Copies: Reference vs. Shallow vs. Deep
Writing Complete Postconditions

EECS3311 A: Software Design

YO R |IT< ' Winter 2020

CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

Copying Objects Lassonpe
Say variables c1 and c2 are both declared of type C. [c1, c2: ¢]

e There is only one attribute a declared in class C.

e cl.aandc2.a are references to objects.

_—

cl

—

c2

Copying Objects: Reference Copy Lassonpe

Reference Copy cl := c2

o Copy the address stored in variable c2 and store it in c1.
= Both c1 and c2 point to the same object.

= Updates performed via c1 also visible to c2. [aliasing]
C
@k’ -
QA
C
S
c2

30139

Copying Objects: Shallow Copy Lassonoe

Shallow Copy cl := c2.twin
o Create a temporary, behind-the-scene object c3 of type C.
o Initialize each attribute a of c3 via reference copy: c3.a := c2.a
o Make a reference copy of c3: cl := c3
= c1 and c2 are not pointing to the same object. [c1 /= c2]
= cl.a and c2.a are pointing to the same object.
= Aliasing still occurs: at 1st level (i.e., attributes of c1 and c2)

C
cl

c3

i

o

S — (-]

c2

/|

Copying Objects: Deep Copy Lassonpe
Deep Copy [c1 := c2.deep twin]

o Create a temporary, behind-the-scene object c3 of type C.
o Recursively initialize each attribute a of c3 as follows:

Base Case: a is primitive (e.g., INTEGER). = c3.a := c2.a.
Recursive Case: a is referenced. = c3.a := c2.a.deep_twin
o Make a reference copy of c3: cl := c3

= c1 and c2 are not pointing to the same object.
= cl.a and c2.a are not pointing to the same object.
= No aliasing occurs at any levels.

-
—

° m

- ___
—

Copying Objects

SSONDE

|

)

!

= Initial situation:

o1

02

= Result of:

d := a.deep_twin ©)

06

name “Almaviva”
landlord —:l
loved_one _l 03
“Figaro” “Susanna”
04 Almaviva”
name “Almaviva” 05
landlord —:l
loved_one _l o7
“Figaro” “Susanna”

e

/|

Example: Collection Objects (1)

o In any OOPL, when a variable is declared of a type that
corresponds to a known class (e.g., STRING, ARRAY,
LINKED_LIST, etc.):

At runtime, that variable stores the address of an object of that type
(as opposed to storing the object in its entirety).

o Assume the following variables of the same type:

|

SSONDE

local
imp : ARRAY[STRING]
old_imp: ARRAY[STRING]
do
create {ARRAY[STRING]} imp.make_empty
imp.force("Alan", 1)
imp.force("Mark", 2)
imp.force ("Tom", 3)

e Before we undergo a change on imp, we “ copy " itto old_imp.

o After the change is completed, we compare imp vs. old_imp.

¢ Can a change always be visible between “old” and “new” imp?
Zat3g

Example: Collection Objects (2) LassonDE

e Variables imp and o1d_imp store address(es) of some array(s).
e Each “slot” of these arrays stores a STRING object’s address.

h ARRAY[STRING]
[y |

imp
imp[1] imp[2] M

STRING STRING STRING
value value value

22

old imp

Reference Copy of Collection Object

|

SSONDE

NOoO O WN =

‘ old.imp := imp

Result := old _imp = imp Result
imp[2] := "Jim"
Result :=

across 1 |..| imp.count is j

all imp [j] ~ old _imp [7]
end —— Result = true

Before Executing L3

After Executing L3

<’-A\\\\\\‘ ARRAY[STRING]

imp (
STRING STRING STRING
[vatue [RAEN [vatue [RUERE [vatue JRRCTE

Lo Ip [=]

old_imp

imp
STRING STRING STRING

STRING

R
Shallow Copy of Collection Object (1) o

T 1

1 ‘ old.imp := imp.twin
2 |Result := old _imp = imp Result = false
3 | imp[2] := "Jim"
4 |Result :=
5 across 1 |..| imp.count is j
6 | all imp [j] ~ old_imp [7F]
7 end - Result = false
Before Executing L3 After Executing L3

ARRAY[STRING] ARRAV[\STRING] STRING
P prgvara
“ / \\ \ imp / X \
STRING STRING STRING STRING STRING STRING
value value value value value value
old_imp / ‘ / / old_imp / ‘ / /

ARRAY[STRING] ARRAY[STRING]

e

N
Shallow Copy of Collection Object (2)

T 1

SSONDE

|

1 ‘ old.imp := imp.twin

2 |Result := old_imp = imp -—- Result = false
3 | imp[2] .append ("*xx")

4 |Result :=

5 across 1 |..| imp.count is j

6 all imp [j] ~ old_imp [j]

7 end —— Result = true

Before Executing L3 After Executing L3

ARRAY[STRING] ARRi‘\V[STR‘ING]
imp / \\ \ / \\
STRING STRING STRING STRING STRING STRING
-, [=
old_imp ‘ / old_imp ‘ ‘
\' ——t

ARRAY[STRING] ARRAY[STRING]

e

Deep Copy of Collection Object (1)

|

SSONDE

oo ON =

T

‘ old.imp := imp.deep-twin
Result := old_imp = imp -
imp[2] := "Jim"
Result :=
across 1 |..| imp.count is j
all imp [j] ~ old_imp [j] end —— Res

= false

Before Executing L3

After Executing L3

ARRAV[STRING]

nnn
STR!NG STRING STR!NG
“Alan” “Mark”

STRING STRING STRING

ARRAY[STRING]

ARRAY| m STRING
/ m “Jim”
imp

STRING STRING STRING
STRING STRING STRING

old_imp

N 171

Deep Copy of Collection Object (2)

imp.deep_twin

imp.count is j
~ old_imp [j] end

O hWN =

all imp [7]

= false

Before Executing L3

After Executing L3

nnn
STRING STRING STRING
“Alan” “Mark”

/ PEERNEN

ARRAV[STRING]

STRING STRING STRING
“Alan” Szrk”

“Mark***"

STRING STRING STRING

old_imp

/|

-
How are contracts checked at runtime? Zéésésom
o All contracts are specified as Boolean expressions.

o Right before a feature call (e.g., acc.withdraw (10)):
o The current state of acc is called its pre-state.
o Evaluate pre-condition using current values of attributes/queries.
[old_accounts.i-id := accounts]i].id]

\n,

ko

e Cache values, via[: =], of old expressions in the post-condition .
[old_accounts._i := accounts]i]]

e.g.,| old accountsi].id
[old_accounts_i_twin := accounts|i].twin]
[old_accounts := accounts]

eg.,
[old_accounts_twin := accounts.twin]

(old accounts]i]).id
[old_current := Current]

(old accountsfi].twin).id ‘
.id
[old_current_twin := Current.twin |

eg.
]

[

e.g.,| (old accounts)
(old accounts.twin)[i].id ‘

eg.,

(old Current).accounts[i].id ‘

e.qg.,
e.g.,’ (old Current.twin).accounts[i].id ‘
o Right after the feature call:
o The current state of acc is called its post-state.
o Evaluate invariant using current values of attributes and queries.
o Evaluate post-condition using both current values and “cached”

values of attributes and queries.

14.0t39

When are contracts complete? Lassonpe

In post-condition , for each attribute , specify the relationship
between its pre-state value and its post-state value.

o Eiffel supports this purpose using the old keyword.

This is tricky for attributes whose structures are composite
rather than simple:

e.g., ARRAY, LINKED_LIST are composite-structured.
e.g., INTEGER, BOOLEAN are simple-structured.

Rule of thumb: For an attribute whose structure is composite,
we should specify that after the update:

1. The intended change is present; and

2. The rest of the structure is unchanged .

The second contract is much harder to specify:

o Reference aliasing [ref copy vs. shallow copy vs. deep copy]
o lterable structure [use across |

e

SSONDE

/|

Account LA
F
class
ACCOUNT
inherit deposit (a: INTEGER)
ANY do
redefine is_equal end balance := balance + a
ensure
balance = old balance + a
end
ACCOUNT) : BOOLEAN

create
make

feature - Att
owner: STRING
balance: INTEGER

—— Co

feature
make (n: STRING)

is_equal (other:

do
Result :=
owner ~ other.owner
and balance = other.balance
end
end

/|

-
Ban k _iIEASSONDE
class BANK
create make
feature
accounts: ARRAY [ACCOUNT]
make do create accounts.make_empty end
account_of (n: STRING): ACCOUNT
require —- e input 1 > <
existing: across accounts is acc some acc.owner ~ n end
(across accounts is acc all acc.owner /~ n
owner ~ n end
not ex
~ N 1)

do ...
add (n: STRING)
require -- the input nc
non_existing:
s accounts 1s acc acc. ov
nt: ACCOUNT

(acros

ensure Result.
L e does n
across accounts is acc all acc.owner /~ n end
. o .

accounts.upper + 1)

local new_accoun
do
create new_account.make (n)
accounts. force (new_account,
end
end
e

/|

|

Roadmap of lllustrations

SSONDE
We examine 5 different versions of a command
deposit_on (n: STRING; a: INTEGER)
VERSION || IMPLEMENTATION || CONTRACTS || SATISFACTORY?
1 Correct Incomplete No
2 Wrong Incomplete No
3 Wrong Complete (reference copy) No
4 Wrong Complete (shallow copy) No
5 Wrong Complete (deep copy) Yes

Object Structure for lllustration

LASSONDE
i

We will test each version by starting with the same runtime object

structure:

b.accounts

accounts

ACCOUNT

owner

balance

“Bill”

ACCOUNT
owner “Steve”

balance

/|

Version 1: LASSONDE
Incomplete Contracts, Correct Implementation

class BANK
deposit_on_vl (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

do
from i := accounts.lower
until i > accounts.upper
loop
if accounts[i].owner ~ n then accounts[i].deposit(a) end
i:=1+1
end
ensure

num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n) .balance + a
end
end

e

;#
SSONDE

Test of Version 1 9
et
class TEST_ BANK
test_bank_deposit_correct_imp_incomplete_ contract: BOOLEAN
local
b: BANK
do
comment ("tl: correct imp and incomplete contract")
create b.make

b.add ("Bill")
b.add ("Steve")

dep 100 doll K
b.deposit_on-vl ("Steve", 100
=0

Result :
b.account_of("Bill") .balance
and b.account_of ("Steve") .balance = 100

check Result end

end

end
e

SSONDE

ks

Test of Version 1: Result

APPLICATION
Note: * indicates a violation test case
PASSED (1 out of 1)
1
TEST_BANK

Violation
Boolean
[ALL Cases

hl test deposit_on with correct imp and incomplete contract

NONE

[PASSED

/|

Version 2: LASSONDE
Incomplete Contracts, Wrong Implementation

class BANK
deposit_on_v2 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER

[ms

ny of version 1, followed by a deposit into 1lst accoun
accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged:
accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n) .balance + a
end
end

Current postconditions lack a check that accounts other than n
are unchanged.
23.0f.39

/|

SSONDE
BOOLEAN

Test of Version 2

|

class TEST_ BANK
test_bank_deposit_wrong_imp_incomplete_contract:

wrong imp and incomplete contract")

local
b: BANK
do
comment ("t2:
create b.make
b.add ("Bill")
b.add ("Steve")
it 100 dollars to Steve’s acc
"Steve", 100)
=0

(

= 100

dep
b.deposit_on-v2
b.account_of("Bill") .balance

Result
and b.account_of("Steve") .balance
check Result end
end
end
e

- . =
Test of Version 2: Result LassoNDE
APPLICATION
Note: * indicates a violation test case
FAILED (1 failed & 1 passed out of 2)
CaseTypel Possed | Total |
\Violation]]
Boolean 1 2
A1l Cases 1 2
Contract Vislation
Testl TEST_BANK
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract

|

/|

Version 3: LASSONDE
Complete Contracts with Reference Copy

class BANK
deposit_on_v3 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

lowed by a

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n).balance + a
others_unchanged :
across old accounts is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
280139

SSONDE

Test of Version 3

|

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_ref_copy: BOOLEAN

local
b: BANK

do
comment ("t3: wrong imp and complete contract with ref copy")
create b.make

b.add ("Bill")
b.add ("Steve")

dep 100 doll K
b.deposit_on-v3 ("Steve", 100
=0

Result :
b.account_of("Bill") .balance
and b.account_of ("Steve") .balance = 100

check Result end
end

end
e

Test of Version 3: Result

SSONDE

|

APPLICATION

Note: * indicates a violation test case

FAILED (2 failed & 1 passed out of 3)

Cose Type] _____Passed | Total

Violation 0 4
Boolean 1 3
All Cases 1

3
PASSED NONE tl: test deposit_on with correct imp and incomplete contract
FAILED Check assertion violated. [t2: test deposit_on with wrong imp but incomplete contract
FAILED Check assertion violated. [t3: test deposit_on with wrong imp, complete contract with reference copy

/|

Version 4: LASSONDE
Complete Contracts with Shallow Object Copy

class BANK
deposit_on_v4 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

lowed by a

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n).balance + a
others_unchanged :
across old accounts.twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
—22ni39

ASSONDE

Test of Version 4

| gl

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_shallow_copy: BOOLE

local
b: BANK

do
comment ("t4: wrong imp and complete contract with shallow copy"|)
create b.make

b.add ("Bill")
b.add ("Steve")

dep 100 doll K
b.deposit_on-v4 ("Steve", 100
=0

Result :
b.account_of("Bill") .balance
and b.account_of ("Steve") .balance = 100

check Result end
end

end
e

Test of Version 4: Result

\n,

LASSONDE

Note:

APPLICATION

* indicates a violation test case

FAILED (3 failed & 1 passed out of 4)

Total
Violation] 0

Boolean 1 4
A1l Cases 1

Contract Viola

4
TEST_BANK

PASSED NONE t1l: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated. |t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
FAILED Check assertion violated. |t4: test deposit_on with wrong imp, complete contract with shallow object copy

/|

Version 5: LASSONDE
Complete Contracts with Deep Object Copy

class BANK
deposit_on_v5 (n: STRING; a: INTEGER)
require across accounts is acc some acc.owner ~ n end
local i: INTEGER
do ...

lowed by a

accounts[accounts.lower].deposit (a)
ensure
num_of_accounts_unchanged: accounts.count = old accounts.count
balance_of_n_increased:
Current.account_of(n) .balance =
old Current.account_of(n).balance + a
others_unchanged :
across old accounts.deep_-twin is acc
all
acc.owner /~ n implies acc ~ Current.account_of (acc.owner)
end
end
end
32039

SSONDE

Test of Version 5

|

class TEST_ BANK
test_bank_deposit_wrong_imp_complete_contract_deep_copy: BOOLEAN

local
b: BANK

do
comment ("t5: wrong imp and complete contract with deep copy")
create b.make

b.add ("Bill")
b.add ("Steve")

dep
b.depos
Result :
b.account_of("Bill") .balance
and b.account_of ("Steve") .balance

= 100

check Result end
end

end
e

/|

Test of Version 5: Result LASSONDE

\n,

APPLICATION

Note: * indicates a violation test case

FAILED (4 failed & 1 passed out of 5)

Total
Violation] 0

‘ Boolean 1 5
\All Cases 1 5

PASSED NONE tl: test deposit_on with correct imp and incomplete contract

FAILED Check assertion violated. |[t2: test deposit_on with wrong imp but incomplete contract

FAILED Check assertion violated. |t3: test deposit_on with wrong imp, complete contract with reference copy
‘FAILED Check assertion violated. [t4: test deposit_on with wrong imp, complete contract with shallow object copy

‘FAILED Postcondition violuted) t5: test deposit_on with wrong imp, complete contract with deep object copy

e

/|

Exercise

LASSONDE
i

e Consider the query account_of (n: STRING) of BANK.

* How do we specify (part of) its postcondition to assert that the
state of the bank remains unchanged:

o laccounts old accounts‘ [X]
o ’accounts old accounts.twin‘ X
o ’accounts old accounts.deepftwin‘ X
O | accounts old accounts‘ X
O | accounts old accounts.twin‘ X
o ’accounts ” old accounts.deep_twin‘]

e Which equality of the above is appropriate for the
postcondition?

e Why is each one of the other equalities not appropriate?

35.01.39

Index (1) ;ASSONDE

Copying Objects
Copying Objects: Reference Copy

Copying Objects: Shallow Copy
Copying Objects: Deep Copy
Example: Copying Objects
Example: Collection Objects (1)

Example: Collection Objects (2)

Reference Copy of Collection Object
Shallow Copy of Collection Object (1)

Shallow Copy of Collection Object (2)

Deep Copy of Collection Object (1
36.0£39

Index (2) ;ASSONDE

Deep Copy of Collection Object (2

How are contracts checked at runtime?
When are contracts complete?
Account

Bank

Roadmap of lllustrations

Object Structure for lllustration

Version 1:
Incomplete Contracts, Correct Implementation

Iest of Version 1
Iest of Version 1: Result

e

Index (3) ;ASSONDE

Version 2-

Incomplete Contracts, Wrong Implementation
Iest of Version 2

Iest of Version 2: Result

Version 3:

Complete Contracts with Reference Copy

Iest of Version 3

Iest of Version 3: Result
Version 4:
Complete Contracts with Shallow Object Copy
Iest of Version 4

Iest of Version 4: Result

e

Index (4) .;ASSONDE

Version 5:

Complete Contracts with Deep Object Copy
Iest of Version 5

Iest of Version 5: Result

Exercise

	Copying Objects
	Copying Objects: Reference Copy
	Copying Objects: Shallow Copy
	Copying Objects: Deep Copy
	Example: Copying Objects
	Example: Collection Objects (1)
	Example: Collection Objects (2)
	Reference Copy of Collection Object
	Shallow Copy of Collection Object (1)
	Shallow Copy of Collection Object (2)
	Deep Copy of Collection Object (1)
	Deep Copy of Collection Object (2)
	How are contracts checked at runtime?
	When are contracts complete?
	Account
	Bank
	Roadmap of Illustrations
	Object Structure for Illustration
	Version 1: Incomplete Contracts, Correct Implementation
	Test of Version 1
	Test of Version 1: Result
	Version 2: Incomplete Contracts, Wrong Implementation
	Test of Version 2
	Test of Version 2: Result
	Version 3: Complete Contracts with Reference Copy
	Test of Version 3
	Test of Version 3: Result
	Version 4: Complete Contracts with Shallow Object Copy
	Test of Version 4
	Test of Version 4: Result
	Version 5: Complete Contracts with Deep Object Copy
	Test of Version 5
	Test of Version 5: Result
	Exercise

