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Copying Objects
Say variables c1 and c2 are both declared of type C. [ c1, c2: C ]
● There is only one attribute a declared in class C.
● c1.a and c2.a are references to objects.
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Copying Objects: Reference Copy
Reference Copy c1 := c2

○ Copy the address stored in variable c2 and store it in c1.
⇒ Both c1 and c2 point to the same object.
⇒ Updates performed via c1 also visible to c2. [ aliasing ]
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Copying Objects: Shallow Copy
Shallow Copy c1 := c2.twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Initialize each attribute a of c3 via reference copy : c3.a := c2.a

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object. [ c1 /= c2 ]
⇒ c1.a and c2.a are pointing to the same object.
⇒ Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)
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Copying Objects: Deep Copy
Deep Copy c1 := c2.deep_twin

○ Create a temporary, behind-the-scene object c3 of type C.
○ Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). ⇒ c3.a := c2.a.
Recursive Case: a is referenced. ⇒ c3.a := c2.a.deep_twin

○ Make a reference copy of c3: c1 := c3

⇒ c1 and c2 are not pointing to the same object.
⇒ c1.a and c2.a are not pointing to the same object.
⇒ No aliasing occurs at any levels.
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Copying Objects
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Shallow and deep cloning 

!  Initial situation: 

!  Result of: 

b := a 

c := a.twin 

d := a.deep_twin 
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Example: Collection Objects (1)
○ In any OOPL, when a variable is declared of a type that

corresponds to a known class (e.g., STRING, ARRAY,
LINKED LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).

○ Assume the following variables of the same type:

local
imp : ARRAY[STRING]
old_imp: ARRAY[STRING]

do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force("Tom", 3)

● Before we undergo a change on imp, we “ copy ” it to old imp.
● After the change is completed, we compare imp vs. old imp.
● Can a change always be visible between “old” and “new ” imp?
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Example: Collection Objects (2)
● Variables imp and old imp store address(es) of some array(s).
● Each “slot” of these arrays stores a STRING object’s address.

ARRAY[STRING]

“Alan”

STRING

value “Mark”

STRING

value “Tom”

STRING

value

imp[1] imp[2] imp[3]

imp

old_imp

??
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Reference Copy of Collection Object

1 old imp := imp

2 Result := old_imp = imp -- Result = true
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j]
7 end -- Result = true

Before Executing L3 After Executing L3
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Shallow Copy of Collection Object (1)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j]
7 end -- Result = false

Before Executing L3 After Executing L3
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Shallow Copy of Collection Object (2)

1 old imp := imp.twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j]
7 end -- Result = true

Before Executing L3 After Executing L3
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Deep Copy of Collection Object (1)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2] := "Jim"
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j] end -- Result = false
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Deep Copy of Collection Object (2)
1 old imp := imp.deep twin
2 Result := old_imp = imp -- Result = false
3 imp[2].append ("***")
4 Result :=
5 across 1 |..| imp.count is j
6 all imp [j] ∼ old_imp [j] end -- Result = false

Before Executing L3 After Executing L3
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How are contracts checked at runtime?
○ All contracts are specified as Boolean expressions.
○ Right before a feature call (e.g., acc.withdraw(10)):
● The current state of acc is called its pre-state.
● Evaluate pre-condition using current values of attributes/queries.
● Cache values, via := , of old expressions in the post-condition .

e.g., old accounts[i].id [ old accounts i id ∶= accounts[i].id ]

e.g., (old accounts[i]).id [ old accounts i ∶= accounts[i] ]

e.g., (old accounts[i].twin).id [ old accounts i twin ∶= accounts[i].twin ]

e.g., (old accounts)[i].id [ old accounts ∶= accounts ]

e.g., (old accounts.twin)[i].id [ old accounts twin ∶= accounts.twin ]

e.g., (old Current).accounts[i].id [ old current ∶= Current ]

e.g., (old Current.twin).accounts[i].id [ old current twin ∶= Current.twin ]

○ Right after the feature call:
● The current state of acc is called its post-state.
● Evaluate invariant using current values of attributes and queries.
● Evaluate post-condition using both current values and “cached”
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When are contracts complete?

● In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.
○ Eiffel supports this purpose using the old keyword.

● This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

● Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:
1. The intended change is present; and
2. The rest of the structure is unchanged .

● The second contract is much harder to specify:
○ Reference aliasing [ ref copy vs. shallow copy vs. deep copy ]
○ Iterable structure [ use across ]
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Account
class
ACCOUNT

inherit
ANY
redefine is_equal end

create
make

feature -- Attributes
owner: STRING
balance: INTEGER

feature -- Commands
make (n: STRING)
do
owner := n
balance := 0

end

deposit(a: INTEGER)
do
balance := balance + a

ensure
balance = old balance + a

end

is_equal(other: ACCOUNT): BOOLEAN
do
Result :=

owner ∼ other.owner
and balance = other.balance

end
end
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Bank
class BANK
create make
feature
accounts: ARRAY[ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require -- the input name exists
existing: across accounts is acc some acc.owner ∼ n end
-- not (across accounts is acc all acc.owner /∼ n end)

do . . . ensure Result.owner ∼ n end
add (n: STRING)
require -- the input name does not exist
non_existing: across accounts is acc all acc.owner /∼ n end
-- not (across accounts is acc some acc.owner ∼ n end)

local new_account: ACCOUNT
do
create new_account.make (n)
accounts.force (new_account, accounts.upper + 1)

end
end
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Roadmap of Illustrations

We examine 5 different versions of a command

deposit on (n ∶ STRING; a ∶ INTEGER)

VERSION IMPLEMENTATION CONTRACTS SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes
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Object Structure for Illustration

We will test each version by starting with the same runtime object
structure:

BANK

b

accounts

0 1

ACCOUNT

owner

0balance

“Bill”

ACCOUNT

owner

0balance

“Steve”

b.accounts
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Version 1:
Incomplete Contracts, Correct Implementation
class BANK
deposit_on_v1 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ∼ n then accounts[i].deposit(a) end
i := i + 1

end
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

end
end
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Test of Version 1

class TEST_BANK
test_bank_deposit_correct_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t1: correct imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v1 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end
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Test of Version 1: Result
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Version 2:
Incomplete Contracts, Wrong Implementation
class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count

balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

end
end

Current postconditions lack a check that accounts other than n
are unchanged.
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Test of Version 2

class TEST_BANK
test_bank_deposit_wrong_imp_incomplete_contract: BOOLEAN
local
b: BANK

do
comment("t2: wrong imp and incomplete contract")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v2 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end
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Test of Version 2: Result

25 of 39



Version 3:
Complete Contracts with Reference Copy
class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :

across old accounts is acc
all
acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)

end
end

end
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Test of Version 3

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN
local
b: BANK

do
comment("t3: wrong imp and complete contract with ref copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v3 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end
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Test of Version 3: Result
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Version 4:
Complete Contracts with Shallow Object Copy
class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER
do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :

across old accounts.twin is acc
all
acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)

end
end

end
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Test of Version 4

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLEAN
local
b: BANK

do
comment("t4: wrong imp and complete contract with shallow copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v4 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end
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Test of Version 4: Result
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Version 5:
Complete Contracts with Deep Object Copy
class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ∼ n end
local i: INTEGER

do . . .
-- imp. of version 1, followed by a deposit into 1st account
accounts[accounts.lower].deposit(a)

ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n).balance =
old Current.account_of(n).balance + a

others unchanged :

across old accounts.deep twin is acc
all
acc.owner /∼ n implies acc ∼ Current.account_of(acc.owner)

end
end

end
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Test of Version 5

class TEST_BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN
local
b: BANK

do
comment("t5: wrong imp and complete contract with deep copy")
create b.make
b.add ("Bill")
b.add ("Steve")

-- deposit 100 dollars to Steve’s account
b.deposit on v5 ("Steve", 100)
Result :=

b.account_of("Bill").balance = 0
and b.account_of("Steve").balance = 100

check Result end
end

end
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Test of Version 5: Result
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Exercise

● Consider the query account of (n: STRING) of BANK.
● How do we specify (part of) its postcondition to assert that the

state of the bank remains unchanged:
○ accounts = old accounts [ × ]
○ accounts = old accounts.twin [ × ]
○ accounts = old accounts.deep_twin [ × ]
○ accounts ˜ old accounts [ × ]
○ accounts ˜ old accounts.twin [ × ]
○ accounts ˜ old accounts.deep_twin [ ✓ ]

● Which equality of the above is appropriate for the
postcondition?

● Why is each one of the other equalities not appropriate?
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