
Program Correctness
OOSC2 Chapter 11

EECS3311 A: Software Design
Winter 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Assertions: Weak vs. Strong
● Describe each assertion as a set of satisfying value.

x > 3 has satisfying values { x ∣ x > 3 } = { 4,5,6,7, . . . }
x > 4 has satisfying values { x ∣ x > 4 } = { 5,6,7, . . . }

● An assertion p is stronger than an assertion q if p’s set of
satisfying values is a subset of q’s set of satisfying values.
○ Logically speaking, p being stronger than q (or, q being weaker

than p) means p⇒ q.
○ e.g., x > 4⇒ x > 3

● What’s the weakest assertion? [TRUE]
● What’s the strongest assertion? [FALSE]
● In Design by Contract :

○ A weaker invariant has more acceptable object states
e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT

○ A weaker precondition has more acceptable input values

○ A weaker postcondition has more acceptable output values
2 of 48

Assertions: Preconditions

Given preconditions P1 and P2, we say that

P2 requires less than P1 if
P2 is less strict on (thus allowing more) inputs than P1 does.

{ x ∣ P1(x) } ⊆ { x ∣ P2(x) }

More concisely:
P1 ⇒ P2

e.g., For command withdraw(amount: INTEGER),
P2 ∶ amount ≥ 0 requires less than P1 ∶ amount > 0

What is the precondition that requires the least? [true]
3 of 48

Assertions: Postconditions

Given postconditions or invariants Q1 and Q2, we say that

Q2 ensures more than Q1 if
Q2 is stricter on (thus allowing less) outputs than Q1 does.

{ x ∣ Q2(x) } ⊆ { x ∣ Q1(x) }

More concisely:
Q2 ⇒ Q1

e.g., For query q(i: INTEGER): BOOLEAN,
Q2 ∶ Result = (i > 0) ∧ (i mod 2 = 0) ensures more than

Q1 ∶ Result = (i > 0) ∨ (i mod 2 = 0)

What is the postcondition that ensures the most? [false]
4 of 48

Motivating Examples (1)

Is this feature correct?

class FOO
i: INTEGER
increment_by_9
require

i > 3
do
i := i + 9

ensure
i > 13

end
end

Q: Is i > 3 is too weak or too strong?
A: Too weak
∵ assertion i > 3 allows value 4 which would fail postcondition.

5 of 48

Motivating Examples (2)
Is this feature correct?
class FOO
i: INTEGER
increment_by_9
require

i > 5
do
i := i + 9

ensure
i > 13

end
end

Q: Is i > 5 too weak or too strong?
A: Maybe too strong
∵ assertion i > 5 disallows 5 which would not fail postcondition.

Whether 5 should be allowed depends on the requirements.
6 of 48

Software Correctness

● Correctness is a relative notion:

consistency of implementation with respect to specification.
⇒ This assumes there is a specification!

● We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : {Q} S {R}

○ e.g., {i > 3} i := i + 9 {i > 13}
○ e.g., {i > 5} i := i + 9 {i > 13}
○ If {Q} S {R} can be proved TRUE, then the S is correct.

e.g., {i > 5} i := i + 9 {i > 13} can be proved TRUE.
○ If {Q} S {R} cannot be proved TRUE, then the S is incorrect.

e.g., {i > 3} i := i + 9 {i > 13} cannot be proved TRUE.

7 of 48

Hoare Logic

● Consider a program S with precondition Q and postcondition R.
○ {Q} S {R} is a correctness predicate for program S
○ {Q} S {R} is TRUE if program S starts executing in a state

satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

● Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .

Proofs of (a) + (b) imply total correctness .

8 of 48

Hoare Logic and Software Correctness
Consider the contract view of a feature f (whose body of
implementation is S) as a Hoare Triple :

{Q} S {R}

Q is the precondition of f .
S is the implementation of f .
R is the postcondition of f .
○ {true} S {R}

All input values are valid [Most-user friendly]
○ {false} S {R}

All input values are invalid [Most useless for clients]
○ {Q} S {true}

All output values are valid [Most risky for clients; Easiest for suppliers]
○ {Q} S {false}

All output values are invalid [Most challenging coding task]
○ {true} S {true}

All inputs/outputs are valid (No contracts) [Least informative]
9 of 48

Proof of Hoare Triple using wp

{Q} S {R} ≡ Q⇒ wp(S,R)

● wp(S,R) is the weakest precondition for S to establish R .
● S can be:

○ Assignments (x := y)
○ Alternations (if . . . then . . . else . . . end)
○ Sequential compositions (S1 ; S2)
○ Loops (from . . . until . . . loop . . . end)

● We will learn how to calculate the wp for the above
programming constructs.

10 of 48

Hoare Logic A Simple Example

Given {??}n ∶= n + 9{n > 13}:

● n > 4 is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

● Any precondition that is equal to or stronger than the wp
(n > 4) will result in a correct program.
e.g., {n > 5}n ∶= n + 9{n > 13} can be proved TRUE.

● Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n > 3}n ∶= n + 9{n > 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n > 13.

11 of 48

Denoting New and Old Values

In the postcondition , for a program variable x :
○ We write x0 to denote its pre-state (old) value.
○ We write x to denote its post-state (new) value.

Implicitly, in the precondition , all program variables have their
pre-state values.

e.g., {b0 > a} b := b - a {b = b0 − a}
● Notice that:

○ We may choose to write “b” rather than “b0” in preconditions
∵ All variables are pre-state values in preconditions

○ We don’t write “b0” in program
∵ there might be multiple intermediate values of a variable due to
sequential composition

12 of 48

wp Rule: Assignments (1)

wp(x := e, R) = R[x ∶= e]

R[x ∶= e] means to substitute all free occurrences of variable x in
postcondition R by expression e.

13 of 48

wp Rule: Assignments (2)

Recall:
{Q} S {R} ≡ Q⇒ wp(S,R)

How do we prove {Q} x := e {R}?

{Q} x := e {R} ⇐⇒ Q⇒ R[x ∶= e]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wp(x := e,R)

14 of 48

wp Rule: Assignments (3) Exercise
What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x > x0}

For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x > x0).

wp(x := x + 1, x > x0)

= {Rule of wp: Assignments}
x > x0[x ∶= x0 + 1]

= {Replacing x by x0 + 1}
x0 + 1 > x0

= {1 > 0 always true}
True

Any precondition is OK. False is valid but not useful.
15 of 48

wp Rule: Assignments (4) Exercise

What is the weakest precondition for a program x := x + 1 to
establish the postcondition x > x0?

{??} x := x + 1 {x = 23}

For the above Hoare triple to be TRUE , it must be that
??⇒ wp(x := x + 1, x = 23).

wp(x := x + 1, x = 23)
= {Rule of wp: Assignments}

x = 23[x ∶= x0 + 1]
= {Replacing x by x0 + 1}

x0 + 1 = 23
= {arithmetic}

x0 = 22

Any precondition weaker than x = 22 is not OK.
16 of 48

wp Rule: Alternations (1)

wp(if B then S1 else S2 end, R) =

⎛
⎜
⎜
⎝

B ⇒ wp(S1, R)

∧

¬ B ⇒ wp(S2, R)

⎞
⎟
⎟
⎠

The wp of an alternation is such that all branches are able to
establish the postcondition R.

17 of 48

wp Rule: Alternations (2)
Recall: {Q} S {R} ≡ Q⇒ wp(S,R)

How do we prove that {Q} if B then S1 else S2 end {R}?
{Q}
if B then
{Q ∧ B } S1 {R}

else
{Q ∧ ¬ B } S2 {R}

end
{R}

{Q} if B then S1 else S2 end {R}

⇐⇒

⎛
⎜
⎜
⎝

{ Q ∧ B } S1 { R }

∧

{ Q ∧ ¬ B } S2 { R }

⎞
⎟
⎟
⎠

⇐⇒

⎛
⎜
⎜
⎝

(Q ∧ B) ⇒ wp(S1, R)

∧

(Q ∧ ¬ B) ⇒ wp(S2, R)

⎞
⎟
⎟
⎠

18 of 48

wp Rule: Alternations (3) Exercise
Is this program correct?

{x > 0 ∧ y > 0}
if x > y then
bigger := x ; smaller := y

else
bigger := y ; smaller := x

end
{bigger ≥ smaller}

⎛
⎜
⎝

{(x > 0 ∧ y > 0) ∧ (x > y)}
bigger := x ; smaller := y

{bigger ≥ smaller}

⎞
⎟
⎠

∧

⎛
⎜
⎝

{(x > 0 ∧ y > 0) ∧ ¬(x > y)}
bigger := y ; smaller := x

{bigger ≥ smaller}

⎞
⎟
⎠

19 of 48

wp Rule: Sequential Composition (1)

wp(S1 ; S2, R) = wp(S1, wp(S2, R))

The wp of a sequential composition is such that the first phase

establishes the wp for the second phase to establish the
postcondition R.

20 of 48

wp Rule: Sequential Composition (2)

Recall:
{Q} S {R} ≡ Q⇒ wp(S,R)

How do we prove {Q} S1 ; S2 {R}?

{Q} S1 ; S2 {R} ⇐⇒ Q⇒ wp(S1, wp(S2, R))

´¹¹¹¸¹¹¹¶
wp(S1 ; S2,R)

21 of 48

wp Rule: Sequential Composition (3) Exercise
Is { True } tmp := x; x := y; y := tmp { x > y } correct?
If and only if True⇒ wp(tmp := x ; x := y ; y := tmp, x > y)

wp(tmp := x ; x := y ; y := tmp , x > y)
= {wp rule for seq. comp.}

wp(tmp := x, wp(x := y ; y := tmp , x > y))
= {wp rule for seq. comp.}

wp(tmp := x, wp(x := y, wp(y := tmp, x > y)))

= {wp rule for assignment}
wp(tmp := x, wp(x := y, x > tmp))

= {wp rule for assignment}
wp(tmp := x, y > tmp)

= {wp rule for assignment}
y > x

∵ True⇒ y > x does not hold in general.
∴ The above program is not correct.

22 of 48

Loops

● A loop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers

● Loops are needed and powerful
● But loops very hard to get right:

○ Infinite loops [termination]
○ “off-by-one” error [partial correctness]
○ Improper handling of borderline cases [partial correctness]
○ Not establishing the desired condition [partial correctness]

23 of 48

Loops: Binary Search

4 implementations for
binary search: published,
but wrong!

See page 381 in Object Oriented
Software Construction

24 of 48

Correctness of Loops

How do we prove that the following loops are correct?

{Q}
from

Sinit
until

B
loop

Sbody
end
{R}

{Q}
Sinit
while(¬ B) {

Sbody
}
{R}

● In case of C/Java, ¬B denotes the stay condition.

● In case of Eiffel, B denotes the exit condition.
There is native, syntactic support for checking/proving the
total correctness of loops.

25 of 48

Contracts for Loops: Syntax

from
Sinit

invariant
invariant_tag: I -- Boolean expression for partial correctness

until
B

loop
Sbody

variant
variant_tag: V -- Integer expression for termination

end

26 of 48

Contracts for Loops
● Use of loop invariants (LI) and loop variants (LV).

○ Invariants: Boolean expressions for partial correctness.
● Typically a special case of the postcondition.

e.g., Given postcondition “ Result is maximum of the array ”:

LI can be “ Result is maximum of the part of array scanned so far ”.
● Established before the very first iteration.
● Maintained TRUE after each iteration.

○ Variants: Integer expressions for termination

● Denotes the number of iterations remaining
● Decreased at the end of each subsequent iteration
● Maintained non-negative at the end of each iteration.
● As soon as value of LV reaches zero, meaning that no more iterations

remaining, the loop must exit.
● Remember:

total correctness = partial correctness + termination
27 of 48

Contracts for Loops: Runtime Checks (1)

Loop
Invariant
Violation

Sinit
not I

I
B

not B

Sbody

V � 0� 0

Loop
Variant

Violation

V < 0< 0

28 of 48

Contracts for Loops: Runtime Checks (2)
1 test
2 local
3 i: INTEGER
4 do
5 from
6 i := 1
7 invariant
8 1 <= i and i <= 6
9 until

10 i > 5
11 loop
12 io.put_string ("iteration " + i.out + "%N")
13 i := i + 1
14 variant
15 6 - i
16 end
17 end

L8: Change to 1 <= i and i <= 5 for a Loop Invariant Violation.
L10: Change to i > 0 to bypass the body of loop.
L15: Change to 5 - i for a Loop Variant Violation.

29 of 48

Contracts for Loops: Visualization

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
30 of 48

Contracts for Loops: Example 1.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j ≤ i ● Result ≥ a[j]
across a.lower |..| i as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

31 of 48

Contracts for Loops: Example 1.2
Consider the feature call find max(⟨⟨20, 10, 40, 30⟩⟩) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j ≤ i ● Result ≥ a[j]
● Loop Variant : a.upper − i + 1

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 × – –

Loop invariant violation at the end of the 2nd iteration:

∀j ∣ a.lower ≤ j ≤ 3 ● 20 ≥ a[j]

evaluates to false ∵ 20 /≥ a[3] = 40
32 of 48

Contracts for Loops: Example 2.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

33 of 48

Contracts for Loops: Example 2.2
Consider the feature call find max(⟨⟨20, 10, 40, 30⟩⟩) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
● Loop Variant : a.upper − i

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 2

2nd 3 20 ✓ × 1

3rd 4 40 ✓ × 0

4th 5 40 ✓ ✓ -1

Loop variant violation at the end of the 2nd iteration
∵ a.upper − i = 4 − 5 evaluates to non-zero.

34 of 48

Contracts for Loops: Example 3.1
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: -- ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
across a.lower |..| (i - 1) as j all Result >= a [j.item] end

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: -- ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]
across a.lower |..| a.upper as j all Result >= a [j.item]

end
end

35 of 48

Contracts for Loops: Example 3.2
Consider the feature call find max(⟨⟨20, 10, 40, 30⟩⟩) , given:
● Loop Invariant : ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]
● Loop Variant : a.upper − i + 1
● Postcondition : ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

AFTER ITERATION i Result LI EXIT (i > a.upper)? LV

Initialization 1 20 ✓ × –

1st 2 20 ✓ × 3

2nd 3 20 ✓ × 2

3rd 4 40 ✓ × 1

4th 5 40 ✓ ✓ 0

36 of 48

Contracts for Loops: Exercise
class DICTIONARY[V, K]
feature {NONE} -- Implementations
values: ARRAY[K]
keys: ARRAY[K]

feature -- Abstraction Function
model: FUN[K, V]

feature -- Queries
get_keys(v: V): ITERABLE[K]
local i: INTEGER; ks: LINKED_LIST[K]
do
from i := keys.lower ; create ks.make_empty

invariant ??

until i > keys.upper
do if values[i] ∼ v then ks.extend(keys[i]) end
end
Result := ks.new_cursor

ensure
result valid: ∀k ∣ k ∈ Result ● model.item(k) ∼ v
no missing keys: ∀k ∣ k ∈ model.domain ● model.item(k) ∼ v ⇒ k ∈ Result

end

37 of 48

Proving Correctness of Loops (1)
{Q} from

Sinit
invariant

I
until

B
loop

Sbody
variant

V
end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.
● At the end of Sbody , if not yet to exit, LI I is maintained.
● If ready to exit and LI I maintained, postcondition R is established.

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.
● Given LI I, and not yet to exit, Sbody decrements LV V .

38 of 48

Proving Correctness of Loops (2)

{Q} from Sinit invariant I until B loop Sbody variant V end {R}

○ A loop is partially correct if:
● Given precondition Q, the initialization step Sinit establishes LI I.

{Q} Sinit {I}
● At the end of Sbody , if not yet to exit, LI I is maintained.

{I ∧ ¬B} Sbody {I}
● If ready to exit and LI I maintained, postcondition R is established.

I ∧ B ⇒ R

○ A loop terminates if:
● Given LI I, and not yet to exit, Sbody maintains LV V as non-negative.

{I ∧ ¬B} Sbody {V ≥ 0}
● Given LI I, and not yet to exit, Sbody decrements LV V .

{I ∧ ¬B} Sbody {V < V0}

39 of 48

Proving Correctness of Loops: Exercise (1.1)
Prove that the following program is correct:
find_max (a: ARRAY [INTEGER]): INTEGER
local i: INTEGER
do
from
i := a.lower ; Result := a[i]

invariant
loop_invariant: ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]

until
i > a.upper

loop
if a [i] > Result then Result := a [i] end
i := i + 1

variant
loop_variant: a.upper - i + 1

end
ensure
correct_result: ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

end
end

40 of 48

Proving Correctness of Loops: Exercise (1.2)
Prove that each of the following Hoare Triples is TRUE.

1. Establishment of Loop Invariant:
{ True }

i := a.lower
Result := a[i]

{ ∀j ∣ a.lower ≤ j < i ● Result ≥ a[j] }

2. Maintenance of Loop Invariant:
{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) }

3. Establishment of Postcondition upon Termination:

(∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ i > a.upper
⇒ ∀j ∣ a.lower ≤ j ≤ a.upper ● Result ≥ a[j]

41 of 48

Proving Correctness of Loops: Exercise (1.3)

Prove that each of the following Hoare Triples is TRUE.

4. Loop Variant Stays Non-Negative Before Exit:

{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ a.upper − i + 1 ≥ 0 }

5. Loop Variant Keeps Decrementing before Exit:

{ (∀j ∣ a.lower ≤ j < i ● Result ≥ a[j]) ∧ ¬(i > a.upper) }

if a [i] > Result then Result := a [i] end
i := i + 1

{ a.upper − i + 1 < (a.upper − i + 1)0 }

where (a.upper − i + 1)0 ≡ a.upper0 − i0 + 1

42 of 48

Proof Tips (1)

{Q} S {R} ⇒ {Q ∧P} S {R}

In order to prove {Q ∧P} S {R}, it is sufficient to prove a version
with a weaker precondition: {Q} S {R}.

Proof:
○ Assume: {Q} S {R}

It’s equivalent to assuming: Q ⇒ wp(S, R) (A1)
○ To prove: {Q ∧P} S {R}

● It’s equivalent to proving: Q ∧ P ⇒ wp(S, R)
● Assume: Q ∧ P, which implies Q
● According to (A1), we have wp(S, R). ∎

43 of 48

Proof Tips (2)

When calculating wp(S, R), if either program S or postcondition R
involves array indexing, then R should be augmented accordingly.

e.g., Before calculating wp(S, a[i] > 0), augment it as

wp(S, a.lower ≤ i ≤ a.upper ∧ a[i] > 0)

e.g., Before calculating wp(x := a[i], R), augment it as

wp(x := a[i], a.lower ≤ i ≤ a.upper ∧R)

44 of 48

Index (1)

Assertions: Weak vs. Strong

Assertions: Preconditions

Assertions: Postconditions

Motivating Examples (1)

Motivating Examples (2)

Software Correctness

Hoare Logic

Hoare Logic and Software Correctness

Proof of Hoare Triple using wp

Hoare Logic: A Simple Example

Denoting New and Old Values
45 of 48

Index (2)
wp Rule: Assignments (1)

wp Rule: Assignments (2)

wp Rule: Assignments (3) Exercise

wp Rule: Assignments (4) Exercise

wp Rule: Alternations (1)

wp Rule: Alternations (2)

wp Rule: Alternations (3) Exercise

wp Rule: Sequential Composition (1)

wp Rule: Sequential Composition (2)

wp Rule: Sequential Composition (3) Exercise

Loops
46 of 48

Index (3)
Loops: Binary Search

Correctness of Loops

Contracts for Loops: Syntax

Contracts for Loops

Contracts for Loops: Runtime Checks (1)

Contracts for Loops: Runtime Checks (2)

Contracts for Loops: Visualization

Contracts for Loops: Example 1.1

Contracts for Loops: Example 1.2

Contracts for Loops: Example 2.1

Contracts for Loops: Example 2.2
47 of 48

Index (4)
Contracts for Loops: Example 3.1

Contracts for Loops: Example 3.2

Contracts for Loops: Exercise

Proving Correctness of Loops (1)

Proving Correctness of Loops (2)

Proving Correctness of Loops: Exercise (1.1)

Proving Correctness of Loops: Exercise (1.2)

Proving Correctness of Loops: Exercise (1.3)

Proof Tips (1)

Proof Tips (2)

48 of 48

	Assertions: Weak vs. Strong
	Assertions: Preconditions
	Assertions: Postconditions
	Motivating Examples (1)
	Motivating Examples (2)
	Software Correctness
	Hoare Logic
	Hoare Logic and Software Correctness
	Proof of Hoare Triple using wp
	Hoare Logic: A Simple Example
	Denoting New and Old Values
	wp Rule: Assignments (1)
	wp Rule: Assignments (2)
	wp Rule: Assignments (3) Exercise
	wp Rule: Assignments (4) Exercise
	wp Rule: Alternations (1)
	wp Rule: Alternations (2)
	wp Rule: Alternations (3) Exercise
	wp Rule: Sequential Composition (1)
	wp Rule: Sequential Composition (2)
	wp Rule: Sequential Composition (3) Exercise
	Loops
	Loops: Binary Search
	Correctness of Loops
	Contracts for Loops: Syntax
	Contracts for Loops
	Contracts for Loops: Runtime Checks (1)
	Contracts for Loops: Runtime Checks (2)
	Contracts for Loops: Visualization
	Contracts for Loops: Example 1.1
	Contracts for Loops: Example 1.2
	Contracts for Loops: Example 2.1
	Contracts for Loops: Example 2.2
	Contracts for Loops: Example 3.1
	Contracts for Loops: Example 3.2
	Contracts for Loops: Exercise
	Proving Correctness of Loops (1)
	Proving Correctness of Loops (2)
	Proving Correctness of Loops: Exercise (1.1)
	Proving Correctness of Loops: Exercise (1.2)
	Proving Correctness of Loops: Exercise (1.3)
	Proof Tips (1)
	Proof Tips (2)

