
Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 A: Software Design
Winter 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Copying Objects
Say variables c1 and c2 are both declared of type C. [c1, c2: C]
● There is only one attribute a declared in class C.
● c1.a and c2.a are references to objects.

a

C

c1

a

C

c2

c1.a

c2.a

2 of 39

Copying Objects: Reference Copy
Reference Copy c1 := c2

○ Copy the address stored in variable c2 and store it in c1.
⇒ Both c1 and c2 point to the same object.
⇒ Updates performed via c1 also visible to c2. [aliasing]

a

C

c1

a

C

c2

c1.a

c2.a

3 of 39

Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object. [c1 /= c2]
⇒ c1.a and c2.a are pointing to the same object.
⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

4 of 39

Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object.
⇒ c1.a and c2.a are not pointing to the same object.
⇒ No aliasing occurs at any levels.

a

C

c1

a

C

c3

c1.a

a

C

c2

c2.a

c2.a.deep_twin

5 of 39

Copying Objects

EECS, York University Object Oriented Software Construction 15-05-27 16:29 28

Shallow and deep cloning

!  Initial situation:

!  Result of:

b := a

c := a.twin

d := a.deep_twin

“Almaviva” name
landlord

loved_one

a
O1

“Figaro”
O2

“Susanna”
O3

b

“Almaviva” O4

c

“Almaviva” name
landlord

loved_one

O5

“Figaro”
O6

“Susanna”
O7

d

6 of 39

Example: Collection Objects (1)
○ In any OOPL, when a variable is declared of a type that

corresponds to a known class (e.g., STRING, ARRAY,
LINKED LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).

○ Assume the following variables of the same type:

local
imp : ARRAY[STRING]
old_imp: ARRAY[STRING]

do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Tom", 3)

● Before we undergo a change on imp, we “ copy ” it to old imp.
● After the change is completed, we compare imp vs. old imp.
● Can a change always be visible between “old” and “new ” imp?

7 of 39

Example: Collection Objects (2)
● Variables imp and old imp store address(es) of some array(s).
● Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

imp[1] imp[2] imp[3]

imp

old_imp

??

8 of 39

Reference Copy of Collection Object

1 old imp := imp

2 Result := old_imp = imp -- Result = true
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value “Jim”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

9 of 39

Shallow Copy of Collection Object (1)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j]
7 end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Jim”

STRING

value

10 of 39

Shallow Copy of Collection Object (2)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j]
7 end -- Result = true

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Mark***”

11 of 39

Deep Copy of Collection Object (1)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Jim”

STRING

value

12 of 39

Deep Copy of Collection Object (2)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j] end -- Result = false

Before Executing L3 After Executing L3

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

old_imp

imp

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

“Mark***”

13 of 39

How are contracts checked at runtime?
○ All contracts are specified as Boolean expressions.
○ Right before a feature call (e.g., acc.withdraw(10)):
● The current state of acc is called its pre-state.
● Evaluate pre-condition using current values of attributes/queries.
● Cache values, via := , of old expressions in the post-condition .

e.g., old accounts[i].id [old accounts i id ∶= accounts[i].id]

e.g., (old accounts[i]).id [old accounts i ∶= accounts[i]]

e.g., (old accounts[i].twin).id [old accounts i twin ∶= accounts[i].twin]

e.g., (old accounts)[i].id [old accounts ∶= accounts]

e.g., (old accounts.twin)[i].id [old accounts twin ∶= accounts.twin]

e.g., (old Current).accounts[i].id [old current ∶= Current]

e.g., (old Current.twin).accounts[i].id [old current twin ∶= Current.twin]

○ Right after the feature call:
● The current state of acc is called its post-state.
● Evaluate invariant using current values of attributes and queries.
● Evaluate post-condition using both current values and “cached”

values of attributes and queries.14 of 39

When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● The second contract is much harder to specify:
○ Reference aliasing [ref copy vs. shallow copy vs. deep copy]
○ Iterable structure [use across]

15 of 39

Account
class
ACCOUNT

inherit
ANY
redefine is_equal end

create
make

feature -- Attributes
owner: STRING
balance: INTEGER

feature -- Commands
make (n: STRING)
do
owner := n
balance := 0

end

deposit(a: INTEGER)
do
balance := balance + a

ensure
balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN
do
Result :=

owner ∼ other.owner
and balance = other.balance

end
end

16 of 39

Bank
class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require -- the input name exists
existing: across accounts is acc some acc.owner ∼ n end
-- not (across accounts is acc all acc.owner /∼ n end)

do . . . ensure Result.owner ∼ n end
add (n: STRING)
require -- the input name does not exist
non_existing: across accounts is acc all acc.owner /∼ n end
-- not (across accounts is acc some acc.owner ∼ n end)

local new_account: ACCOUNT
do
create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end
end

17 of 39

Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)

VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

18 of 39

Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b

accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts

19 of 39

Version 1:
Incomplete Contracts, Correct Implementation
class BANK
deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ∼ n then accounts[i].deposit(a) end
i := i + 1

end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

end
end

20 of 39

Test of Version 1

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v1 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end

21 of 39

Test of Version 1: Result

22 of 39

Version 2:
Incomplete Contracts, Wrong Implementation
class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

end
end

Current postconditions lack a check that accounts other than n
are unchanged.

23 of 39

Test of Version 2

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v2 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end

24 of 39

Test of Version 2: Result

25 of 39

Version 3:
Complete Contracts with Reference Copy
class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :

across old accounts is acc
all
acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)

end
end

end
26 of 39

Test of Version 3

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
local
b: BANK

do
comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v3 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end

27 of 39

Test of Version 3: Result

28 of 39

Version 4:
Complete Contracts with Shallow Object Copy
class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :

across old accounts.twin is acc
all
acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)

end
end

end
29 of 39

Test of Version 4

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN
local
b: BANK

do
comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v4 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end

30 of 39

Test of Version 4: Result

31 of 39

Version 5:
Complete Contracts with Deep Object Copy
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER

do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :

across old accounts.deep twin is acc
all
acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)

end
end

end
32 of 39

Test of Version 5

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK

do
comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v5 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end

33 of 39

Test of Version 5: Result

34 of 39

Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [×]
○ accounts = old accounts.twin [×]
○ accounts = old accounts.deep_twin [×]
○ accounts ˜ old accounts [×]
○ accounts ˜ old accounts.twin [×]
○ accounts ˜ old accounts.deep_twin [✓]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?

35 of 39

Index (1)

Copying Objects

Copying Objects: Reference Copy

Copying Objects: Shallow Copy

Copying Objects: Deep Copy

Example: Copying Objects

Example: Collection Objects (1)

Example: Collection Objects (2)

Reference Copy of Collection Object

Shallow Copy of Collection Object (1)

Shallow Copy of Collection Object (2)

Deep Copy of Collection Object (1)
36 of 39

Index (2)

Deep Copy of Collection Object (2)

How are contracts checked at runtime?

When are contracts complete?

Account

Bank

Roadmap of Illustrations

Object Structure for Illustration
Version 1:
Incomplete Contracts, Correct Implementation

Test of Version 1

Test of Version 1: Result
37 of 39

Index (3)

Version 2:
Incomplete Contracts, Wrong Implementation

Test of Version 2

Test of Version 2: Result
Version 3:
Complete Contracts with Reference Copy

Test of Version 3

Test of Version 3: Result
Version 4:
Complete Contracts with Shallow Object Copy

Test of Version 4

Test of Version 4: Result
38 of 39

Index (4)
Version 5:
Complete Contracts with Deep Object Copy

Test of Version 5

Test of Version 5: Result

Exercise

39 of 39

	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Example: Copying Objects
	Example: Collection Objects (1)
	Example: Collection Objects (2)
	Reference Copy of Collection Object
	Shallow Copy of Collection Object (1)
	Shallow Copy of Collection Object (2)
	Deep Copy of Collection Object (1)
	Deep Copy of Collection Object (2)
	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Exercise

