (1)

Approximating Once Routines in Java (2)]

Index (5)

LASSONDE

Bank ATM LASSONDE

§|n§|eton Pattern in Eiffel (1)

Bingleton Patiern in Eiffel (2)

[Testing Singleton Pattern in Eiffel|

pBingleton Pattern: Architecture|

Eiffel Testing Framework (ETF):
Acceptance Tests via Abstract User Interface

EECS3311 A: Software Design
Winter 2020

CHEN-WFEI WANG

The ATM application has a variety of concrete user interfaces.

Separation of Concerns rssonpE

e The (Concrete) User Interface
o The executable of your application hides the implementing classes

and features.
o Users typically interact with your application via some GUI.

e.g., web app, mobile app, or desktop app
e The Business Logic (Model)
o When you develop your application software, you implement

classes and features.
e.g., How the bank stores, processes, retrieves information about

accounts and transactions
In practice:
¢ You need to test your software as if it were a real app way
before dedicating to the design of an actual GUI.
e The model should be independent of the View, Input and
Output.

‘LASSONDE

e For you to quickly prototype a working system, you do not need
to spend time on developing a fancy GUI.

e The Eiffel Testing Framework (ETF) allows you to:
o Focus on developing the business model;
o Test your business model as if it were a real app.

 In ETF, observable interactions with the application GUI (e.g.,
“button clicks”) are abstracted as monitored events.

Prototyping System with Abstract Ul

] Events \ Features \
interactions computations
external internal
observable hidden
acceptance tests unit tests
users, customers | programmers, developers

oA
Abstract Events: Bank ATM :::ASSONDE
new name Albert Einstein

Albert Einstein , Niels Bohr
withdraw |
$20.25 ' $10.02
Albert Einstein
! transfer | $20.25
total:
124.45
Niels Bohr $

ETF in a Nutshell

Eiffel Testing Framework (ETF) facilitates engineers to write

and execute input-output-based acceptance tests.

o Inputs are specified as traces of events (or sequences).

o The boundary of the system under development (SUD) is defined
by declaring the list of input events that might occur.

o Outputs (from executing events in the input trace) are by default
logged onto the terminal, and their formats may be customized.

¢ An executable ETF that is tailored for the SUD can already be
generated, using these event declarations (documented
documented in a plain text file), with a default business model .

e Once the business model is implemented, there is only a
small number of steps to follow for the developers to connect it
to the generated ETF.

¢ Once connected, developers may re-run all use cases and

observe if the expected state effects take place.
Eca

Workflow: Develop-Connect-Test LASSONDE

ldeﬁne

monitored
events

(re)new

redefine

ETF: Abstract User Interface

Input Grammar
system ban.k
type NAME - STRING

_ (namel: NAME) .
- create a new bank account for i

(namel: NAME; amount: VALUE)

— deposit "amount" into the account of “id"

(name1: NAME; amount: VALUE)
~ withdraw "amount" from the account of “id"

(namel: NAME; name2: NAME; amount: VALUE)

- transfer "amount" from "id1" to "id2"

Albert Einstein
R o i s
s s
R o
= User
o
s B #24] Interface

ETF: Generating a New Project

%bank -b atl.txt

init
->new("Steve")
name: Steve, balance: 0.00
->new("Bill")
name: Bill, balance: 0.00
name: Steve, balance: 0.00
->deposit("Steve",520)
name: Bill, balance: 0.00
name: Steve, balance: 520.00
->new("Pam")
name: Bill, balance: 0.00
name: Pam, balance: 0.00
name: Steve, balance: 520.00
->deposit("Bill",100)
name: Bill, balance: 100.00
name: Pam, balance: 0.00
name: Steve, balance: 520.00
->withdraw("Steve",20)
name: Bill, balance: 100.00
name: Pam, balance: 0.00
name: Steve, balance: 500.00

etf -new bank.input.txt <directory>

v
v

User Input
(from command line)

Model RS——-

(business logic)

v

bank
abstract_ui
software_operation.e
v user_commands
command.e
deposit.e
new.e
transfer.e
withdraw.e
model
account.e
bank_access.e
bank.e
customer.e
output

OUtput ﬁ output_handler.e

4 bank-fresh.ecf

4 bank.ecf
v docs
> generated_code
> root
Unit Tests ‘ ==
Acceptance Tests > [unit
> utilities

ETF: Architecture

user_commands model

model

ETF_COMMAND

A

model_access

¢ Classes in the model cluster are hidden from the users.

¢ All commands reference to the same model (bank) instance.
e When a user’s request is made:

o A command object of the corresponding type is created, which
invokes relevant feature(s) in the mode1 cluster.
o Updates to the model are published to the output handler.

ETF: Input Errors

class
ETF_DEPOSIT
inherit
ETF_DEPOSIT_INTERFACE
redefine deposit end
create
make
feature -- command
deposit(id: STRING ; amount: REAL_64)
do
if not model.has_user (id) then
-- Set some error message
elseif not amount <= model.get_balance (id) then
-- Set some other error message
else
-- perform some update on the model state
model.deposit (id, amount)
end
-- Publish model update
etf_cmd_container.on_change.notify ([Current])
end

end

|ndeX (1) LASSONDE

Beparation of Concerns|
Prototyping System with Abstract U}

ADbsiract Evenis: Bank Al

ETEin a Nuishell

[Workflow: Develop-Connect-Tesi

[ETE:- Absiract User Inferfacel

: Generating a New Project
[ETE: Architecturel
ETF:Tnput Errors|

Inheritance
Readings: OOSCS2 Chapters 14 — 16

EECS3311 A: Software Design
' Winter 2020

CHEN-WFEI WANG

Aspects of Inheritance LASSONDE

e Code Reuse

¢ Substitutability

o Polymorphism and Dynamic Binding
[compile-time type checks]

o Sub-contracting
[runtime behaviour checks]

gotbd

Why Inheritance: A Motivating Example ‘issom

Problem: A student management system stores data about
students. There are two kinds of university students: resident
students and non-resident students. Both kinds of students
have a name and a list of registered courses. Both kinds of
students are restricted to register for no more than 30 courses.
When calculating the tuition for a student, a base amount is first
determined from the list of courses they are currently registered
(each course has an associated fee). For a non-resident
student, there is a discount rate applied to the base amount to
waive the fee for on-campus accommodation. For a resident
student, there is a premium rate applied to the base amount to
account for the fee for on-campus accommodation and meals.
Tasks: Design classes that satisfy the above problem
statement. At runtime, each type of student must be able to
register a course and calculate their tuition fee.

_

The cOURSE Class

™

LASSONDE

class
COURSE

create —— |
make

feature -
title: STRING
fee: REAL

feature —— Comme s
make (t: STRING; f: REAL)
[ze a co se w

No Inheritance: RESIDENT _STUDENT Class

™

LASSONDE

class RESIDENT_STUDENT
create make
feature Attri

name: STRING

courses: LINKED_LIST][COURSE]

premium-rate: REAL

feature - C ~tor
make (n: STRING)
do name n create courses.make end
feature - C)

set_pr (r: REAL) do premium.rate := r end
register (c: COURSE) do courses.extend (c) end
feature —— Queries
tuition: REAL
local base: REAL

do base := 0.0
across courses as c loop base := base + c.item.fee end
‘ Result := base # premium.-rate ‘
end
end
—Boisd

No Inheritance: NON_RESIDENT_STUDENT CI

class NON_RESIDENT_-STUDENT
create make
feature Attri

name: STRING

courses: LINKED_LIST[COURSE]

REAL

discount_rate:

feature - C 1 o1
make (n: STRING)
do name := n ; create courses.make end
feature —— C ds

REAL) do discount_rate := r end
COURSE) do courses.extend (c) end

set.dr (r:
register (c:
feature —— Que
tuition: REAL
local base: REAL

Les

do base := 0.0
across courses as c loop base := base + c.item.fee end
Result := base * discount_rate
end
end

No Inheritance: Testing Student Classes

™

LASSONDE

test_students: BOOLEAN

local
cl, c2: COURSE
jim: RESIDENT_STUDENT
jeremy: NON_RESIDENT_STUDENT

do
create cl.make ("EECS2030", 500.0)
create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis"
jim.set_pr (1.25)
jim.register (cl)
jim.register (c2)

Result := jim.tuition = 1250
check Result end
create jeremy.make ("J. Gibbons")

jeremy.set_dr (0.75)

jeremy.register (cl)

jeremy.register (c2)

Result := jeremy.tuition = 750
end

LASSONDE

No Inheritance:
Issues with the Student Classes

Implementations for the two student classes seem to work. But
can you see any potential problems with it?

The code of the two student classes share a lot in common.

e Duplicates of code make it hard to maintain your software!
This means that when there is a change of policy on the
common part, we need modify more than one places.

= This violates the Single Choice Principle :

when a change is needed, there should be a single place (or
a minimal number of places) where you need to make that
change.

LASSONDE

No Inheritance: Maintainability of Code (1)

What if a new way for course registration is to be implemented?
e.g.,

register (Course c)
do
if courses.count >= MAX CAPACITY then

Error: maximum car ity reached
Lrror: maximum capacity reacned.

else
courses.extend (c)
end
end

We need to change the register commands in both student
classes!

= Violation of the Single Choice Principle

LASSONDE

No Inheritance: Maintainability of Code (2)

What if a new way for base tuition calculation is to be
implemented?

e.g.,

tuition:
local
do base

REAL
base: REAL
:= 0.0

across courses as cC lOOP base

:= base + c.item.fee end

Result

:= base x inflation_rate x ...

end

We need to change the tuition query in both student
classes.

= Violation of the Single Choice Principle

LASSONDE

No Inheritance:

A Collection of Various Kinds of Students

How do you define a class StudentManagement System that
contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT _SYSETM
rs : LINKED_LIST[RESIDENT_STUDENT]

nrs : LINKED_LIST[NON_RESIDENT_STUDENT]

add_rs (rs: RESIDENT_STUDENT) do ... end

add_nrs (nrs: NON_RESIDENT_STUDENT) do ... end
register_all (Course c) —— Register a common rse

do
across rs as c loop c.item.register (c) end
across nrs as c¢ loop c.item.register (c) end
end
end

But what if we later on introduce more kinds of students?
Inconvenient to handle each list of students, in pretty much the

same manner, separately!
[swmaix]

Inheritance Architecture LASSONDE Inheritance: LASSONDE
The RESIDENT STUDENT Child Class
1 |class
2 RESIDENT_STUDENT
STUDENT 3 | inherit

4 STUDENT
5 redefine tuition end

: . 6 | create make

inherit 7 | feature - Attr es

inherit 8 ‘ premium_rate : REAL
9 | feature Co ds
10 set_.pr (r: REAL) do premium rate := r end
RESIDENT_STUDENT NON_RESIDENT_STUDENT 11 | feature -- Queries

12 tuition: REAL
13 local base: REAL
14 ‘ do base := Precursor ; Result := base * premium.rate end ‘

15 ’end ‘

e L3: RESIDENT_STUDENT inherits all features from STUDENT.
e There is no need to repeat the register command
E=E e * L14: Precursor returns the value from query tuition in STUDENT.

Inheritance: The STUDENT Parent Class LASSONDE Inheritance: LASSONDE
The NON RESIDENT STUDENT Child Class
1 |class STUDENT 1 | elass
g ‘;reate make 2 NON_RESIDENT_STUDENT
eature - Attributes 3 | inherit
4 name: STRING 4 STUDENT
2 . courses: LINKED_LIST[COURSE] 5 redefine tuition end
eature Cor ls that ce be used as constructors. 6 | create make
g fmake (n: STRING) do name := n ; create courses.make end 7 | feature -- At
eature —— C]
9 register (c: COURSE) do courses.extend (c) end g £ désrcou?ffiaite : I?EAL
10 | feature Queries eature o
11 fuition: 10 set.dr (r := r end
12 local base: REAL iy feature —- ¢ :
13 do base := 0.0 12 tuition: REAL
14 across courses as c loop base := base + c.item.fee end 13 local base: REAL
15 Result := base 14 do base := Precursor ; Result := base * discount_rate end
16 end 15 |end
17 d - -
en o L3: NON_RESIDENT_STUDENT inherits all features from STUDENT.

e There is no need to repeat the register command
e L14: Precursor returns the value from query tuition in STUDENT.

LASSONDE

Inheritance Architecture Revisited

STUDENT

inherit
inherit

RESIDENT_STUDENT NON_RESIDENT_STUDENT

e The class that defines the common features (attributes,
commands, queries) is called the parent , super , or
ancestor class.

e Each “specialized” class is called a child , sub, or

descendent class.
[iowmax |

LASSONDE

Using Inheritance for Code Reuse

Inheritance in Eiffel (or any OOP language) allows you to:

o Factor out common features (attributes, commands, queries) in a
separate class.
e.g., the STUDENT class
o Define an “specialized” version of the class which:
e inherits definitions of all attributes, commands, and queries
e.g., attributes name, courses
e.g., command register
e.g., query on base amount in tuition
This means code reuse and elimination of code duplicates!
e defines new features if necessary
e.g., set _pr for RESIDENT_STUDENT
e.g., set _dr for NON_RESIDENT_STUDENT
o redefines features if necessary
e.g., compounded tuition for RESIDENT_STUDENT
e.g., discounted tuition for NON_RESIDENT_STUDENT

LASSONDE

Testing the Two Student Sub-Classes

test_students: BOOLEAN
local
cl, c2: COURSE
jim: RESIDENT_STUDENT ; jeremy: NON_RESIDENT_STUDENT

do

create cl.make ("EECS2030", 500.0); create c2.make ("EECS3311", 500.0)
create jim.make ("J. Davis")

jim.set_pr (1.25) ; jim.register (cl); jim.register (c2)

Result := jim.tuition = 1250

check Result end
create jeremy.make ("J. Gibbons")

jeremy.set_dr (0.75); jeremy.register (cl); jeremy.register (c2)
Result := jeremy.tuition = 750
end

¢ The software can be used in exactly the same way as before
(because we did not modify feature signatures).

¢ But now the internal structure of code has been made
maintainable using inheritance .

LASSONDE

Static Type vs. Dynamic Type

e In object orientation , an entity has two kinds of types:
o static type is declared at compile time [unchangeable]
An entity’s ST determines what features may be called upon it.
o dynamic type is changeable at runtime
e |n Java:

Student s = new Student ("Alan");
Student rs = new ResidentStudent ("Mark");

In Eiffel:

local s: STUDENT
rs: STUDENT
do create {STUDENT} s.make ("Alan")
create {RESIDENT _STUDENT} rs.make ("Mark")

o In Eiffel, the dynamic type can be omitted if it is meant to be the
same as the static type:

local s: STUDENT
do create s.make ("Alan")

LASSONDE

Inheritance Architecture Revisited

register (Course ¢) name: STRING
tuition: REAL STUDENT courses: LINKED_LIST[COUNRSE]

/* new features */ /* new features */
premium_rate: REAL discount_rate: REAL
set_pr (r: REAL) RESIDENT_STUDENT NON_RESIDENT_STUDENT| set_dr (r: REAL)
/* redefined features */ /* redefined features */
tuition: REAL tuition: REAL

sl,s2,s3: STUDENT ; rs: RESIDENT STUDENT ; nrs : NON_RESIDENT STUDENT
create {STUDENT} sl.make ("S1")

create {RESIDENT_STUDENT} sZ2.make ("S2")
create {NON_RESIDENT_STUDENT} s3.make ("S3")
create {RESIDENT STUDENT} rs.make ("RS")
create {NON_RESIDENT_STUDENT} nrs.make ("NRS")

H name | courses ‘ reg ‘ tuition ‘ pr H set_pr ‘ dr H set_dr

sl.
s2.
s3.

S ANANENEN
X

nrs.

20 ot 6.3

LASSONDE

Polymorphism: Intuition (1)

1 |local

2 s: STUDENT

3 rs: RESIDENT_ STUDENT

4 |do

5 create s.make ("Stella")

6 create rs.make ("Rachael")

7 rs.set_pr (1.25)

8 s := rs /* Is this valid? x/
9 rs := s /+x Is this valid? */

e Which one of L8 and L9 is valid? Which one is invalid?
o L8: What kind of address can s store? [STUDENT]
.. The context object s is expected to be used as:
e s.register(eecs3311) and s.tuition
o L9: What kind of address can rs store? [RESIDENT_STUDENT]
.. The context object rs is expected to be used as:

e rs.register (eecs3311) and rs.tuition

e rs.set_pr (1.50)
awsax)

[increase premium rate]

Polymorphism: Intuition (2) LASSONDE

1 local s: STUDENT ; rs: RESIDENT STUDENT
2 |do create {STUDENT} s.make ("Stella")
3 create {RESIDENT STUDENT} rs.make ("Rachael")
4 rs.set_pr (1.25)
5 s := rs /» Is this valid? =/
6 rs := s /+x Is this valid? */
e rs := s (L6) should be invalid:

s:STUDENT [swow]

[name JESTE

rs:RESIDEN:! TQJ:E;I\
e rsdeclared of type RESIDENT_S TUDEN
s.calling rs.set pr(1.50) can be expected.
e rsis now pointing to a STUDENT object.
e Then, what would happento rs.set pr(1.50)7?
CRASH s rs.premium_rate is undefined!l

LASSONDE

Polymorphism: Intuition (3)

local s: STUDENT ; rs: RESIDENT STUDENT
do create {STUDENT} s.make ("Stella")
create {RESIDENT STUDENT} rs.make ("Rachael")
rs.set_pr (1.25)
s := rs /» Is this valid? =/
rs := s /x Is this valid? =/

e s :=rs (L5) should be valid:

“Stella”
rs: RE‘SIDEN%
Y

oA wWN =

RESIDENT_STUDENT

°
@
>
Q
®
]
&
Q.
[0}
Q
Q
=
[0}
o
o
=
—_

<

©
()]
n
'_]
G
=}
=
Z

=
Q
2]
C .
oy
(2]
D

o
c
]
=)
=
o
V)

s.set pr(1.50) is never expected.
* sis now pointing to a RESIDENT_STUDENT object.
Then, what would happento s. tuition?
OK .+ s.premium_rate is just never used!l

LASSONDE DbC: Contract View of Supplier LASSONDE

Dynamic Binding: Intuition (1)

1 |local c : COURSE ; s : STUDENT Any potential client who is interested in learning about the kind of
2 |do crate c.make ("EECS3311", 100.0) services provided by a supplier can look through the
3 create {RESIDENT STUDENT} rs.make("Rachael")
4 create {NON RESIDENT STUDENT} nrs.make ("Nancy") contract view (without showing any implementation details):
5 rs.set_pr(l.25); rs.register(c) class ACCOUNT
6 nrs.set_dr(0.75); nrs.register(c) create
7 s := rs; ; check s .tuition = 125.0 end make
feature ttributes
8 s := nrs; ; check s .tuition = 75.0 end owner : STRING
balance : INTEGER
After s := rs (L7), s points to @ RESIDENT_STUDENT oObject. e et STRING, nb: INTEGER)
= Calling s .tuition applies the premium rate. O itive balances b > 0
rs:RESIDENT STUDENT RESIDENT_STUDENT feature end
ZRachael” withdraw(amount: INTEGER)
premium_rate_ IR require —- precond
= non_negative_amount: amount > 0
s:STUDENT affordable_amount: amount <= balance problematic, why?
ensure - postcondition
| title [NEZoFEIES balance.deducted: balance = old balance - amount
[fee LI end
nrs :NON_RESIDENT_STUDENT—[Mo Restoent suoent é invari:’;;tivel;‘a‘i;nce:r"b;l ST
courses end
discount_rate
R4 ot B3 o ot B3

LASSONDE ES TEST: Expecting to Fail Postcondition (1

Dynamic Binding: Intuition (2)

LASSONDE
1 |local ¢ : COURSE ; s : STUDENT model
2 |do crate c.make ("EECS3311", 100.0) /; ;x\
,
3 create {RESIDENT.STUDENT} rs.make("Rachael") ' ACCOUNT v
4 create {NON_RESIDENT_STUDENT} nrs.make("Nancy") ! . .
, 1| feature -- Commands 1
5 rs.set_pr(l.25); rs.register(c) 1 withdraw (amount: INTEGER) 1
. i 1 require 1
6 nrs.set_dr(0.75) i nrs.register (c) 1 non_negative_amount: amount > 0 1
7 s := rs; ; check s .tuition = 125.0 end 1 affordable_amount: amount < balance 1
L 1 do 1
8 s := nrs; ; check s .tuition = 75.0 end 1 balance = balance - amount 1
1 ensure 1
H : 1 balance_deduced: balance = old balance - 1
After s:=nrs (L8), s points to @ NON_RESTDENT_STUDENT object. st Y
. o .) ests \ 1
= Calling s .tuition applies the discount_rate. Rsslalalelalalelalellateilalailalely N ' '
N\ 1 1
rs: RESIDENILSTUDENT RESIDENT_STUDENT : TEST_ACCOUNT : 1 :
“Rachael” 1
1 y < for Golations 1
feature -- Test Commands for Contract Violations 1 () 1
//, premium_rate 125 : test_withdraw_postcondition_violation ! 1 BAD—ACCOUNT—WITHDRAW 1
local ' 1 1
1 . O 1 acc feature -- Redefined Commands
s:STUDENT . doacc. BAD_ACCOUNT_WITHDRAW - : (amount: INTEGER) ++ :
[Fcours= Y ! create acc.make ("Alan”, 100) 1 1 do 1
I “eecsasit ! - Violation of Postcondition ! 1 Precursor (amount) 1
[ree IREON ! - with tag "balance_deduced" expected 1 1 . IW’””g_ f'g”f"”“”i“’z";" 1
nrs:NON_RESIDENT STUDENT | NON_RESIDENT_STUDENT : acc.withdraw (50) : 1 enda ance = batance amount ll
d
\ en) , \\ ,
discount_rate M e ___. P4 N e e e e e D____. e
ErorEs

ES _TEST: Expecting to Fail Postcondition (2

1 |class

2 BAD_ACCOUNT_WITHDRAW

3 | inherit

4 ACCOUNT

5 redefine withdraw end

6 | create

7 make

8 | feature - redefined c

9 withdraw(amount: INTEGER)
10 do

11 Precursor (amount)

12 —-— Wrong implementation
13 balance := balance + 2 * amount
14 end

15 |end

o L3-5: BAD_ACCOUNT WITHDRAW.withdraw inherits postcondition
from ACCOUNT.withdraw: balance = old balance - amount.

o L11 calls correct implementation from parent class ACCOUNT.

o L13 makes overall implementation incorrect.

ga.ot b3

ES _TEST: Expecting to Fail Postcondition (2

1 |class TEST_ACCOUNT

2 |inherit ES_TEST

3 | create make

4 | feature —- Constructor for adding tests

5 make

6 do

7 add_violation_casewith tag ("balance_deducted",

8 agent test_withdraw_postcondition_violation)

9 end

10 | feature —- Test cc ds (test to fail)

11 test_withdraw_postcondition_violation

12 local

13 acc: BAD_ACCOUNT_WITHDRAW

14 do

15 comment ("test: expected postcondition violation of withdraw")
16 create acc.make ("Alan", 100)

17 -— Post ti Violation with tag "ba »_dec
18 acc.withdraw (50)

19 end

20 |end

LASSONDE

Exercise
Recall from the “Writing Complete Postconditions” lecture:

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
do ... Put Correct Implementation Here.
ensure

others_unchanged :

1ts.deep-twin as cursor
.owner /~ n implies
cursor.item ~ account_of (cursor.item.owner)

across old ac
all cursor.i

How do you create a “bad” descendant of BANK that violates
this postcondition?

class BAD BANK DEPOSIT
inherit BANK redefine deposit end
feature edefined feature
deposit_on_v5 (n: STRING; a: INTEGER)
do Precursor (n, a)
accounts [accounts. lower] .deposit (a)

LASSONDE

Multi-Level Inheritance Architecture (1)

DOMESTIC_STUDENT FOREIGN_STUDENT

DOMESTIC_RESIDENT_STUDENT ‘

DOMESTIC_NON_RESIDENT_STUDENT FOREIGN_NON_RESIDENT_STUDENT

‘ FOREIGN_RESIDENT_STUDENT ‘

Multi-Level Inheritance Architecture (2) LASSONDE

dial -- basic feature
surf_web -- basic feature

SMART_PHONE

surf_web -- redefined using safari
facetime -- new feature

surf_web -- redefined using firefox
skype -- new feature

ANDROID

~

IPHONE_XS_MAX

quick_take side_sync

IPHONEMPRO ‘ ‘ HOAWE! ‘ m
o / \

‘ HUAWEI_P30_PRO ‘

HUAWEI_MATE_20_PRO GALAXY_S10 GALAXY_S10_PLUS

Inheritance Forms a Type Hierarchy LASSONDE

e A (data) type denotes a set of related runtime values.
o Every class can be used as a type: the set of runtime objects.
e Use of inheritance creates a hierarchy of classes:
o (Implicit) Root of the hierarchy is ANY.
o Each inherit declaration corresponds to an upward arrow.
o The inherit relationship is transitive: when A inherits B and B
inherits C, we say A indirectly inherits C.
e.g., Every class implicitly inherits the ANY class.
e Ancestor vs. Descendant classes:
o The ancestor classes of a class A are: 2 itself and all classes that
A directly, or indirectly, inherits.
o A inherits all features from its ancestor classes.
.. A’s instances have a wider range of expected usages (i.e.,
attributes, queries, commands) than instances of its ancestor classes.
o The descendant classes of a class A are: A itself and all classes
that directly, or indirectly, inherits A.
e Code defined in 2 is inherited to all its descendant classes.

Inheritance Accumulates Code for Reuse ‘issom

e The lower a class is in the type hierarchy, the more code it
accumulates from its ancestor classes:
o A descendant class inherits all code from its ancestor classes.
o A descendant class may also:
e Declare new attributes.
¢ Define new queries or commands.
e Redefine inherited queries or commands.
e Consequently:
o When being used as context objects ,
instances of a class’ descendant classes have a wider range of
expected usages (i.e., attributes, commands, queries).
o When expecting an object of a particular class, we may substitute
it with an object of any of its descendant classes.
o e.g., When expecting a STUDENT object, substitute it with either a
RESIDENT_STUDENT Or @ NON_RESIDENT_STUDENT object.
o Justification: A descendant class contains at least as many
- features as defined in its ancestor classes (but not vice versal).

Substitutions via Assignments LASSONDE

e By declaring |v1:C1|, reference variable v1 will store the
address of an object of class c1 at runtime.

e By declaring [v2:C2 |, reference variable v2 will store the
address of an object of class c2 at runtime.

* Assignment copies the address stored in v2 into v1.
o v1 will instead point to wherever v2 is pointing to. [object alias |

v H

C1i

« In such assignment[v1:=v2 |, we say that we substitute an
object of type C1 with an object of type c2.

e Substitutions are subject to rules!

Rules of Substitution (AssonDE
Given an inheritance hierarchy:
1. When expecting an object of class 2, it is safe to substitute it

with an object of any descendant class of 2 (including 2).

o e.g., When expecting an 10s phone, you can substitute it with
either an TPHONE _XS_MAX or IPHONE_11_PRO.

o - Each descendant class of A is guaranteed to contain all code
of (non-private) attributes, commands, and queries defined in A.

o .. All features defined in A are guaranteed to be available in the
new substitute.

2. When expecting an object of class 2, it is unsafe to substitute

it with an object of any ancestor class of A’s parent .

o e.g., When expecting an 10s phone, you cannot substitute it with
just a SMART _PHONE, because the facetime feature is not
supported in an ANDROID phone.

o --Class A may have defined new features that do not exist in any

of its parent’s ancestor classes .

Reference Variable: Static Type 5

LASSONDE

* A reference variable’s static type is what we declare it to be.

o e.¢g.,| jim: STUDENT |declares jim’s static type as STUDENT.
o e.g.,|my_phone: SMART_PHONE \

declares a variable my_phone of static type SmartPhone.
o The static type of a reference variable never changes.
» For a reference variable v, its static type | C | defines the
expected usages of v as a context object .

» Afeaturecall v.m(...) is compilable if mis defined in .

o e.g., After declaring| jim: STUDENT |, we

e may call register and tuitionon jim
e may not call set_pr (specific to a resident student) or set _dr
(specific to a non-resident student) on jim
o e.g., After declaring | my phone : SMART PHONE |, we
e may call dial and surf_web ONn my_phone
e may noft call facetime (specific to an IOS phone) or skype (specific
= to an Android phone) on my phone

‘LASSONDE

Reference Variable: Dynamic Type

A reference variable’s dynamic type is the type of object that it
is currently pointing to at runtime.

o The dynamic type of a reference variable may change whenever

we re-assign that variable to a different object.
o There are two ways to re-assigning a reference variable.

Reference Variable: o
Changing Dynamic Type (1)

Re-assigning a reference variable to a newly-created object:

o Substitution Principle : the new object’s class must be a
descendant class of the reference variable’s static type.

o e.g., Given the declaration | jim: STUDENT |:

. ’ create {RESIDENT_STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jimto RESIDENT_STUDENT.
° ’ create {NON RESIDENT STUDENT} jim.make ("Jim") ‘
changes the dynamic type of jim to NON_RESIDENT_STUDENT.
o e.g., Given an alternative declaration] jim:RESIDENT STUDENT \:

e e4, ’ create {STUDENT} jim.make ("Jim") ‘ is illegal

because STUDENT is not a descendant class of the static type of jim
(i.e., RESIDENT_STUDENT).

_

LASSONDE

Reference Variable:

Changing Dynamic Type (2)
Re-assigning a reference variable v to an existing object that is
referenced by another variable other (i.e., v := other):

o Substitution Principle : the static type of other must be a
descendant class of v’s static type.
o eg.,

jim: STUDENT ; rs: RESIDENT STUDENT; nrs: NON_RESIDENT STUDENT
create {STUDENT} jim.make (...)

create {RESIDENT STUDENT} rs.make (...)

create {NON RESIDENT STUDENT} nrs.make (...)

e rs := Jjim X

e nrs := Jjim

e jim := rs v
changes the dynamic type of jim to the dynamic type of rs

e jim := nrs v

changes the dynamic type of jim to the dynamic type of nrs

LASSONDE

Polymorphism and Dynamic Binding (1)

e Polymorphism : An object variable may have “multiple

possible shapes” (i.e., allowable dynamic types).
o Consequently, there are multiple possible versions of each feature
that may be called.
e e.g., 3 possibilities of tuition on a STUDENT reference variable:
In STUDENT: base amount
In RESIDENT STUDENT: base amount with premium_rate
In NON_RESIDENT STUDENT: base amount with discount_rate

e Dynamic binding : When a feature m is called on an object
variable, the version of m corresponding to its “current shape”

(i.e., one defined in the dynamic type of m) will be called.

jim: STUDENT; rs: RESIDENT_STUDENT; nrs: NON_STUDENT
create {RESIDENT STUDENT} rs.make (...)
create {NON_RESIDENT_STUDENT} nrs.nrs (...)

jim := rs

jim.tuitoion; /% version in RESIDENT_STUDENT x/

jim := nrs

jim.tuition; /* version in NON_RESIDENT_STUDENT x*/
EiofEd

LASSONDE

Polymorphism and Dynamic Binding (2.1)

1 | test_polymorphism_students

2 local

3 jim: STUDENT

4 rs: RESIDENT_STUDENT

5 nrs: NON_RESIDENT_STUDENT

6 do

7 create {STUDENT} jim.make ("J. Davis")

8 create {RESIDENT STUDENT} rs.make ("J. Davis")
9 create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
10 jim := rs

11 rs := jim x

12 jim := nrs Vv

13 rs := jim X

14 end

In (L3, L7), (L4, L8), (L5, L9), ST = DT, so we may abbreviate:

L7: ’create jim.make ("J. Davis")‘

L8: ’create rs.make ("J. Davis™") ‘

L9: ’create nrs.make ("J. Davis") ‘

LASSONDE

Polymorphism and Dynamic Binding (2.2)

test_dynamic_binding_students: BOOLEAN
local
jim: STUDENT
rs: RESIDENT STUDENT
nrs: NON_RESIDENT STUDENT
c: COURSE
do
create c.make ("EECS3311", 500.0)
create {STUDENT} jim.make ("J. Davis")
create {RESIDENT STUDENT} rs.make ("J. Davis")
rs.register (c)
rs.set_pr (1.5)

jim := rs

Result := jim.tuition = 750.0

check Result end

create {NON RESIDENT STUDENT} nrs.make ("J. Davis")
nrs.register (c)

nrs.set_dr (0.5)

jim := nrs

Result := jim.tuition = 250.0

) L]
e

LASSONDE

Reference Type Casting: Motivation

local jim: STUDENT; rs: RESIDENT STUDENT

do create {RESIDENT STUDENT} jim.make ("J. Davis")
rs := jim
rs.setPremiumRate (1.5)

AW =

e Line 2 is legal: resrpent_stupent iS @ descendant class of the
static type of jim (i.e., stupenT).

e Line 3is illegal: jim’s static type (i.e., stupent) is not a
descendant class of rs’s static type (i.€., resrpenT_sTupent).

e Eiffel compiler is unable to infer that jim’s dynamic type in

Line 4 is resipENT STUDENT. [Undecidable]
¢ Force the Eiffel compiler to believe so, by replacing L3, L4 by a
type cast (which temporarily changes the ST of jim):

check attached {RESIDENT STUDENT} jim as rs_jim then

rs := rs_jim
rs.set_pr (1.5)
end

LASSONDE

Reference Type Casting: Syntax

check attached {RESIDENT STUDENT} jim as rs_jim then
rs := rs_jim
rs.set_pr (1.5)

end

L1 is an assertion:
o ’attached RESIDENT STUDENT jim‘is a Boolean expression

AW =

that is to be evaluated at runtime .
o If it evaluates to frue, then the expression has the effect
of assigning “the cast version” of jim to a new variable rs_jim.
o [fit evaluates to false, then a runtime assertion violation occurs.
o Dynamic Binding : Line 4 executes the correct version of set_pr.
e |t is approximately the same as following Java code:
if (jim instanceof ResidentStudent) ({
ResidentStudent rs = (ResidentStudent) jim;

rs.set_pr(l.5);
}

else { throw new Exception("Cast Not Done."); }

LASSONDE

Notes on Type Cast (1)

* |check attached {C} y then ... end| always compiles
e What if C is not an ancestor of y's DT?

= A runtime assertion violation occurs!

-+ y's DT cannot fulfill the expectation of C.

LASSONDE

Notes on Type Cast (2)

e Given v of static type ST, it is violation-free to castvto C, as
long as C is a descendant or ancestor class of ST.
e Why Cast?
o Without cast, we can only call features defined in ST on v.
o By castingvto C,we create an alias of the object pointed by v,
with the new static type C .
= All features that are defined in C can be called.

my_phone: IOS
create {IPHONE 11 PRO} my_phone.make

check attached {SMART PHONE} my_phone as sp then

-- dial, surf_web v~ fac
end
check attached {IPHONE_11_PRO} my_phone as ipll_pro then

LASSONDE

Notes on Type Cast (3)

A cast | check attached ic} v as ...|triggers an assertion
violation if C is not along the ancestor path of v’'s DT.

test_smart_phone_type cast_violation
local mine: ANDROID
do create {HUAWEI} mine. make

ST of mine is AN DT of mine is HUAWEI

check attached {SMART PHONE} mine as sp then ... end

o DT o0f st
[oL sp

- ST of Sp is

check attached {HUAWEI} mine as huawel then

end
-— ST of jawel 1s HU . DT of huawel 1s HUAWEI
check attached {SAMSUNG} mine as samsung then ... end
—— cestor of mine’s DT (HUAWEI)
check attached {HUAWEI'P30 PRO} mine as p30_pro then ... end

LASSONDE

Polymorphism: Feature Call Arguments (1)

1 class STUDENT MANAGEMENT _SYSTEM {

2 ss : ARRAY|[STUDENT] -- ss[1] has static type Student

3 add_s (s: STUDENT) do ss[0] := s end

4 add_rs (rs: RESIDENT_STUDENT) do ss[0] := rs end

5 add_nrs (nrs: NON_RESIDENT STUDENT) do ss[0] := nrs end

e L4: is valid. -~ RHS’s ST RESIDENT STUDENT is

a descendant class of LHS’s ST STUDENT.
e Say we have a STUDENT MANAGEMENT_SYSETM object sms:

o - call by value ‘ attempts the following
assignment (i.e., replace parameter rs by a copy of argument o):

sms.add.rs (o)

rs := O ‘

o Whether this argument passing is valid depends on o’s static type.
Rule: In the signature of a feature m, if the type of a parameter
is class c, then we may call feature m by passing objects whose

static types are C’s descendants.

Polymorphism: Feature Call Arguments (2) |.ssonoe

test_polymorphism feature_arguments

local
sl, s2, s3: STUDENT
rs: RESIDENT STUDENT ; nrs: NON_RESIDENT STUDENT
sms: STUDENT_ MANAGEMENT SYSTEM

do
create sms.make
create {STUDENT} sl.make ("s1")
create {RESIDENT _STUDENT} sZ.make ("s2")
create {NON_RESIDENT _STUDENT} s3.make ("s3")
create {RESIDENT STUDENT} rs.make ("rs"
create {NON_RESIDENT_STUDENT} nrs.make ("nrs")
sms.add_s (sl) v sms.add_s (s2) v sms.add_s (s3) Vv
sms.add_s (rs) v sms.add_s (nrs) v
sms.add_rs (sl) x sms.add_rs (s2) x sms.add_rs (s3) x
sms.add _rs (rs) v sms.add_rs (nrs) x
sms.add_nrs (sl) x sms.add _nrs (s2) X sms.add_nrs (s3) x
sms.add_nrs (rs) x sms.add _nrs (nrs) Vv

end

bl ot b3

LASSONDE

Why Inheritance:
A Polymorphic Collection of Students

How do you define a class STUDENT MANAGEMENT_SYSETM
that contains a list of resident and non-resident students?

class STUDENT_MANAGEMENT_SYSETM
students: LINKED_LIST|[STUDENT]
add_student (s: STUDENT)
do
students.extend (s)
end
registerAll (c: COURSE)
do
across
students as s
loop
s.item.register (c)
end
end
end

LASSONDE Polymorphism: Return Values (2) LASSONDE

Polymorphism and Dynamic Binding:

A Polymorphic Collection of Students 1 [tost_sme polymorphism: BOOLEAN
- 2 |local
test_sms_polymorphism: BOOLEAN 3 rs: RESIDENT_STUDENT ; nrs: NON_RESIDENT_STUDENT
local 4 | c: COURSE ; sms: STUDENT MANAGEMENT SYSTEM
rs: RESIDENT STUDENT 5 | do
nrs: NON_RESIDENT_STUDENT 6 create rs.make ("Jim") ; rs.set_pr (1.5)
c: COURSE 7 create nrs.make ("Jeremy") ; nrs.set_dr (0.5)
sms: STUDENI_MANAGEMENI_SYSTEM 8 create sms.make ; sms.add_s (rs) ; sms.add_s (nrs)
do 9 create c.make ("EECS3311", 500) ; sms.register_all (c)
create rs.make ("Jim") 10 Result :=
rs.set_pr (1.5) 11 get_student (1) .tuition = 750
create nrs.make ("Jeremy") 12 and get_student (2) .tuition = 250
nrs.set_dr (0.5) 13 | end
create sms.make
sms.add_s (rs)
. I 1
sms.add_s (nrs) e L11: get_student (1)’s dynamic type? [rESTDENT_sTUDENT]
create c.make ("EECS3311", 500) N L11 V . f . . n
oms. register all (o) : Version of tuition” [rESTDENT_SsTUDENT]
Result := sms.ss[l].tuition = 750 and sms.ss[2].tuition = 250 e L12: get _student (2)’s dynamic type’) [NONfRESIDENTfSTUDENT]
end .
e L12: Version of tuition? [NON_RESTDENT_STUDENT]

Polymorphism: Return Values (1) LASSONDE Design Principle: Polymorphism LASSONDE
1 |class STUDENT MANAGEMENT_SYSTEM { e When declaring an attribute
| S ey e — Choose static type [T | which “accumulates” all features that
4 do you predict you will want to call on a.
5 ss.extend (s) e.g., Choose if you do not intend to be specific about
6 end , which kind of student s might be.
7 get_student (i: INTEGER): STUDENT
8 require 1 <— i and i <= ss.count = Let dynamic binding determine at runtime which version of
9 do tuition will be called.
10 Result := ss[i] i i R i
b - . What. if after declaring you find){ourself often
12 |end needing to cast s to RESIDENT_STUDENT in order to access
. . . remium_rate?
e L2: ST of each stored item (ss[11]) in the list: [STUDENT] P e
N L3 ST Of inpUt parameter - [STUDENT] check attached {RESIDENT_STUDENT} s as rs then rs.set_pr(...) end‘
e L7: ST of return value (Result) of get _student: [STUDENT] = Your design decision should have been: | s:restpEnT_sTupENT |
e L11: ss[i]’s ST is descendant of Result’ ST. e Same design principle applies to:
Question: What can be the dynamic type of s after Line 11? o Type of feature parameters: fla: 1)
Answer: All descendant classes of student. o Type of queries: gl..): T

Static Type vs. Dynamic Type: ‘issom
When to consider which?

e Whether or not an OOP code compiles depends only on the
static types of relevant variables.
-+ Inferring the dynamic type statically is an undecidable
problem that is inherently impossible to solve.
e The behaviour of Eiffel code being executed at runtime

e.g., which version of method is called
e.g., ifacheck attached {...} as ... then ... end
assertion error will occur

depends on the dynamic types of relevant variables.

= Best practice is to visualize how objects are created (by drawing
boxes) and variables are re-assigned (by drawing arrows).

Summary: Type Checking Rules ‘EASSONDE
[[Cope [[ConDITION TO BE TYPE CORRECT I
X 1=y v’'s ST a descendant of x’s ST
£(y) Feature f defined in x’s ST
2 y’s ST a descendant of £'s parameter's ST
Feature f defined in x’s ST
z 1= x.f(y) v’'s ST a descendant of £’s parameter’s ST

ST of m’s return value a descendant of z's ST
check attached {C} y Always compiles
check attached {C} y as temp || C adescendantof x’s ST

then x := temp end
check attached {C} y as temp Feature f defined in x’s ST

then x.f (temp) end C a descendant of £'s parameter’'s ST

Even if’check attached {C} y then ... end‘always compiles,

a runtime assertion error occurs if C is not an ancestor of yv's DT/

Index (1) %

[Aspects of Inheritance]

[Why Inheritance: A Motivating Example]

ILhe COURSE Classl

No Inherifance: RESTDENT STUDENT Class]

No Inherifance: NON RESTDENT STUDENT Clasd

No Inheritance: Testing Student Classes]

No Inherifance:]
Issues with the Student Classes|

No Tnheritance: Maintainability of Code (1)

No Inheritance: Maintainability of Code (2)

Index (2) %

NoInheritance:]

A Collect FVan Kinds of Sind I
Iober Archi l
Inheritance: The STUDENT Parent Classl

Inheritance: |

lhe RESTDENT STUDENT Child Classl

Inheritance:]

(Lhe NON RESTDENT STUDENT Child Class|
T Archi Revisiied
Using Inheritance for Code Reus¢|
[lesting the Two Student Sub-Classes|
Static Type vs. Dynamic Type]

Index (3)

IRem Archifec] Revisiied
Polymorphism: Intuition (1)

Polymorphism: Intuition (2)|

Polymorphism: Intuition (3)

Pynamic Binding: Intuition (1)

Pynamic Binding: Intuition (2)
PbC: Contract View of Supplien
[ES_TEST: Expecting to Fail Postcondition (1)

ES_TEST: Expecting to Fail Postcondition (2.1)

ES_TEST: Expecting to Fail Postcondition (2.2)]
Exercisel

Index (4)

[Multi-Cevel Inheritance Architecture (1)

Multi-Level Inheritance Architecture (2)

Inheritance Forms a Type Hierarchyj|

inheritance Accumulates Code for Reusel
pubstitutions via Assignments|

Bules of Substitutionl
Reference Variable: Static Type|

Reference Variable: Dynamic Type|

Beference Variable:]
[Changing Dynamic Type (1)

Beference Variable:]

IChanging Dynamic Type (2)|
[Swa]

Index (5)

Polymorphism and Dynamic Binding (1)

Polymorphism and Dynamic Binding (2.1)|
Polymorphism and Dynamic Binding (2.2)|
Reference lype Casting: Motivation|

Reference Type Casting: Syntax]

Notes on Type Cast (1)
Notes on Type Cast (2)

Notes on _lype Cast (3)]

Polymorphism: Feature Call Arguments (1)

Polymorphism: Feature Call Arguments (2)

Index (6)

[Why Tnheritance: |
A Polymorphic Collection of Students|
pPolymorphism and Dynamic Binding:]
A Polymorphic Collection of Students|

Polymorphism: Return Values (1)

Polymorphism: Return Values (2)|

Pesign Principle: Polymorphism |

[Static Type vs. Dynamic lType: |
I I g hich?)

pBummary: Type Checking Rules]

The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

‘LASSONDE

Consider the reservation panel of an online booking system:

Motivating Problem

-- Enquiry on Flights --

Flight sought from: To:
Departure on or after:

Preferred airline (s):
Special requirements:

On or before:

AVAILABLE FLIGHTS: 1

FIt#AA 42 Dep 8:25 Thru: Chicago

Arr 7:45
Choose next action:

0 - Exit

1 - Help

2 - Further enquiry
3 - Reserve a seat

_

LASSONDE

State Transition Diagram

Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

(5)
Confirmation
3

(3)

(4)
Reservation Seat Enquiry

‘LASSONDE

Design Challenges

1. The state-transition graph may /arge and sophisticated.
A large number N of states has O(N?) transitions

2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:

Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.g., Add a new state “Dietary Requirements”
3. A general solution is needed for such interactive systems .
e.g., taobao, eBay, amazon, etc.

_

LASSONDE

A First Attempt

T 1
| 3-Seat_Enquiry.panel: |
from
Display Seat Enquiry Panel
until
not (wrong answer or wrong choice)
do
Read user’s answer for current panel
Read user’s choice for next step
if wrong answer or wrong choice then
Output error messages
end
end
Process user’s answer

case in

2: goto 2. Flight_Enquiry_panel

N

_Flight_Enquiry-pane

s for La

3_Seat_Enquiry_panel:

3: goto 4_Reservation_panel
end

LASSONDE

A First Attempt: Good Design?

¢ Runtime execution ~ a “bowl of spaghetti”.
= The system’s behaviour is hard to predict, trace, and debug.
e Transitions hardwired as system’s central control structure.

= The system is vulnerable to changes/additions of
states/transitions.

¢ All labelled blocks are largely similar in their code structures.
= This design “smells” due to duplicates/repetitions!

¢ The branching structure of the design exactly corresponds to
that of the specific transition graph.

= The design is application-specific and not reusable for
other interactive systems.

LASSONDE

A Top-Down, Hierarchical Solution

e | Separation of Concern |Declare the transition table as a

feature the system, rather than its central control structure:

transition (src: INTEGER; choice: INTEGER) :

—— Return state by taking t ion ’‘choice’ from ’src’ sta

require valid source_state: 1 < src £ 6
valid _choice: 1 < choice < 3
ensure valid target_state: 1 < Result < 6

e We may implement transition via a 2-D array.

choice

CHOICE 1 2 3
SRC STATE 1123 /\1‘ 6 5 2
1 (Initial) 6| 5|2 2 1 3
2 (Flight Enquiry) -1 11]3 3 2 4
3 (Seat Enquiry) - | 214 state . s s
4 (Reservation) -1 31]5
5 (Confirmation) -1 4|1 5 4 1
6 (Final) - -] = 6

LASSONDE

Hierarchical Solution: Good Design?

e This is a more general solution.

-+ State transitions are separated from the system’s central
control structure.

= Reusable for another interactive system by making
changes only to the transition feature.

e How does the central control structure look like in this design?

LASSONDE

Hierarchical Solution:
Top-Down Functional Decomposition

Level 3 execute
session
Level 2
P o execute . "
initial transition state is_final
Level 1
display read correct message process

Modules of execute_session and execute_state are general

enough on their control structures. = reusable

LASSONDE

Hierarchical Solution: System Control

All interactive sessions share the following control pattern:

o Start with some initial state.

o Repeatedly make state transitions (based on choices read from
the user) until the state is final (i.e., the user wants to exit).

execute_session

local
current_state , choice: INTEGER
do
from
current_state := initial
until
is_final (current_state)
do
choice := execute_state (current_state)
current_state := transition (current_state, choice)
end
end

LASSONDE

Hierarchical Solution: State Handling (1)
The following control pattern handles all states:
: INTEGER) : INTEGER

ction at th

execute_state (current_state

local

answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER
do
from
until
valid _answer
do
display(current_state)
answer := read answer(current_state)
choice := read choice(current_state)
valid _answer := correct(current_state , answer)

if not valid answer then message(current_state , answer)

end
process(current_state , answer)
Result := choice

end

e

LASSONDE

Hierarchical Solution: State Handling (2)

FUNCTIONALITY

Display screen outputs associated with state s

Read user’s input for answers associated with state s
Read user’s input for exit choice associated with state s
Is the user’s answer valid w.r.t. state s?

Given that user’s answer is valid w.r.t. state s,

process it accordingly.

Given that user’s answer is not valid w.r.t. state s,
display an error message accordingly.

FEATURE CALL ||
display(s)
read answer(S)
read _choice(S)
correct(s, answer)
process(s, answer)

message(s, answer)

Q: How similar are the code structures of the above
state-dependant commands or queries?

LASSONDE

Hierarchical Solution: State Handling (3)
A: Actions of all such state-dependant features must explicitly
discriminate on the input state argument.

display(current_state: INTEGER)
require
valid _state: 1 < current_state < 6
do
if current_state = 1 then

—— Display Initial Panel

elseif current_state

Display Flight Er
else
end
end

o Such design smells !
- Same list of conditional repeats for all state-dependant features.

o Such design violates the Single Choice Principle .
c=cm €9 To add/delete a state = Add/delete a branch in all such features.

Hierarchical Solution: Visible Architecture ‘issom

Level 3 execute_
session
Level 2
P iy execute_ . "
initial transition state is_final
Level 1 %
display read correct message process

Hierarchical Solution: Pervasive States ‘issom

Level 3 execute
session

Level 2 m
sy L execute . .
initial transition state is_final

state
Level 1 St siate state state
display read correct message process

Too much data transmission: current_state is passed
o From execute_session (Level 3) 1o execute_state (Level 2)

o From execute_state (Level 2) to all features at Level 1
| ewaa |

LASSONDE

Law of Inversion

If your routines exchange too many data, then
put your routines in your data.
e.g.,
execute_state (Level 2) and all features at Level 1:
e Pass around (as inputs) the notion of current _state
e Build upon (via discriminations) the notion of current state

execute state (S:INTEGER)
display (s:INTEGER)
read _answer (s:INTEGER)
read_choice (s: INTEGER)
(
(

s: INTEGER ; answer: ANSWER)

s: INTEGER ; answer: ANSWER)
message (s: INTEGER ; answer: ANSWER)

= Modularize the notion of state as class STATE.

= Encapsulate state-related information via a STATE interface.

= Notion of current _state becomes implicit: the Current class.
| owaa |

correct

process

Grouping by Data Abstractions LASSONDE The STATE ADT LASSONDE
deferred class STATE
read execute
, local
Level 3 execute APPLICATION cer | | goodt: moomEA
session deferred end °©
from
: ANSWER !
[until
. e good
h : INTEGER
Level 2 e Loop
~- Choice for next ster display
N L . display . .
initial transition gl)‘;igute_ is_final __ Display current state —- set a d
deferred end ;iij .= correct
STATE correct: BOOLEAN if not good then
deferred end
message
Level 1 process end
] require correct end
display read correct message process deferred end process
message end
require not correct end
deferred end

LASSONDE The Template Design Pattern LASSONDE

Architecture of the State Pattern

+
APPLICATION

execute: Consider the following fragment of Eiffel code:
read*
display*
correct*
process*
message*

state+

s: STATE
create {SEAT ENQUIRY} s.make
s.execute
create {CONFIRMATION} s.make
s.execute

state_implementations

s wnN =

I

[}

I

i L2 and L4: the same version of effective feature execute

: (from the deferred class STATE) is called. [template]
i L2: specific version of effective features display, process,

! etc., (from the effective descendant class SEAT ENQUIRY) is
i
I
[}
I
]
[}
I
[}

called. [template instantiated for SEAT ENQUIRY |
L4: specific version of effective features display, process,
etc., (from the effective descendant class CONFIRMATION) is

called. [template instantiated for CONFIRMATION]
o

™

APPLICATION Class: Array of STATE LASSONDE APPLICATION Class (2) LASSONDE

class APPLICATION

s C'w;‘ce R feature {NONE} Imple tion of Transition Graph
6 5 Py transition: ARRAYZ[INTEGER]
1 3 states: ARRAY[STATE]
2 2 feature
3 s put_state(s: STATE; index: INTEGER)
_— 2 1 require 1 < index < number_of_ states
app PPLICATION . do states.force(s, index) end
choose_initial (index: INTEGER)
transition: ARRAY2[INTEGER] 1 2 3 4 5 6

require 1 < index < number_of_states
‘ ‘ ‘ ‘ ‘ ‘ do initial := index end

app.states

states: ARRAY[STATE]

put_transition(tar, src, choice: INTEGER)

require
1 £ src £ number_of_states
1 < tar < number_of_ states

INITIAL EF:"IQ%'::T, - FINAL 1 < choice < number._of_choices

do
transition.put(tar, src, choice)

end

™
™

LASSONDE Example Test: Non-Interactive Session

APPLICATION Class (1)
class APPLICATION create make test_application: BOOLEAN
feature {NONE} —— on of ansition G local
transition: ARRAYZ[INTEGER] app: APPLICATION ; current_state: STATE ; index: INTEGER
—-— State tr itions: t it [state, choice] do
states: ARRAY[STATE] create app.make (6, 3)
—-— State for each index, constrained by size of ‘tr: i app.pu
feature - 8
initial: INTEGER
number._of states: INTEGER -—— T to FINAL s 1
number._of_choices: INTEGER app.put_transition
make (n, m: INTEGER) —= ilarly for other 10 transitions
do number_of_states := n
number._of_choices := m index := app.initial
create transition.make filled(0, n, m) current_state := app.states [index]
create states.make_empty Result := attached {INITIAL} current_state
end check Result en
invariant -— Say 1 r’s choice is 3: it £
| transition.height = number_of.states index := app.transition.item (index, 3)
L. § X current_state := app.states [index]
enéransmlon‘wmth = pumber-of.choices Result :- attached {FLIGHT_ENQUIRY} current_state
end

m

APPLICATION Class (3): Interactive Sessmrjissom

end

class APPLICATION

feature {NONE} - Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature
execute_session

local
current_state: STATE
index: INTEGER

do
from
index := initial
until
is_final (index)
loop
current_state := states[index] -- polymorphism
current_state.execute -- dynamic binding
index := transition.item (index, current_state.choice)
end
end

Building an Application

‘LASSONDE

Top-Down, Hierarchical vs. OO Solutions |.ssono:

o Create instances of STATE.

sl: STATE
create {INITIAL} sl.make

o |

nitialize an APPLICATION.

’create app.make (number_of_states, number._of_choices)

o Perform polymorphic assignments on app.states.

’app.put_state(initial, 1)

o Choose an initial state.

app.choose_initial(l)

o Build the transition table.

’app.put_transition(6, 1, 1)

o Run the application.

app.execute_session

¢ In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually
discriminate on the argument value, via a a list of conditionals.

e.g., Given ’ display (current_state: INTEGER) |, the

calls | display(1)| and | display(2) | behave differently.

e The third (OO) solution, called the State Pattern, makes such
conditional implicit and automatic, by making STATE as a
deferred class (whose descendants represent all types of
states), and by delegating such conditional actions to

dynamic binding .

e.g., Given[s: STATE], behaviour of the call | s.display

depends on the dynamic type of s (such as INITIAL vs.
FLIGHT_ENQUIRY).
rasac |

Index (1) %

[Motivating Problem]

Ptate Iransition Diagram|

Pesign Challenges|

[A First Attempf

|A First Attempt: Good Design’)
|A_Top-Down, Hierarchical Solution
Hierarchical Solution: Good Design™)]

Hierarchical Solution:]
[Top-Down Functional Decomposition|

Hierarchical Solution: System Controll

Hierarchical Solution: State Handling (1)

Index (2) :ASSONDE

Hierarchical Solution: State Handling (2))
Hierarchical Solution: State Handling (3)
Hi Rical Solifion: Visible Archi l
Hierarchical Solution: Pervasive States|

Law of Inversionl
[Grouping by Data Abstractions|
Architecture of the State Pattern|
The STATE ADT]
[’he Template Design Pattern|
ass: Array o
ass
Index (3) ::ASSONDE
ass
Example Test: Non-Interactive Session|
ass (3): Interactive Session

Building an Application|

[Top-Down, Hierarchical vs. OO Solutions|

The Composite Design Pattern

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

LASSONDE

Motivating Problem (1)

¢ Many manufactured systems, such as computer systems or
stereo systems, are composed of individual components and
sub-systems that contain components.
e.g., A computer system is composed of:
« Individual pieces of equipment (hard drives, cd-rom drives)
Each equipment has properties : e.g., power consumption and cost.

e Composites such as cabinets, busses, and chassis
Each cabinet contains various types of chassis, each of which in turn
containing components (hard-drive, power-supply) and busses that
contain cards.

¢ Design a system that will allow us to easily build systems and
calculate their total cost and power consumption.

LASSONDE

Motivating Problem (2)

Design for free structures with whole-part hierarchies.

CABINET

ASSIS

&WER_SUPPLY

CARD HARD_DRIVE DVD-CDROM

CHASSIS CH

Challenge : There are base and recursive modelling artifacts.

LASSONDE

Multiple Inheritance:
Combining Abstractions (1)

A class may have two more parent classes.

COMPARABLE

LASSONDE

MI: Combining Abstractions (2.1)

Q: How do you design class(es) for nested windows?

Hints: height, width, xpos, ypos, change width, change height,
move, parent window, descendant windows, add child window

LASSONDE

MI: Combining Abstractions (2)
A: Separating Graphical features and Hierarchical features

class RECTANGLE
feature Queries
width, height: AL
xpos, ypos: REAL
feature Commands
make (w, h: REAL)

class TREE[G]
feature - Queries
descendants
feature Cc nds

change_width add (f: G)W e s
change_height end
move
end
test_window: BOOLEAN
local wil, w2, w3, w4: WINDOW
class WINDOW do
inheri
lr;;;:NGLE create wl.make(8, 6) ; create w2.make (4, 3)
TREE [WINDOW] create w3.make(l, 1) ; create w4.make(1l, 1)
end w2.add(w4) ; wl.add(w2) ; wl.add(w3)
Result := wl.descendants.count = 2
end

ASSONDE Solution: The Composite Pattern LASSONDE

J : Categorize into base artifacts or recursive artifacts.

Programming |

™

MI: Name Clashes

=

Build a tree structure representing the whole-part hierarchy .

Allow clients to treat base objects (leafs) and recursive
compositions (nodes) uniformly .

= | Polymorphism |: leafs and nodes are “substitutable”.

= | Dynamic Binding |: Different versions of the same

) . operation is applied on individual objects and composites.
In class ¢, feature foo inherited from ancestor class A clashes e.g., Given]e: EQUIPMENT ‘:

with feature foo inherited from ancestor class B. .
o may return the unit price of a DTSk DRIVE.

o |e.price|may sum prices of a cHasIs’ containing equipments.
asE: | ExiTa

MI: Resolving Name Clashes ‘:’LSSONDE Composite Architecture: Design (1.1) ‘jégsésoms
L.
’ (EQUIPMENT*) children+: LIST..]
foo @ : feature |

'
'

00 @ o+ : price: REAL '
" feature '
' add_child(e: EQUIPMENT) '

ensure children[children.count] = e '

A

rename foo as fog rename foo as zoo :
class C o.foo | o.fog | 0.zoo ;
inherit ' :
A rename foo as fog end o: A v X X . E
B rename foo as zoo end o: B v X X \ !
o C X v v

LASSONDE

Composite Architecture: Design (1.2)

Q: Any flaw of this first design?

A: Two “composite” features defined at the EQUIPMENT level:

o children: LIST[EQUIPMENT]

o add(child: EQUIPMENT)

= Inherited to all base equipments (e.g., HARD_DRIVE) that do
not apply to such features.

LASSONDE

Composite Architecture: Design (2.1)

(COMPOSITE[T]* \
feature
children: LIST[T]
add_child(c: T)
ensure children[children.count] = ¢

equipment

EQUIPMENT*

.
.
'
'
'
et feature
' price: REAL
'

_ children+: LISTL.]

*

COMPOSITE_EQUIPMENT

LASSONDE

Implementing the Composite Pattern (1)

deferred class

EQUIPMENT
feature

name: STRING

price: REAL uniform access principle
end

class
CARD
inherit
EQUIPMENT
feature
make (n: STRING; p: REAL)
do
name := n
price := p —- price is an attribute
end
end

LASSONDE

Implementing the Composite Pattern (2.1)

deferred class
COMPOSITE[T]

feature
children: LINKED_ LIST|[T]

add (c: T)
do
children.extend (c) —-- Polymorphism
end
end

Exercise: Make the COMPOSITE class iterable.

Implementing the Composite Pattern (2.2) |.assono: Index (1) LassonDE
1
© ;;Z;POSITE_EQUIPMENT Mo“vatmg Problem (1)
inherit [Motivating Problem (2)]
EQUIPMENT
COMPOSITE [EQUIPMENT] [Mufltiple Tnheritance: |
Cr:;:: [Combining Abstractions (1)
featu .
e;akere(m STRING) [MI: Combining Absiractions (2.7)
do name := n ; create children.make end M] Comb|n|ng Abstractions (2)i
price : REAL —- price is a query
—— Sum the net pr sub—-equipments M]_;_Nlammashes]
do
across [MI: Resolving Name Clashes|
children as cursor
loop [Solution: The Composite Pattern|
Result := Result + cursor.item.price -- dynamic binding
end [Composite Architecture: Design (1.1)]
nd
end [Composite Architecture: Design (1.2)

Testing the Composite Pattern LASSONDE Index (2) rssonpE
[Composite Architecture: Design (2.1)

test_composite_equipment: BOOLEAN

local Implementing the Composite Pattern (1))
card, drive: EQUIPMENT
cabinet: CABINET —— I <
chassis: CHASSIS —- co ins a BUS and a DISK_DRIVE
bus: BUS holds a CARD

do
create {CARD} card.make("l6Mbs Token Ring", 200)
create {DISK DRIVE} drive.make("500 GB harddrive", 500)
create bus.make ("MCA Bus")
create chassis.make("PC Chassis")
create cabinet.make("PC Cabinet")

Implementing the Composite Pattern (2.1)|

Implementing the Composite Pattern (2.2)]

[lesting the Composite Pattern|

bus.add(card)

chassis.add(bus)

chassis.add(drive)

cabinet.add(chassis)

Result := cabinet.price = 700
end

The Visitor Design Pattern

EECS3311 A: Software Design

YO R K ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

Motivating Problem (1)

LASSONDE

Based on the composite pattern you learned, design classes

to model structures of arithmetic expressions
(e.g., 341, 2, 341 + 2).

(EXPERSSION*) (COMPOSITE*]
value INTEGER [left right: EXPRESSION

=

(consTanT+

|

[Zot13]

ADDITION+

T)

Motivating Problem (2)

LASSONDE

Extend the composite pattern to support operations such as

evaluate, pretty printing (print prefix, print_postfix),
and type_check.

(EXPERSSION*

value: INTEGER
evaluate*
print_prefix*
print_postfix*
type_check*

COMPOSITE*]
e/‘t right: EXPRESSION

[consTANT+ ADDITION+)

evaluate+ evaluate+
print_prefix+ print_prefix+
D

print_postfix+ rint_postfix+
type_check+ type_check+

Problems of Extended Composite Pattern ‘i’éiésom

¢ Distributing the various unrelated operations across nodes of
the abstract syntax tree violates the single-choice principle :
To add/delete/modify an operation
= Change of all descendants of EXPRESSION
e Each node class lacks in cohesion :

A class is supposed to group relevant concepts in a single place.
= Confusing to mix codes for evaluation, pretty printing, and type
checking.

= We want to avoid “polluting” the classes with these various
unrelated operations.

LASSONDE

Open/Closed Principle

Software entities (classes, features, etc.) should be open for
extension , but closed for modification .

= When extending the behaviour of a system, we:

o May add/modify the open (unstable) part of system.
o May not add/modify the closed (stable) part of system.
e.g., In designing the application of an expression language:
o ALTERNATIVE 1:
Syntactic constructs of the language may be open, whereas
operations on the language may be closed.
o ALTERNATIVE 2:
Syntactic constructs of the language may be closed, whereas
operations on the language may be open.

LASSONDE

Visitor Pattern

e Separation of concerns

o Set of language constructs
o Set of operations

= Classes from these two sets are decoupled and organized
into two separate clusters.

e Open-Closed Principle (OCP) : [ALTERNATIVE 2]

o Closed, staple part of system: set of language constructs
o Open, unstable part of system: set of operations

= OCP helps us determine if Visitor Pattern is applicable .

= If it was decided that language constructs are open and
operations are closed, then do not use Visitor Pattern.

LASSONDE

Visitor Pattern: Architecture

EXPERSSION*

accept(v: VISITOR)*

constant(c: CONSTANT)*
jition(a: ADDITION)*

COMPOSITE* i

lef,right: EXPRESSION. | !

(_apbpmons) . EVALUATOR+) (erertv.eRiNtER+ | [TYPE CHECKER+)
V ' constant(c: CONSTANT) constant(c: CONSTANT)+ visit_constant(c: CONSTANT)+| |
: AD tion(a: ADDITION)+ (a: ADDITION)+ |

U constant)

+ | accept(v: vistTor)+ accept(v: VISITOR)+

Visitor Pattern Implementation: Structures ‘issom

Cluster expression_language
o Declare deferred feature] accept (v: VISITOR) \in EXPRSSION.

o Implement accept feature in each of the descendant classes.

class CONSTANT inherit EXPRESSION

accept (v: VISITOR)
do
v.visit_ constant (Current)
end
end

class ADDITION
inherit EXPRESSION COMPOSITE

accept (v: VISITOR)
do
v.visit_ addition (Current)
end
end

LASSONDE

Visitor Pattern Implementation: Operations

Cluster expression_operations
o For each descendant class C of EXPRESSION, declare a deferred

feature in the deferred class VISITOR.

deferred class VISITOR
visit_constant (c: CONSTANT) deferred end
visit_addition(a: ADDITION) deferred end
end

o Each descendant of vISITOR denotes a kind of operation.

class EVALUATOR inherit VISITOR ‘

| : INTEGER |
‘ visit_constant (c: CONSTANT) do 1= c.value end

visit_addition(a: ADDITION)
local eval_left, eval_right: EVALUATOR
do a.left.accept(eval_left)
a.right.accept (eval_right)

:= eval_left.value + eval_right.value

end
end

LASSONDE

Testing the Visitor Pattern

test_expression_evaluation: BOOLEAN
local add, cl, c2: EXPRESSION ; v: VISITOR
do
create {CONSTANT} cl.make (1) ; create {CONSTANT} c2.make (2)
create {ADDITION} add.make (cl, c2)
create {EVALUATOR} v.make
| add.accept (v) |
check attached {EVALUATOR} v as eval then
Result := eval.value = 3
end
end

00w NOoOOO~wWN =

—_

Double Dispatch in Line 7:

1. DT of add is apprrron = Call accept in apprrron

v.visit_addition (add)

2. DT of vis evarvaror = Call visit_addition in Evaruaror
’visiting result of add.left ‘ + ’ visiting result of add. right ‘

LASSONDE

To Use or Not to Use the Visitor Pattern

¢ In the architecture of visitor pattern, what kind of extensions is

easy and hard? Language structure? Language Operation?

o Adding a new kind of operation element is easy.
To introduce a new operation for generating C code, we only need to
introduce a new descendant class | C_CODE_GENERATOR] of VISITOR,
then implement how to handle each language element in that class.
= Single Choice Principle is obeyed.

o Adding a new kind of structure element is hard.
After adding a descendant class MULTIPLICATION of EXPRESSTON,
every concrete visitor (i.e., descendant of VISITOR) must be amended
to provide a new ’ visitmultiplication ‘operation.

= Single Choice Principle is violated.
e The applicability of the visitor pattern depends on to what
extent the structure will change.
= Use visitor if operations applied to structure change often.
= Do not use visitor if the sfructure changes often.

LASSONDE

Beyond this Lecture. ..

Learn about implementing the Composite and Visitor Patterns,
from scratch, in this tutorial series:

https://www.yvoutube.com/playlist?list=PL5dxAmCmiv
475eXGW-2Z2BagsS2WZTyvBHYZ

Index (1) LASSONDE
[Motivating Problem (1]
[Motivating Problem (2)]

Problems of Extended Composite Pattern|

Open/Closed Principle

NiSiorD l

NiSiorP —Archi |

[Visitor Pattern Implementation: Structures]

[Visitor Pattern Implementation: Operationsg
[lesting the Visitor Pattern|

Mod Not fo Use the Visiior P I
Beyond this Lecture. . .|

[(kamm]

Observer Design Pattern
Event-Driven Design

EECS3311 A: Software Design

YORK ' Winter 2020
UNIVERSITE CHEN-WFEI WANG
UNIVERSITY

Motivating Problem

NNNNNNN

e A weather station maintains weather data such as temperature,
humidity, and pressure.

¢ Various kinds of applications on these weather data should
regularly update their displays:
o forecast: if expecting for rainy weather due to reduced pressure.
o Condition: temperature in celsius and humidity in percentages.

o Statistics: minimum/maximum/average measures of temperature.

LASSONDE

First Design: Weather Station

Vs

FORECAST+

feature
display +
-- Retrieve and display the latest data.
current_pressure: REAL
_last_pressure: REAL)

weather_data

(WEATHER DATA+)

temperature: REAL
humidity: REAL
pressure: REAL
correct_limits (t, p, h): BOOLEAN
-- Are current data within legal limits?
invariant
correct_limits (temperature, humidity, pressuure)

([CURRENT_CONDITIONS+)

feature
display +
- Retrieve and display the latest data.

weather_data

temperature: REAL
_ humidity: REAL)

(STATISTICS+

weather_data
feature
display +
- Retrieve and display the latest data.
_remperanure: REAL

J

Whenever the display feature is called, retrieve the current
values of temperature, humidity, and/or pressure via the

weather_data reference.

™

Implementing the First Design (1) LASSONDE Implementing the First Design (2.2) LASSONDE

class WEATHER _DATA create make

feature -
temperature: REAL
humidity: REAL
pressure: REAL

class CURRENT _CONDITIONS create make

feature - A
temperature: REAL
humidity: REAL
weather_data: WEATHER DATA

ites

feature - ies £
correct_limits(t,p, h: REAL): BOOLEAN eature —- =
make (wd: WEATHER DATA)
ensure

Result implies -36 <=t and t <= 60 ensure Rl

Result implies 50 <= p and p <= 110 update
Result implies 0.8 <= h and h <= 100 do temperature := weather_data.temperature
feature C humidity := weather_data.humidity
make (t, p, h: REAL) end
require display
correct_limits (temperature, pressure, humidity) do update
ensure io.put_string("Current Conditions: ")
temperature = t and pressure = p and humidity = h io.put_real (temperature) ; io.put_string (" degrees C and ")
invariant io.put_real (humidity) ; io.put_string (" percent humidity%sN"
correct_limits (temperature, pressure, humidity) dend
en
end
d ot 36 b.at 36

™
™

LASSONDE Implementing the First Design (2.3)

Implementing the First Design (2.1) LASSONDE
class FORECAST create make
feature —— A es class STATISTICS create make
current_pressure: REAL feature Attributes
last_pressure: REAL weather_data: WEATHER DATA
weather_data: WEATHER _DATA current_temp: REAL
feature - C¢ s max, min, sum_so_far: REAL
make (wd: WEATHER_DATA) num_readings: INTEGER
ensure weather data = wd feature —- ¢ 1s
update make (wd: WEATHER_DATA)
do last_pressure := current_pressure ensure weather_data = wd
current_pressure := weather_data.pressure update
end do current_temp weather_data.temperature
display - nax if necess
do update end
if current_pressure > last_pressure then display
print ("Improving weather on the way!S%N") do update
elseif current_pressure = last_pressure then print ("Avg/Max/Min temperature = ")
print ("More of the same%N") print(sum_so_far / num_readings + "/" + max + "/" min + "%N")
else print("Watch out for cooler, rainy weather$N") end end
end end
end

m—_

Implementing the First Design (3) LASSONDE Observer Pattern: Architecture LASSONDE
| [chase pmarsemsasson create mare e Yy Cemw
3 | cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS v isToBs i (50T
4 wd: WEATHER DATA : (oY ot e :
5 | feature —- Co Is ! e ! H i .
6 make ' _ M ' ! :
7 do create wd.make (9, 75, 25) ' : ‘ :
8 create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd i E E E
10 wd.set_measurements (15, 60, 30.4) M e . A N
! cc.display ; fd.display j sd.display » Observer (publish-subscribe) pattern: one-to-many relation
12 cc.display ; fd.display ; sd.display) : ;))
13 o Observers (subscribers) are attached to a subject (publisher).
14 wd.set_measurements (11, 90, 20) o The subject notify its attached observers about changes.
]2 nd cec.display ; fd.display ; sd.display » Some interchangeable vocabulary:
17 | ena o subscribe » attach ~ register
o unsubscribe ~ detach ~ unregister
L14: Updates occur on cc, £d, sd even with the same data. o publish ~ notify
o handle ~ update
First Design: Good Design? LASSONDE Observer Pattern: Weather Station LASSONDE
_______ SUECTS o e il
e Each application (CURRENT_CONDITION, FORECAST, e i
1 \ ’
STATISTICS) cannot know when the weather data change. ! [SUBJECT+ : : [omserver:) '
. iy . 1 feature -- { NONE } 1 1 feature * { SUBJECT } 1
= All applications have to periodically initiate updates in order V[e LsTioBsERVER) o dotach! et o upate. :
to keep the display results up to date. V| bt an ot o obserss N ; feature - { SUBJECT } :
1 ensure ' 1 usz‘Ulule,‘wom;g\rilcyr(:t‘ 20355/:1\1 * :
-~ Each inquiry of current weather data values is a remote call. : Vo sobservers oapdatto-due_vith sbect |1 : e et s of bty .
1 1 ! 1
.. Waste of computing resources (e.g., network bandwidth) : T ! : :
1 1 1
when there are actually no changes on the weather data. ' I . '
. . ' [WEATHER DATA+ | ! !
¢ To avoid such overhead, it is better to let: B — ! . .
o Each application is subscribed/attached/registered to the b | et REAL E ! :
weather data. b [et i et v : ! :
o The weather data publish/notify new changes. f | et s Gempersure, iy resaure | 1 ' !
= Updates on the application side occur only when necessary . Ry Yy =7
wd
B ot 36 L1 ot 36

™

Implementing the Observer Pattern (1.1)

LASSONDE

class SUBJECT create make
feature —— A o5
LIST [OBSERVER]

observers

feature —— C
make
do create {LINKED_LIST|[OBSERVER]} observers.make
ensure no._observers: observers.count = 0 end
feature —— Invoked by an OBSEH 2

to le obse

attach (o: OBSERVER)
require not_yet_attached: not observers.has (o)
ensure is attached: observers.has (o) end

detach (o: OBSERVER) ——- Add ‘o’ to the observers
require currently attached: observers.has (o)
ensure is. attached not observers has (o) end

feature - 2] y

notify —— N - t
do across observers as cursor loop cursor.item. update end
ensure all views_updated:

across observers as o all o.item.up_to_date_with_subject end

™

Implementing the Observer Pattern (1.2)

LASSONDE

class WEATHER_DATA
inherit SUBJECT rename make as make_subject end
create make
feature T ave
temperature: REAL
humidity: REAL
pressure: REAL
correct_limits(t,p, h: REAL): BOOLEAN
feature - ion
make (t,
do
make_subject ini e
set_measurements (t, p, h)
end
feature Called by wea
set_measurements(t, p, h: REAL)
require correct_limits(t,p,h)
invariant

> observe

correct_limits (temperature, pressure, humidity)
end

Lot 36

Implementing the Observer Pattern (2.1)

LASSONDE

deferred class
OBSERVER

feature —— To be effe

up_to_ date w1th subject BOOLEAN

d by a descendar

deferred
end

update

—-—— L
deferred
ensure

up_to_date_with _subject: up_to_date_with_subject
end

end

Each effective descendant class of OBSERVER should:

o Define what weather data are required to be up-to-date.
o Define how to update the required weather data.

Implementing the Observer Pattern (2.2)

™

LASSONDE

class FORECAST
inherit OBSERVER
feature —— C s
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data
weather_data.attach (Current)
ensure weather_ data = a_weather data

weather_data.observers.has (Current)
end
feature Queries

up_to_date_with _subject: BOOLEAN

ensure then

Result = current_pressure = weather_data.pressure

update

do —— S as 1st desi

end
display

do \

7 on demand

Implementing the Observer Pattern (2.3)

LASSONDE

class CURRENT_CONDITIONS
inherit OBSERVER

feature —— C s
make (a_weather_data: WEATHER DATA)
do weather _data := a_weather_data

weather_data.attach (Current)
ensure weather_ data = a_weather data
weather_data.observers.has (Current)
end
feature
up_to_date_with _subject: BOOLEAN
ensure then Result = temperature = weather_data.temperature
humidity = weather_data.humidity

Queries

update
do —— S
end

display
do No need to

on demand

and

Implementing the Observer Pattern (2.4)

LASSONDE

class STATISTICS
inherit OBSERVER

feature —— C s
make (a_weather_data: WEATHER DATA)
do weather_data := a_weather_data

weather_data.attach (Current)
ensure weather_data = a_weather_data
weather_data.observers.has (Current)
end
feature
up_to_date_with _subject: BOOLEAN
ensure then
Result = current_temperature = weather_data.temperature
update
do —— S
end
display
do No need to
end
end

Queries

on demand

o

LASSONDE

Implementing the Observer Pattern (3)

O©oONOOA~WN =

class WEATHER_STATION create make
feature —— Attributes
cc: CURRENT_CONDITIONS ; fd: FORECAST ; sd: STATISTICS

wd: WEATHER DATA

feature —— « is
make
do create wd.make (9, 75, 25)
create cc.make (wd) ; create fd.make (wd) ; create sd.make(wd

wd.set_measurements (15, 60, 30.4)
wd.notify ‘
cc.display ; fd.display ; sd.display
cc.display ; fd.display ; sd.display

wd.set_measurements (11, 90, 20)
wd.notify
cc.display ; fd.display ; sd.display

LASSONDE

Observer Pattern: Limitation? (1)

e The observer design pattern is a reasonable solution to building
a one-to-many relationship: one subject (publisher) and
multiple observers (subscribers).

e But what if a many-to-many relationship is required for the
application under development?

o Multiple weather data are maintained by weather stations.

o Each application observes all these weather data.

o But, each application still stores the /atest measure only.
e.g., the statistics app stores one copy of temperature

o Whenever some weather station updates the temperature of its
associated weather data, all relevant subscribed applications (i.e.,
current conditions, statistics) should update their temperatures.

* How can the observer pattern solve this general problem?
o Each weather data maintains a list of subscribed applications.
o Each application is subscribed to multiple weather data.

Observer Pattern: Limitation? (2)

What happens at runtime when building a many-to-many
relationship using the observer pattern?

‘ wdi: WEATHER_DATA application; \
‘ wda: WEATHER_DATA

applicationy \
| wd,m—1: WEATHER_DATA
‘ wdm: WEATHER_DATA application,, \

Gragh complexity, with m subjects and n observers? [O(m-n)]

Event-Driven Design (1) ASSO
Here is what happens at runtime when building a many-to-many

relationship using the event-driven design.

application,—q
application,,

wdi: WEATHER_DATA

wdz: WEATHER_DATA
wdn_1: WEATHER_DATA

wdn: WEATHER_DATA

publish subscribe

change_on_temperature: EVENT

Graph complexity, with m subjects and n observers? [O(m+n)]
Additional cost by adding a new subject? [O(1)]
Additional cost by adding a new observer? [O(1)]
Additional cost by adding a new event type? [O(m+ n)]

Event-Driven Design (2)

In an event-driven design :

e Each variable being observed (e.g., temperature,
humidity, pressure) is called a monitored variable.

e.g., Ajhuclear power plant (i.e., the subject) has its
temperature and pressure being monitored by a shutdown
system (i.e., an observer): as soon as values of these
monitored variables exceed the normal threshold, the SDS will
be notified and react by shutting down the plant.

e Each monitored variable is declared as an event :
o An observer is attached/subscribed to the relevant events.

e CURRENT_CONDITION attached to events for temperature, humidity.
e FORECAST only subscribed to the event for pressure.
e STATISTICS only subscribed to the event for temperature.

o A subject notifies/publishes changes to the relevant events.

Event-Driven Design: Example

Image Source: https://www.opg.com

LASSONDE

Event-Driven Design: Implementation

¢ Requirements for implementing an event-driven design are:
1. When an observer object is subscribed to an event, it attaches:
1.1 The reference/pointer to an update operation
Such reference/pointer is used for | delayed | executions.
1.2 ltself (i.e., the context object for invoking the update operation)
2. For the subject object to publish an update to the event, it:
2.1 lterates over its (previously) attached operation references/pointers
2.2 Invokes these operations, which update the corresponding observers
¢ Both requirements can be satisfied by Eiffel and Java.

¢ We will compare how an event-driven design for the weather
station problems is implemented in Eiffel and Java.

= It is more convenient to implement such design in Eiffel.

LASSONDE

Event-Driven Design in Java (1)

©oO~NOO O hWN =

public class Event {
Hashtable<Object, MethodHandle> listenersActions;

Event () { listenersActions = new Hashtable<>(); }
void subscribe (Object listener, MethodHandle action) {
listenersActions.put(listener , action);
}
void publish(Object arg) {
for (Object listener : listenersActions.keySet()) {
MethodHandle action = listenersActions.get(listener);

try {
action .invokeWithArguments(listener ,
} catch (Throwable e) { }
}
}
}

arg) ;

e L5: Both the delayed action reference and its context object (or call
target) 1istener are stored into the table.

e L11: Aninvocation is made from retrieved 1istener and action.

Event-Driven Design in Java (2)

LASSONDE

1 |public class WeatherData {

2 private double temperature;

3 private double pressure;

4 private double humidity;

5 public WeatherData(double t, double p, double h) {

6 setMeasurements(t, h, p);

7 }

8 public static Event changeOnTemperature = new Event();
9 ‘ public static Event changeOnHumidity = new Event();

10 public static Event changeOnPressure = new Event();

11 public void setMeasurements(double t, double h, double p)
12 temperature = t;

13 humidity = h;

14 pressure = p;

15 ‘ changeOnTemperature .publish(temperature) ;

16 ‘ changeOnHumidity .publish(humidity);

17 changeOnPressure .publish(pressure);

18 }

19 |}

{

Event-Driven Design in Java (3)

LASSONDE

1 |public class CurrentConditions {

2 private double temperature; private double humidity;

3 public void updateTemperature(double t) { temperature = ¢t;
4 public void updateHumidity(double h) { humidity = h; }
5 public CurrentConditions() {

6 MethodHandles.Lookup lookup = MethodHandles.lookup();
7 try {

8 MethodHandle ut = lookup.findVirtual/(

9 this.getClass (), "updateTemperature",

10 MethodType.methodType (void.class, double.class));
11 WeatherData.changeOnTemperature. subscribe (this, ut);
12 MethodHandle uh = lookup.findVirtual (

13 this.getClass(), "updateHumidity",

14 MethodType.methodType (void.class, double.class));
15 WeatherData.changeOnHumidity.subscribe (this, uh);

16 } catch (Exception e) { e.printStackTrace(); }

17 }

18 public void display() {

19 System.out.println("Temperature: " + temperature);

20 System.out.println("Humidity: " + humidity); } }

Event-Driven Design in Java (4) LASSONDE Event-Driven Design in Eiffel (2) LASSONDE
1 |class WEATHER DATA
1 |public class WeatherStation { 2 | create make
2 public static void main(String[] args) { 3 | feature -- Measurements
3 WeatherData wd = new WeatherData(9, 75, 25); 4 temperature: REAL ; humidity: REAL ; pressure: REAL
4 CurrentConditions cc = new CurrentConditions(); 5 correct_limits(t,p,h: REAL): BOOLEAN do ... end
5 System.out.println("======="); 6 make (t, p, h: REAL) do ... end
6 wd.setMeasurements (15, 60, 30.4); 7 | feature —- Event for data changes
7 cc.display(); . 8 change_on_-temperature : EVENT[TUPLE [REAL] Jonce create Result end
8 System.out.println("=======");
9 wd.setMeasurements (11, 90, 20); 9 ‘ change_on_humidity : EVENT[TUPLE [REAL]]once create Result end
10 cc.display(); 10 change_on_pressure : EVENT[TUPLE [REAL] Jonce create Result end
11 b} 11 | feature —— C nd
) 12 set_measurements(t, p, h: REAL)
L4 invokes 13 require correct_limits(t,p,h)
WeatherData.changeOnTemperature. subscribe (14 do temperature := t ; pressure := p ; humidity := h
cc, ‘‘updateTemperature handle’’) 15 | change_on_temperature .publish ([t]) |
L6 invokes . 16 ‘ change_on_humidity .publish ([p]) ‘
WeatherData.changeOnTemperature.publish(1l5) i
L. \ 17 change-on_-pressure .publish ([h])
which in turn invokes
18 end
‘‘updateTemperature handle’’ .invokeWithArguments (cc, 15) 19 | invariant correct_limits(temperature, pressure, humidity) end

Event-Driven Design in Eiffel (1) LASSONDE Event-Driven Design in Eiffel (3) LASSONDE
1 |class EVENT [ARGUMENTS —> TUPLE] 1 | class CURRENT CONDITIONS
2 | create make
2 | create make e)
e 3 | feature - Initialization
3 | feature - Initialization 4 X d: WEATHER DATA
4 | actions: LINKED_LIST[PROCEDURE [ARGUMENTS]] p made(w : —)
5 make do create actions.make end °© .
6 | feature 6 wd.change_on_temperature.subscribe (agent update temperature)
7 subscribe (an_action: PROCEDURE [ARGUMENTS]) 7 wd.change_on_humidity.subscribe (agent update_ humidity)
. ;)) . 8 end
8 require action_not_already_subscribed: not actions.has(an_action
; : 9 | feature
9 do actions.extend (an_action) 10 - ¢ . REAL
10 ensure action subscribed: action.has(an_action) end 11 hemf?zl?i Z‘Jr:E':AL
11 publish (args: ARGUMENTS) umidity:
, - . 12 update_temperature (t: REAL) do temperature := t end
12 do from actions.start until actions.after o o
. , . 13 update_humidity (h: REAL) do humidity := h end
13 loop actions.item.call (args) ; actions.forth end .
14 display do ... end
14 end 15 d
15 |end en
e L1 constrains the generic parameter ARGUMENTS: any class that instantiates * |agent cnd | retrieves the pointer to cmd and its context object.

ARGUMENTS must be a descendant of TUPLE.
® L4: The type PROCEDURE encapsulates both the context object and the

e L6~ ’ ... (agent Current.update,temperature)‘

reference/pointer to some update operation. s Contrast L6 with L8-11 in Java class CurrentConditions.

Event-Driven Design in Eiffel (4) ‘

class WEATHER_STATION create make
feature
cc: CURRENT_CONDITIONS
make
do create wd.make (9, 75, 25)
create cc.make (wd)
wd.set_measurements (15, 60, 30.4)
cc.display
wd.set_measurements (11, 90, 20)
10 cc.display
11 end
12 | end

O©oONOOA~WN =

L6 invokes
wd.change_on_temperature. subscribe (
agent cc.update_temperature)
L7 invokes
wd.change on _temperature.publish([15])

which in turn invokes ’ cc.update_temperature (15) ‘

Event-Driven Design: Eiffel vs. Java ‘issom

e Storing observers/listeners of an event
o Java, in the Event class:

’Hashtable<0bject, MethodHandle> listenersActions; ‘

o Eiffel, in the EVENT class:

actions: LINKED_LIST[PROCEDURE [ARGUMENTS]]

e Creating and passing function pointers
o Java, in the CurrentConditions class constructor:

MethodHandle ut = lookup.findVirtual (
this.getClass (), "updateTemperature",
MethodType.methodType (void.class, double.class));

WeatherData.changeOnTemperature.subscribe (this, ut);

o Eiffel, in the CURRENT_CONDITIONS class construction:

’ wd. change_on_temperature.subscribe (agent updateﬁtemperaturew

= Eiffel's type system has been better thought-out for design .

Index (1) %

[Motivating Problem|
Eirst Design: Weather Stationy
Implementing the First Design (1)

fmplementing the First Design (2.1)

Implementing the First Design (2.2)

fmplementing the First Design (2.3)
fmplementing the First Design (3)]
Eirst Design: Good Design’)
Qbserver Pattern: Architecturel
Qbserver Pattern: Weather Stationl

Implementing the Observer Pattern (1.1)|

Index (2) %

Iimplementing the Observer Pattern (1.2)]

implementing the Observer Pattern (2.1)|

Implementing the Observer Pattern (2.2)|

Implementing the Observer Pattern (2.3)

fmplementing the Observer Pattern (2.4)

fmplementing the Observer Pattern (3)

[Observer Pattern: Limitation? (1)

[Observer Pattern: Limitation? (2)

Event-Driven Design (1)
Event-Driven Design (2)

Event-Driven Design: Example

Index (3) :ASSONDE

Event-Driven Design: Implementation|

Event-Driven Design in Java (1)

EEvent-Driven Design in Java (2)]

Event-Driven Design in Java (3)]

Event-Driven Design in Java (4)]

Event-Driven Design in Eiifel (1)

Event-Driven Design in Eiifel (2)

Event-Driven Design in Eiffel (3)]

Event-Driven Design in Eiffel (4)

Event-Driven Design: Eiffel vs. Javal

Program Correctness
OO0SC2 Chapter 11

EECS3311 A: Software Design

YO R K ' Winter 2020

CHEN-WFEI WANG

Assertions: Weak vs. Strong LASSONDE

¢ Describe each assertion as a set of satisfying value.
x >3 has satisfying values { x | x>3 }={4,5,6,7,... }
X >4 has satisfying values { x | x>4 }={5,6,7,... }
e An assertion p is stronger than an assertion q |if | p’s set of
satisfying values is a subset of g’s set of satisfying values.
o Logically speaking, p being stronger than g (or, g being weaker
than p) means p = q.
oceg,x>4=x>3
What'’s the weakest assertion? [TRUE]
What'’s the strongest assertion? [FALSE]

¢ In Design by Contract :

o A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

o A weaker precondition has more acceptable input values

o A weaker postcondition has more acceptable output values
x|

Assertions: Preconditions LASSONDE

Given preconditions P; and P», we say that

’ P> requires less than P; ‘if
P- is less strict on (thus allowing more) inputs than P; does.

{x[P10 }e{x|Pa(x) }

More concisely:
P1 = P2

e.g., Forcommand withdraw (amount: INTEGER),
| P> : amount > 0| requires less than | Py : amount > 0|

What is the precondition that requires the least? [true]

LASSONDE

Assertions: Postconditions

Given postconditions or invariants Qq and Q», we say that

’ Q> ensures more than Qq ‘if
Q» is stricter on (thus allowing less) outputs than Qy does.

{x[Q(x) pe{x[Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER): BOOLEAN,
’ Qo :Result = (i>0)A(imod2=0) ‘ ensures more than

|Qy:Result =(i>0)v(imod2=0)]

What is the postcondition that ensures the mosit?
Bz

[false]

LASSONDE

Motivating Examples (1)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i =1+ 9
ensure
i > 13
end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
- assertion i > 3 allows value 4 which would fail postcondition.

LASSONDE

Motivating Examples (2)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require
do
i:=1+ 9
ensure
i > 13
end
end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong
- assertion j > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
Exiza

LASSONDE

Software Correctness

e Correctness is a relative notion:
consistency of implementation with respect to specification.

= This assumes there is a specification!
¢ We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s {R}

eg.,{i>3}1i := 1 + 9{i>13}
eg.,{i>5}1i := 1 + 9{i>13}

If| {@Q} s {R} | can be proved TRUE, then the S is correct.

e.g.,{i>5}i := i + 9 {i>13} can be proved TRUE.

If| {Q} s {R} | cannot be proved TRUE, then the S is incorrect.

eg., {i>3}1 := 1 + 9 {i>13} cannot be proved TRUE.

o

[}

e}

e}

Hoare Logic LASSONDE

e Consider a program S with precondition @ and postcondition R.

o {Q} s {R} is a correctness predicate for program S

o {Q} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

Hoare Logic and Software Correctness ‘iésésoms

Consider the contract view of a feature f (whose body of

implementation is S) as a | Hoare Triple |:

| {@s A
Qs the precondition of f.
S is the implementation of f.
Ris the postcondition of f.
o {true} s {R}
All input values are valid
o {false} s {R}
All input values are invalid
o {Q} s {true}
All output values are valid [Most risky for clients; Easiest for suppliers]
o {Q} s {false}
All output values are invalid
o {true} s {true}
o= All inputs/outputs are valid (No contracts)

[Most-user friendly]

[Most useless for clients]

[Most challenging coding task]

[Least informative]

Proof of Hoare Triple using wp LASSONDE

{@} s {R} = Q= wp(S,R)

e wp(S, R) isthe weakest precondition for S to establish R .
e Scanbe:

o Assignments (x := y)

o Alternations (if ... then ... else ... end)
o Sequential compositions (S ; S»)

o Loops (from ... until ... loop ... end)

¢ We will learn how to calculate the wp for the above
programming constructs.

Hoare Logic A Simple Example LASSONDE

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n>4) will result in a correct program.

e.g., {n>5}n:=n+9{n> 13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.

e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.

Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

LASSONDE

Denoting New and Old Values

In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.

o We write to denote its post-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.

eg.,{bp>alb := b - a{b=by-a}

¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
- All variables are pre-state values in preconditions

o We don’t write “by” in program
-+ there might be multiple intermediate values of a variable due to
sequential composition

LASSONDE

wp Rule: Assignments (1)

wp(x := e, R)=R[x:=¢]

R[x := e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

LASSONDE

wp Rule: Assignments (2)

Recall:
{@Q} s{R} = Q= wp(S,R)

How do we prove {Q} x := e {R}?

{Q} x := e{R} — Q= R[x:=¢€]
—_—
wp(x := e,R)

LASSONDE

wp Rule: Assignments (3) Exercise

What is the weakest precondition for a program x := x + 110
establish the postcondition x > xo?

{7} x = x + 1{x>X0}

For the above Hoare triple to be TRUE, it must be that
M=>wp(x := x + 1,X>Xp)-

wp(x := x + 1,X>Xp)

= {Rule of Wp: Assignments}
X > Xo[X:=Xp+1]

= {Replacing X by Xo+1}

X0+1 > Xo
= {1>0 always true}
True

Any precondition is OK. False is valid but not useful.

wp Rule: Assignments (4) Exercise LASSONDE

What is the weakest precondition for a program x := x + 110
establish the postcondition x = 237

{7} x := x + 1{x=23}

For the above Hoare triple to be TRUE, it must be that
?=>wp(x := x + 1,x=23).

wp(x := x + 1,x=23)

= {Rule of Wp: Assignments}
x=23[x:=xp+1]

= {Replacing X by Xp+1}
Xo+1=23

= {arithmetic}
Xg = 22

Any precondition weaker than x = 22 is not OK.
EEGIza

wp Rule: Alternations (1) LASSONDE

B = wp(S1, R)
wp(if B then S; else S; end R)=| A
- B = wp(S,, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

wp Rule: Alternations (2) LASSONDE

Recall: {@} s {R} = Q= wp(S,R)
How do we prove that {Q} if B then S; else S; end {R}?
{0}

if B then
{on B} S (R}

else

{or-B} S {R}
end

{r}

{@} if B then S; else S, end {R}
{QrnB }Si{R} (@ B) = wp(Sy, R)
| A | A

{Qr-B } S {R} (Qn-B) = wp(S:, R)

EEorze
wp Rule: Alternations (3) Exercise o
Is this program correct?
{x>0ny>0}
if x > y then
bigger := x ; smaller :=y
else
bigger := y ; smaller := x
end
{bigger > smaller}
{(x>0Ay>0)A(x>Yy)}
bigger := x ; smaller :=y
{bigger > smaller}
A
{(x>0Ay>0)A=(x>Yy)}
bigger := vy ; smaller := x
{bigger > smaller}

wp Rule: Sequential Composition (1)

‘LASSONDE

Wp(S1 7 827 R) = Wp(S17 Wp(S27 R))

The wp of a sequential composition is such that the |first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

wp Rule: Sequential Composition (2)

‘LASSONDE

Recall:
{@} s {R} = Q= wp(S.R)

How do we prove {Q} Sy ; S {R}?

{@Q}S1 i S2{R} < Q= wp(Sy, wp(Sz, R))

wp(Sy ; S, R)

wp Rule: Sequential Composition (3) Exerci jgsom:s

Is{ True } tmp := x; x := vy; y := tmp{ x>y } correct?
If and only if True = wp(tmp := x ; x =y ; y := tmp, X> V)
wp(tmp := x ; |X =y ; y := tmp|, X>Yy)

= {wp rule for seg. comp.}

wp(tmp := x, wp(x := vy ; ,x>y))
= {wp rule for seg. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp,X>)))
= {wp rule for assignment}

wp(tmp := x, wp(x := y,[x]|>tmp))

= {wp rule for assignment}

wp(tmp := x, y>)

= {wp rule for assignment}
y>x
-+ True = y > x does not hold in general.

.. The above program is not correct.

LASSONDE

Loops

¢ Aloop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers
¢ Loops are needed and powerful
e But loops very hard to get right:

o Infinite loops

o “off-by-one” error

o Improper handling of borderline cases
o Not establishing the desired condition

[termination]
[partial correctness |
[partial correctness]
[partial correctness]

Loops: Binary Search

LASSONDE
BS1 BS2
fro e 4 implementations for
oo = Jand o Joundloor binary search: published,
’ ' " ’ but wrong!
BS3 BS4

See page 381 in Object Oriented
Software Construction

LASSONDE

Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from
o S
"“gll while (- B) {
loop } Sbody
Sbody
end (R
{R}

* In case of C/Java, denotes the stay condition.

* In case of Eiffel, | B| denotes the exit condition.
There is native, syntactic support for checking/proving the
total correctness of loops.

LASSONDE

Contracts for Loops: Syntax

from

Sinit
invariant

invariant_tag: | —-- Bool
until

B
loop

Sbody
variant

variant_tag: V —-- Integer
end

LASSONDE

Contracts for Loops

¢ Use of loop invariants (LI) and loop variants (LV).

o Invariants: | Boolean | expressions for partial correctness.

o Typically a special case of the postcondition.
e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
o Established before the very first iteration.
« Maintained TRUE after each iteration.
o Variants: expressions for termination

o Denotes the number of iterations remaining

e Decreased at the end of each subsequent iteration

e Maintained non-negative at the end of each iteration.

e As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

e Remember:

total correctness = partial correctness + termination
[oravizs: |

LASSONDE

Contracts for Loops: Runtime Checks (1)

Loop
Invariant
Violation

. Loop
) Variant '
Violation N

g8 ot 48

Contracts for Loops: Runtime Checks (2)

LASSONDE
1 | test
2 local
3 i: INTEGER
4 do
5 from
6 i =1
7 invariant
8 1 <=1 and i <= 6
9 until
10 i>5
11 loop
12 io.put_string ("iteration " + i.out + "%N")
13 i =1+ 1
14 variant
15 6 — 1
16 end
17 | end

L8: Changeto 1 <= i and i <= 5 fora Loop Invariant Violation.
L10: Changeto i > 0 to bypass the body of loop.

L15: Changeto 5 - i fora Loop Variant Violation.

LASSONDE

Contracts for Loops: Visualization

Exit condition

Previous state

Initialization Invariant Postcondition

/
7
Bod
Body ”,:sz’* . Body
;
U

\
\

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples

LASSONDE

Contracts for Loops: Example 1.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: -- Vj|alower <j<i e Result> a[j]
across a.lower |..| i as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant

loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

T

Contracts for Loops: Example 1.2 ‘jégsésoms

Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given:

* Loop Invariant: Vj | a.lower <j<i e Result > a[j]
e Loop Variant: a.upper — i + 1

| AFTeR ITERATION | i | Result | LI | EXIT (i> auppen? | LV |

Initialization 1 20 v X -
1st 2 20 v X 3
2nd 3 20 X - —

Loop invariant violation at the end of the 2nd iteration:

Vj|alower <j<[3] e [20]> a[j]

evaluates to false -- 20 # a[3] = 40
[coxsirs:]

‘LASSONDE

Contracts for Loops: Example 2.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower
invariant
loop_invariant: —- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant

; Result := a[i]

loop_variant: a.upper - i
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

Contracts for Loops: Example 2.2 ‘jégsésoms

Consider the feature call ’find,max(({20, 10, 40, 30))) ‘ given:

e Loop Invariant: Vj | a.lower < j<i e Result > a[j]
e Loop Variant: a.upper — i

| AFTer ITERATION | i | Result || LI | ExiT (i> auppen? | LV |

Initialization 1 20 v x -
1st 2 20 v X 2
2nd 3 20 v x 1
3rd 4 40 v X 0
4th 5 40 v v -1

Loop variant violation at the end of the 2nd iteration

- a.upper - i =4 -5 evaluates to non-zero.

‘LASSONDE

Contracts for Loops: Example 3.1

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ;
invariant
loop_invariant: —- Vj|a.lower<j<i e Result> a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant

Result := a[i]

loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj| a.lower < j < a.upper o Result > a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]
end
end

e

LASSONDE

Contracts for Loops: Example 3.2

Consider the feature call ’find,max(((20, 10, 40, 30))) ‘ given:
e Loop Invariant: Vj | a.lower < j<i e Result > a[j]

e Loop Variant: a.upper — i+ 1

e Postcondition : Vj | a.lower < j < a.upper o Result > a[j]

AFTER ITERATION || i | Result || LI | EXIT (i > a.upper)? | LV
Initialization 1 20 v X -
1st o| 20 |« . 3
2nd 3| 20 | . 2
3rd 4| a0 || v . 1
4th 5| 40 | v v 0
Contracts for Loops: Exercise o

class DICTIONARY[V, K]

feature {NONE} - Impl
values: ARRAY[K]
keys: ARRAY K]

feature - Abstraction Function
model: FUN[K, V]
feature —— Queries

get_keys(v: V): ITERABLE[K]
local i: INTEGER; ks: LINKED_ LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant

until 1 > keys.upper

do if values[i] ~ v then ks.extend(keys[i]) end
end
Result := ks.new_cursor

ensure

result valid: VK| Kk eResult e model.item(k) ~ v
nomissing keys: Vk |k e model.domain e model.item(k) ~ v = k € Result
end

LASSONDE

Proving Correctness of Loops (1)

{0} from
Sinit
invariant
i
until
B
loop

Sbmw
variant

%4
end {R}

o Aloopis partially correct if:
¢ Given precondition Q, the initialization step Sjy; establishes L/ /.
o At the end of Sy, if Not yet to exit, L/ / is maintained.
¢ If ready to exit and L/ / maintained, postcondition R is established.
o Aloop terminates if:
e Given LI /, and not yet to exit, Spoqy Maintains LV V as non-negative.
e Given LI I, and not yet to exit, Spoq, decrements LV V.

LASSONDE

Proving Correctness of Loops (2)

{Q} from Sj;; invariant |/ until B loop Spoq, variant V end {R}

o Aloopis partially correct if:
o Given precondition Q, the initialization step Sj,; establishes L/ /.
o At the end of Spoqy, if Not yet to exit, L/ [is maintained.
| {17 =B} Swoay {1} |
 If ready to exit and L/ | maintained, postcondition R is established.

o Aloop terminates if:

e Given L/ I, and not yet to exit, Spoqy maintains LV V as non-negative.
] {I'A-B} Spoqy {V >0} \

e Given LI I, and not yet to exit, Spoqy decrements LV V.
] {IAn =B} Spogy {V < Vo} \

Proving Correctness of Loops: Exercise (1 ‘& ésésom

Prove that the following program is correct:

find max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := ali]
invariant
loop_invariant: Vj|a.lower <j<i e Result> a[j]
until
i > a.upper
loop
if a [i] > Result then Result := a [i] end
i =1+ 1
variant
loop_variant: a.upper — 1 + 1
end
ensure
correct_result: Vj|a.lower <j< a.upper e Result> a[j]
end
end
EorZs

Proving Correctness of Loops: Exercise (1 Jé ésésom

Prove that each of the following Hoare Triples is TRUE.
1. Establishment of Loop Invariant:

{ True }
i := a.lower
Result := a[i]

{ Vj|alower<j<ie Result>a[j] }

2. Maintenance of Loop Invariant:

{ (Vj|a.lower <j<i e Result>alj])n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i =1+ 1

{ (Vj|alower<j<i e Result>alj]) }

3. Establishment of Postcondition upon Termination:

(Vj|a.lower <j<i e Result>alj])Ani>a.upper
= V)| a.lower < j < a.upper o Result > a[j]

Proving Correctness of Loops: Exercise (1 :& ésésom

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

{ (Vj|alower <j<i e Result>alj]) n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i:=1+1

{ a.upper-i+1>0 }

5. Loop Variant Keeps Decrementing before Exit:

{ (Vj|alower<j<i e Result>alj]) n-(i>a.upper) }
if a [i] > Result then Result := a [i] end
i:=1+1

{ a.upper-i+1< (aupper-i+1)y }

where (a.upper —i+1)o = a.uppery — ip + 1

Proof Tips (1) LASSONDE

(Q} s {R}={QAP} s {R)

In order to prove {Q A P} s {R}, it is sufficient to prove a version
with a weaker precondition: {Q} s {R}.

Proof:
o Assume: {Q} s {R}

It's equivalent to assuming: @ = wp(s, R) (A1)
o Toprove: {QA P} s {R}

e It's equivalent to proving: Q A P = wp(s, R)

e Assume: Q A P, which implies

o According to (A1), we have wp(s, R). m

Proof Tips (2) LassonDE

When calculating wp(s, R), if either program s or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(s, a[i] > 0), augment it as

wp(s, a.lower < i < a.upper A a[i] > 0)

e.g., Before calculating wp(x := a[il, R), augmentit as

wp(x := alil, a.lower <i<a.uppernR)

Index (1) :ASSONDE

Assertions: Weak vs. Strong
[Assertions: Preconditionsl
[Assertions: Postconditions|
[Motivating Examples (1)]

Motivating Examples (2)

Doftware Correctness]

Hoare Logic and Software Correctness|
Proof of Hoare Iriple using wgd

Hoare Logic: A Simple Example)

Penoting New and Old Values]
[oxaws: |

Index (2)

LASSONDE

lwp Rule: Assignments (1)

lwp Rule: Assignments (2)]

wp Rule: Assignments (3) Exercise]

lwp Rule: Assignments (4) Exercise]

lwo Rule: Alternations (1)|

lwp Rule: Alternations (2)|

lwp Rule: Alternations (3) Exercise]

lwp Rule: Sequential Composition (1)

lwp Rule: Sequential Composition (2)]

lwp Rule: Sequential Composition (3) Exercise)

IIE
Lorsz]

Index (3)

LASSONDE

Loops: Binary Search|

[Correctness of Loops

[Contracts for Loops: Syntax|

[Contracts for Loops|

IContracts for Loops:

Runtime Checks (1)|

IContracts for Loops:

Runtime Checks (2)|

[Contracts for Loops:

Visualization|

IContracts for Loops:

Example 1.1|

IContracts for Loops:

Example 1.2

IContracts for Loops:

Example 2.1|

[Contracts for Loops:

Example 2.2|

Index (4)

[Contracts for Loops: Example 3.1|
[Contracts for Loops: Example 3.2

[Contracts for Loops: Exerciseg

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)|

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

pProving Correctness of Loops: Exercise (1.3)

Proof Tips (2)

